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Abstract

We present PaSAT, a parallel implementation of a Davis-Putnam-style propositional satis-
fiability checker incorporating dynamic search space partitioning, intelligent backjumping,
as well as lemma generation and exchange; the main focus of our implementation is on
speeding up SAT-checking of propositional encodings of real-world combinatorial prob-
lems. We investigate and analyze the speed-ups obtained by parallelization in conjunction
with lemma exchange and describe the effects we observed during our experiments. Finally,
we present performance measurements from the application of our prover in the areas of
formal consistency checking of industrial product documentation, cryptanalysis, and hard-
ware verification.
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1 Introduction

Although SAT is an NP-complete problem and therefore problem instances with
exponential run-times can occur in the worst case, speed-up by a constant factor—
as it can at best be achieved by parallelization—is nevertheless of interest [BS96,
ZBHa96]; here are several reasons for this: First, real-world applications of SAT
like hardware verification usually are at the limit of what today’s solvers offer,
problems beyond the limit are handled with different methods like testing. In the
former case reduced run-times enable faster verification cycles, or even lower the
limit for incorporating formal methods. Second, in other applications like consis-
tency checking of product documentation [KS00], one has to cope with huge series
of propositional proofs. Most of these proofs are very easy and are processed in
under a second, but there are rare cases in which run-time is considerably higher.
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Here, parallelization can reduce average waiting time for the personnel and thus
increase acceptability of SAT-based tools. And third, we may hope to improve se-
quential algorithms by using new insights gained by the parallel approach. In some
cases, especially with cooperating prover tasks, we observe superlinear speed-ups,
which may be carried over to a sequential algorithm.

In this paper we present PaSAT, a parallel implementation of a variant of the Davis-
Putnam algorithm. It is designated to run on multi-processor computers—which
are becoming more and more common—or distributed over a networked cluster of
standard PCs. It incorporates search-space pruning techniques like intelligent back-
jumping and lemma generation, which is also sometimes referred to aslearning.
Additionally, we integrated the possibility of exchanging lemmas between prover
tasks working on different parts of the search tree of the same problem instance,
thereby achieving cooperating agents.

The rest of the paper is organized as follows: First we describe the cornerstones
of our implementation in-depth, then we present an approach to analyze the effect
of learning. After briefly introducing different real-world application areas of SAT,
we present experimental results we obtained with PaSAT on these problem classes.
We conclude with an overview of related work.

2 Our Parallel Implementation: PaSAT

In the following, we present the cornerstones of our implementation of the Davis-
Putnam (DP) algorithm. These are based on ideas from Zhang [ZBHa96] and Silva
and Sakallah [SS96]. We will now describe how we adopted these ideas in our
prover.

Although we assume the reader to be familiar with the basic DP algorithm, a sim-
plified version of our implementation’s algorithm is depicted in Figure 1. The main
procedureDP is initially called with an input clause setS and a starting leveld � �.
The backjump-level is a global variable that is set by the conflict analysis subrou-
tine as soon as an empty clause is derived. Conflict analysis generates a dependency
graph with a node for each clause becoming unit or empty, encoding the reasons
for these events [SS96]. We will explain this later in more detail.

There has been a lot of work on literal selection strategies [HV95]. However, in
PaSAT we did not emphasize on this, and implemented only three simple heuristics:
choose a literal from a shortest positive clause (SPC), choose a literal with the
maximal number of occurrences (MO), or choose a literal with the maximal number
of binary occurrences (MBO). We now turn to the technical details of our prover.

PaSAT is a list-based implementation in C++, i.e. clauses are stored as lists of liter-
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boolean DP(ClauseSet S, Level d )
f

while ( S contains a unit clause fLg ) f
register cause of L becoming unit; // conflict management
delete from S clauses containing L; // unit-subsumption
delete L from all clauses in S; // unit-resolution

g
if ( � � S ) f // empty clause?

generate conflict induced clause CC; // conflict management
compute backjump-level; add CC to S;
return FALSE;

g
if ( S � � ) return TRUE; // no clauses?
choose a literal Ld�� occurring in S; // case-splitting
if ( DP(S � fLd��g), d� � ) return TRUE; // first branch
else if ( backjump-level < d) ) return FALSE;
else if ( DP(S � fLd��g), d� �) return TRUE; // second branch
else return FALSE;

g

Fig. 1. The Sequential Davis-Putnam Algorithm with Conflict
Management.

als. For each variable we keep pointers to the clauses in which it occurs in order to
speed up unit propagation [ZS96]. As parallelization platform we have employed
the Distributed Object-Oriented Threads System (DOTS) [BKLW99]. DOTS is a
parallel programming toolkit for C++ that integrates a wide range of different com-
puting platforms into a single system environment for high performance computing.
DOTS provides a platform independent threads programming API, enhanced with
primitives supporting the parallelization of applications from the field of Symbolic
Computation, likejoin-anyandcancelconstructs for threads. Furthermore, it makes
the threads programming paradigm available in a distributed memory environment.
Thus with DOTS, a hierarchical multiprocessor, consisting of a (heterogeneous)
cluster of shared-memory multiprocessor systems can be efficiently programmed
using a single paradigm (fork/join). In our implementation DOTS threads are dy-
namically created when processing capacity becomes available.

Dynamic Search Space Partitioning

For the parallel execution of the Davis-Putnam algorithm the search space has to
be divided into mutually disjoint portions to be treated in parallel. However, static
generation of balanced subproblems is not feasible, since it is very hard to pre-
dict the extent of the problem reduction delivered by the unit propagation step and
by the conflict analysis in advance. Consequently, when parallelizing the Davis-
Putnam algorithm we have do deal with considerably different and completely un-
predictable run-times of the subproblems.

We adopt a search space splitting technique presented in [ZBHa96] which is based
on the notion of aguiding path. A guiding path describes the current state of the
search process. More precisely, a guiding path is a path in the search tree from the
root to the current node, with additional labels attached to the edges. Each level of
the tree where a case splitting literal is added to clause setC, i.e. each (recursive)
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call to the DP procedure, corresponds to an entry in the guiding path, and each entry
consists in turn of the following information:

(1) The literalLd�� which was selected at leveld.
(2) A flag indicating whether we are in the first or in the second branch. We use

B to indicate the first branch, where backtracking is needed, andN to indicate
the second branch, where no backtracking is needed.

Each entry in the guiding path with flagB set is a potential candidate for a search
space division, as the sequential search may have to backtrack to this point and ex-
amine the second branch later. The whole subtree rooted at the node corresponding
to this entry can thus be examined by another independent process, where at the
same time the first process switches the flag in the guiding path fromB to N. The
second recursive call of the DP procedure is only executed if the backtrack flag is
set toB.

Lemma Generation

Lemma generation aims at reducing the search space by adding information derived
during the search to the problem instance’s clause set. This works as follows. As
soon as the DP algorithm reaches a leaf of the search tree which is not a solution,
i.e. when an empty clause is found, the reason for the generation of the empty
clause (orconflict) is analyzed [SS96]. Often not all selected splitting literalsLd
are necessary for the conflict to emerge, such that we obtain a setLd�� � � � � Ldk of
remaining literals, which are a sufficient condition for the conflict. By adding the
conflict-induced clauseCC � Ld� � � � ��Ldk to the clause set, we can thus prevent
a useless repeated search of the same subtree. We will not describe in detail how
the literals evoking a conflict are computed, but refer the reader to the literature
instead, which describes also some variants of the above idea, e.g. considering not
only splitting literals [Zha00], or identification of UIPs (unique implication points)
[SS96]. In our implementation we use a procedure similar to Zhang’s.

Adding all conflict clauses to the clause set can result in exponential blow-up.
Therefore it is common practice to limit the addition of clauses to those containing
less than a fixed number of literals. In our implementation we keep clauses up to
a fixed lengthl� (in our experiments we setl� � ��), and moreover we retain all
clauses up to a lengthl� �� l� as long as they are unit clauses, discarding them as
soon as two or more literals are becoming unassigned.

Intelligent Backjumping

The generated conflict induced clauses can be used to perform another kind of
search space pruning called intelligent backjumping [SS96]. At first, note, that
when an empty clause occurs at leveld then the conflict-induced clause, sayC�,
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must contain literalLd, as otherwise the empty clause would be independent of the
assignment toLd, and thus already would have appeared on a lower level. Now,
if at level d � � backtracking is required, and examination of the second branch,
i.e. addingLd to the clause set, immediately generates another conflict, the new
conflict-induced clauseC� must containLd. The resolvent of both clauses, how-
ever, only contains literals set at lower levels, up to a maximum ofdmax. On all
levels d � dmax the detected merged conflict remains, so that we can skip all
backtracks until we have reached leveldmax. We call dmax the backjump-level
(see also Figure 1).

In conjunction with parallel search space exploration, intelligent backjumping may
skip a subtree that was forked off to another prover task. In this case the forked
task should be signaled to terminate its search. Incorporating lemma exchange as
explained below, allows automatic detection and handling of such cases.

Lemma Exchange

To improve the performance of parallel problem solvers, it is quite common to
use cooperation between individual tasks working on the same problem which also
integrates the exchange of information. In the realm of propositional SAT-checking,
however, we do not know of any work in this direction.

Tasks working on independent parts of the search space and independently gener-
ating lemmas for their own use can be considered as learning agents. Each lemma
generated by a conflicting assignment is a piece of information that the prover
found out about the problem instance. This information may be used—as men-
tioned above—during subsequent search to cut off parts of the search space. In this
light it seems to be quite natural to extend the idea of lemma generation to the
case of communicating prover tasks that exchange especially well-suited lemmas.
Thereby they share information that is not derivable by unit propagation alone.

Technically, we have put this idea into practice using a globally accessible data
structure, theglobal lemma store, which in our current version is held in shared
memory. This has the advantage of fast access and easy handling, but on the other
hand limits access to the structure to prover tasks running on the same machine.
The data structure is realized as a set of queues, especially designed to allow con-
current access without synchronization in order to prevent the global lemma store
from becoming a sequential bottleneck. Each prover task now filters the lemmas
it generates (using the length as a simple criterion), and puts the best ones into
the global lemma store. In regular intervals the prover tasks check if there are new
lemmas in the global store, and if this is the case, they integrate them into their
clause sets. Before integration a second filter step can be applied, but this is not
implemented yet.

A priori, it does not seem to be clear how much the prover tasks can profit from the

209



exchange of lemmas. Our experiments show that at least on some SAT instances
exchanging lemmas can speed up the search process considerably.

3 Analyzing the Effects of Lemma Generation

In order to get a more concise picture of the effect of lemma generation and ex-
change on the search process, we made some experiments concerning the progress
of the search. We expected two antagonistic effects to become apparent when in-
tegrating newly derived lemmas into the clause set. First, due to the continuous
learning of new facts which allows cutting off growing pieces of the search space,
the speed of traversal should accelerate. Second, insertion of new clauses means in-
creasing run-times for the basic operations of the DP algorithm like unit-propagation
and literal selection. Which of the two effects dominates the other, and the condi-
tions under which this is the case, we tried to determine empirically.

As a measure of the fraction of the search space that is already processed at a
certain point of time the guiding paths of Section 2 are very helpful. Given a SAT
instance withn variables, we assume the whole search space to consist of�n states,
representing the possible assignment functions. Obviously, unit propagation cuts
off huge parts of the search space, but we take the view that these parts have still
been processed implicitly. During search, we continuously update the guiding path
to the current position in the search space, which consists, assuming we are at level
d, of the literalsL�� � � � � Ld together with the information whether we are in the first
or second branch at each level. Thus, the guiding path can serve as a description
of the current position in the search space. The fractionf�PC� of the search space
that we have already traversed can then be computed from the current guiding path
PC � ��L�� b��� � � � � �Ld� bd�� by

f�PC� �
dX

i��

w�bi� � ��i �

wherew�N� � � andw�B� � �. For our experiments, we periodically interrupted
the prover and registered the current time, the current guiding path, and the number
of nodes of the search tree processed so far. We use the last figure to determine the
slowdown caused by additional lemma clauses, noting that the number of search
nodes coincides with the number of unit propagations and literal selections per-
formed, and thus can be used to compute the average time of these operations.

The results of our experiments are exemplarily shown for the satisfiable data set
DES-R3-B1-K1.1 in Figure 2. For this instance we generated and stored lemmas
of length up to 10. A solution was found after 725.5 seconds, having processed
approx. 16% of the search space. In the left diagram, the traversal pattern of the
search space is displayed, on the right hand side the cumulated number of visited
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Search Space Traversal DES-R3-B1-K1.1
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Fig. 2. Search Space Analysis for DES-R3-B1-K1.1 with Lemma Generation.

nodes of the search tree over time can be seen. Other SAT instances show similar
behavior.

Our preliminary observations are as follows. For a particular problem instance the
search space traversal graph is almost independent of lemma generation or ex-
change (up to scaling of the time and node axes due to speed-up). This suggests that
the pattern of search space traversal is mainly controlled by the problem instance
and the splitting variable heuristic. On the other hand, as can be seen from the right
diagram, lemma insertion can cause a considerable slow-down of the search engine.
We have not yet directly analyzed the effects of lemma exchange with our method,
and expect that further work is needed to gain a deeper understanding of the effects
of lemma generation and exchange in general.

4 Applications

We now turn to three areas we have chosen to evaluate our implementation: Con-
sistency checking of automotive product documentation, logical cryptanalysis and
hardware verification via bounded model-checking.

Consistency Checking of Product Documentation

Most of the manufacturing industry for complex products employs data bases to
store information about which products they can produce. This is necessary as there
are usually many sales options a customer can choose from, but not all combina-
tions can actually be manufactured. Constraints on valid combinations are often
expressed in a finite domain logic (or even Boolean logic), and consistency aspects
of the data base as a whole play a vital role, as otherwise valid orders may be
rejected or orders that cannot be manufactured may be accepted.

Using SAT-checkers to ascertain consistency generates loads of SAT instances,
the greatest part of which is fortunately easily solvable [KS00]. As the number
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of proofs for a complete check may well be in the thousands, parallel processing
of these proof obligations is highly appreciated, e.g. to reduce the waiting time in
an interactive environment. Our parallelization approach in this case is therefore
twofold: First, we start several proofs in parallel. Should the proof time for an indi-
vidual proof exceed a timing threshold value, the proof is suspended and put into a
queue of long-running proofs, which are then, in a second phase, processed by our
parallel prover PaSAT [BSK01].

Logical Cryptanalysis

Logical cryptanalysis deals with finding keys and analyzing properties of encryp-
tion techniques with logical methods. This means, e.g. for the former, that finding a
key is equivalent to finding a model of a corresponding formula. Here, we consider
analysis of parts of the DES standard, which was proposed as a hard SAT bench-
mark different from random instances [MM00]. In our experiments we analyzed a
simplified version of DES using only 3 encryption rounds instead of 16 as in the
standard.

Bounded Model-Checking

Symbolic model-checking is a widely accepted way for the verification of hardware
and reactive systems. Bounded model-checking (BMC) [BCCZ99] was proposed as
an alternative to the traditional BDD-based method for model-checking. Bounded
model-checking uses propositional decision procedures instead of binary decision
diagrams [Bry86] to check temporal/modal properties of these systems.

In the BMC approach in order to verify a propertyp of a logical hardware descrip-
tion H, a bounded number of steps of the transition relation ofH is transformed
into a propositional formula, which then, together with the propositional translation
of p, is tested for satisfiability. The propertyp is usually given as a temporal logic
formula.

For our experiments we checked the equivalence of a 16-bit sequential shift-and-
add multiplier with a combinatorial multiplier (see [BCCZ99] for further informa-
tion).

5 Experimental Results

We conducted experiments with PaSAT on all of the aforementioned application
areas, and report in this paper on the last two of them. Results concerning the
area of consistency checking for automotive product data can be found elsewhere
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[BSK01].

Our experiments were performed on a Sun Ultra E450 with 4 UltraSparcII proces-
sors (@400 MHz) and 1 GB of main memory running under Solaris 7. Although
DOTS supports distribution on multiple machines we did not make use of this fea-
ture due to the current implementation of clause exchange that relies on shared
memory.

Logical Cryptanalysis

We used the data files from Massacci� that encode the DES algorithm using 3
rounds. The problem is to find the encryption key given a certain number of plain-
text/ciphertext blocks. The number of these blocks varies between 1 and 4 (as in-
dicated by the B-part of the problem instance name). All problem instances are
satisfiable, but have only a few models, often just one.

As parameters for lemma generation we usedl� � �� and l� � ���, The literal
selection strategy picked a literal of a shortest positive clause (SPC). Lemma ex-
change was limited to clauses of length� �.

Table 1
Performance Measurements of the 3-Round DES Instances.

problem instance tSATO tSeq tPar tPaSAT sPar�Seq sPaSAT�Seq

DES-R3-B1-K1.1 949.93 725.5 20.69 19.23 35.07 37.73

DES-R3-B1-K1.2 631.07 1566.35 112.14 51.14 13.97 30.63

DES-R3-B2-K1.1 1.3 3.84 2.13 1.86 1.80 2.06

DES-R3-B2-K1.2 287.04 2.96 3.07 2.58 0.96 1.15

DES-R3-B3-K1.1 42.75 31.29 4.3 4.22 7.28 7.41

DES-R3-B3-K1.2 194.31 1480.47 297.26 64.01 4.98 23.13

DES-R3-B4-K1.1 492.36 2.75 2.79 2.42 0.99 1.14

DES-R3-B4-K1.2 495.48 10.15 10.04 9.48 1.01 1.07

The results of our experiments are shown in Table 1. We have given the runtimes
tSeq for the sequential version (using only one processor),tPar for the parallel ver-
sion without lemma exchange andtPaSAT for the parallel version with lemma ex-
change. For comparison reasons we also added the runtimes obtained with version
3.2 of SATO using the default settings. The last two columns indicate the speed-
ups of the parallel versions relative to the sequential version, without resp. with
exchange of lemmas. As the problem instances are all satisfiable the observation of

� http://www.dis.uniroma1.it/˜massacci/cryptoSAT
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superlinear speed-ups is not surprising. Adding lemma exchange further accelerates
the model search considerably as can be seen, e.g., from DES-R3-B3-K1.2.

Bounded Model-Checking

The SAT instances we examined stem from a 16-bit multiplier� . The 16 datafiles of
this benchmark set correspond to the 16 output bits of the multiplier. All instances
are unsatisfiable. We set the parameters for lemma generation tol� � ��� l� � ����

and exchanged lemmas up to a length of 5. The literal selection strategy was MBO
(see Section 2).

Table 2
Performance Measurements of the Longmult Instances.

problem inst. tSATO tSeq tPar tPaSAT sPar�Seq sPaSAT�Seq

longmult6 42.42 20.68 5.73 4.85 3.61 4.26

longmult7 160.99 73.78 22.24 15.49 3.32 4.76

longmult8 390.25 176.91 51.54 42.76 3.43 4.14

longmult9 577.60 291.00 79.51 77.78 3.66 3.74

longmult10 1586.71 414.49 113.92 138.71 3.64 2.99

longmult11 1625.74 541.14 145.81 179.28 3.71 3.02

longmult12 728.09 646.43 163.66 162.78 3.95 3.97

longmult13 2198.44 809.67 202.92 227.93 3.99 3.55

longmult14 1294.64 929.21 242.13 248.59 3.84 3.74

The results of our experiments are shown in Table 2. The column headings have the
same meaning as in the last section. Without lemma exchange we achieved speed-
ups of up to 3.99, for the seven long-running examples we get an average efficiency
of over 93%. In the presence of lemma exchange we get a higher deviation, and
sometimes even observe superlinear speed-ups. These can be explained by the ad-
ditional search space pruning effect of lemma exchange, which yields information
that is otherwise usable only for a smaller part of the search.

6 Related and Future Work

Böhm and Speckenmeyer presented a parallel SAT-solver for a Transputer system
consisting of 256 processors [BS96]. Their work concentrates on workload balanc-

� http://www.cs.cmu.edu/˜modelcheck/bmc/bmc-benchmarks.html
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ing between the processors; the DP algorithm executed on each processor node em-
ploys a special variable selection heuristic, but no lemma generation or exchange.

PSATO [ZBHa96] is a distributed propositional prover for networks of worksta-
tions, based on the sequential prover SATO, which also incorporates lemma genera-
tion. PSATO is focused on solving open quasigroup problems. However, in PSATO
no lemma exchange or communication between prover tasks is implemented, e.g.
to interrupt processors working on unnecessary parts of the work space.

We see the main contribution of our paper in the integration of lemma exchange
into a parallel version of the DP procedure. Moreover, we started to analyze the
effects of lemma exchange, and expect that more work in this direction can reveal
interesting facts about learning behavior.

The performance gains by lemma exchange are in many practical cases consider-
able, as our experiments have shown. Extending lemma exchange to more processor
nodes by using agents distributed over a network seems to be a promising way for
future developments.
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