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Abstract

We formally verify aspects of the rule-based expert system of IBM’s system automation software for IBM’s zSeries mainframes. Starting

with a formalization of the expert system in propositional dynamic logic (PDL), we encode termination and determinism properties in PDL

and its extension DPDL. We then translate our decision problems to propositional logic and apply advanced SAT techniques for automated

proofs. In order to locate real program bugs for each failed proof attempt, we apply extra formalization steps and represent propositional error

formulae in concise normal form as binary decision diagrams. In our experiments, we revealed residual non-termination bugs in a tested

program version close to shipment, and, after correcting them, we formally verified the absence of this class of bugs in the production

code. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of knowledge bases as components within safety

or business critical systems has become more and more

widespread during the 1990s [2], and has attracted renewed

attention in agent-based intelligent Web applications [9]. A

very common technique to store knowledge in these systems

is via rules. This form of expressing knowledge has—

amongst others—the advantage that it employs a represen-

tation that resembles the way experts tend to express most of

their problem solving techniques, namely by situation–

action rules [14].

However, there is some potential for errors during the

generation and maintenance of the rules [24]. For example,

rule systems lack common structuring elements such as

those of object oriented languages, and they fall outside

common programming technology. On the other hand their

simplicity and level of abstraction facilitates formal

verification. There is, however, no generally accepted

formalism for the verification of rule-based systems, so

many different techniques have been proposed [1,23,25,28],

and the verification of real-world industrial applications is

still rare.

In our paper, we investigate the rule-based expert system

of IBM’s system automation (SA) solution for OS/390.1

This system is used by major companies of practically all

industrial sectors to automate the operation of high-

availability applications on their S/390 and zSeries main-

frame computers.2 IBM mainframes are typically employed

in clusters, called Parallel Sysplex, for enhanced reliability.

SA’s technology is intended to be adapted to further

platforms in near future.

Our main goal is the detection of infinite computations

(or loops ) in the rule-based central control instance of SA,

called Automation Manager. The presence of such infinite

computations, which are caused by faulty rules, may lead

the Automation Manager to false decisions, or to oscillate

between different computation states, disabling the overall

functionality of SA for the mainframe, or even for the entire

Parallel Sysplex.

Common software engineering terminology dis-

tinguishes between validation and verification [34]. The

former is concerned with meeting customer expectations in

building the right system, the latter is concerned with

building the system right, according to its specification.
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Formal verification of a program P involves proving, using

mathematical arguments, that P is consistent with its

(formal) specification. This can only work if the semantics

of the programming language are formally defined, and the

program is formally specified in a notation consistent with

the verification techniques [34].

In our case, the rules are of a when–then form. The

when-part consists of a formula of a finite domain

propositional logic, and the then-part manipulates a global

system state by setting the value of a finite domain variable.

Our goal is to formally validate some consistency properties

of a given rule set, mainly termination.

The verification approach we take consists of the

following steps: Starting with the necessary formal

description of the actions of the rule-system, for which we

have chosen propositional dynamic logic, we encode some

consistency criteria in an extension of this logic, DPDL.

This leaves us with proof obligations for either a DPDL

model checker or theorem prover. We have chosen yet

another approach by translating our problems—or partially

restricted versions of our problems—to propositional logic

and then applying state-of-the-art SAT-checkers [42] and

BDD implementations [33] that have already shown their

success in neighboring fields. The purpose of the interim

PDL step is to help derive a correct formal model of the

dynamics of the rule system and of the validation

requirements.

In theory, the automated proofs could be considered the

final step in a verification. In practice, the continuous

discovery of errors during development is even more

important than one final verification, so for each error an

intelligible description is needed [6]. Initially, a number of

non-genuine errors were reported, due to an incompletely

specified rule system. Implicit assumptions on possible

computation states thus had to be made explicit to allow the

separation of genuine and spurious errors. Also, the Boolean

formulas describing the error conditions had to be converted

into human readable concise normal forms, using BDDs, in

order to locate the errors in the source.

Working with a development release of SA close to

shipment, we could actually locate some residual faults that

had remained even after conventional professional testing

and that had also survived all code reviews due to the

complexity of the rules’ when-parts. All of these

deficiencies, which were detected through failed verification

attempts, were subsequently confirmed by simulation on a

zSeries test system, and could be eliminated prior to product

roll-out. We then verified that the final product does not

contain any more looping defects of this class.

The remainder of this paper is organized as follows. In

Section 2, we give a description of IBM’s system

automation and of the form of its rules. In Section 3, we

derive our formalization of the rule language; this is the

theoretical core of the paper. In Section 4, we describe our

verification techniques and tools. Section 5 contains our

experimental results. In Section 6, we give a summary

account of our industrial experience. Section 7 discusses

related work, and the paper closes with a conclusion in

Section 8.

2. IBM’s system automation for OS/390

Mission critical computer systems have to be up and

running reliably. Often these systems are employed in

complex application environments, and thus demand high

skills and considerable knowledge from the operating

personnel in the computer centers. Computer failures,

especially in the financial industry, can cause considerable

losses. For instance, a one hour downtime period in a

computer center of a bank can cause costs of up to ten

million dollars [36]. In these highly critical environments,

IBM’s Parallel Sysplex clusters of zSeries mainframes are

frequently employed to provide extremely high availability.

The IBM zSeries provides an availability of 99.999% within

a z/OS Parallel Sysplex environment, or less than 5.3

minutes downtime per year.

The basic idea behind IBM’s SA is to fully automate a

computer center and thus to reduce the complexity for the

operators and to increase the availability and reliability of

business applications. It allows to define complex software

environments in which applications are automatically

started, stopped, and supervised during runtime. In the

case of an application or system failure, SA can react

immediately and solve the problem by restarting the

application, if necessary on another system in the cluster.

SA provides functionality like grouping which allows to

automate a collection of applications as one logical unit.

Furthermore, dependency management allows the definition

of start and stop relationships, such as ‘start A before B’.

Both grouping and dependency management are provided

across an entire Parallel Sysplex. Of course, SA provides

further functionality beyond the scope of this paper.

As an example, let us consider a flight reservation system

that can be used by hundreds of users in parallel. Such an

application consists of various functional components: a

database that stores information about flight schedules,

reservations, and billing; a transaction management system

which guarantees overall data consistency; a network

infrastructure with different protocol stacks and firewalls;

a web server environment for the user interface; and

possibly further system dependent components. To model

this application in SA, we define a top level group ‘flight

reservation’ which has each of the functional components as

a member. Since the functional components themselves

consist of various applications, these are also each defined

as groups. In our example, parts of the transaction manage-

ment system may depend on the underlying database to

work properly. Hence, we have a start dependency.

Therefore SA would start the database first in order to

start the transaction management system. Starting the

database, however, may in turn depend on system specific
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applications having been started before. Similar relations

can hold when stopping applications (stop dependency ). For

example, it should not occur that the database is stopped

before the transaction system is brought down. So moving

an application with complicated start and stop dependencies

from one system in the cluster to another one (for example

in case of a malfunction) can be quite an elaborate task.

Moreover, applications that cannot or should not be

collocated on the same system can generate conflicting

requirements.

Taking into consideration that a customer setup can

contain several thousand applications with a similar number

of dependencies, it is clear that this cannot be controlled

manually anymore.

2.1. Outline of the SA for OS/390 software architecture

IBM SA consists of two logical parts, Automation

Managers (AM) and Automation Agents (AA). There is

only one active Automation Manager at a time, the Primary

Automation Manager (PAM). Additional Secondary Auto-

mation Managers (SAM) can be defined to prevent a single

point of failure. These idle in the background, and one can

take over in error situations with minimal interruption. The

Automation Agents are located on each virtual system in a

Parallel Sysplex cluster. Up to sixteen virtual systems with

different operating systems may run on each physical

system in the cluster.

The principles of the SA architecture are illustrated in

Fig. 1. The Automation Manager is the central control

instance and acts as a Sysplex-wide decision maker. It

receives monitoring information from all automation agents

consisting of application states, system state, and other data.

Further input sources are a user-defined Automation Policy

which describes the operating scenario with all its

applications and their dependencies, and system operators

who manually start and stop applications.

Based on monitoring information and the user-defined

Automation Policy (see below), the Automation Manager

possesses a complete picture of the status of the Sysplex. This

enables the Automation Manager to derive a decision for each

application whether it has to be started, stopped, or left in the

state it is. The Automation Manager does not perform

application starts and stops itself, but sends commands to the

agent of the system on which the application currently is

located. The agent receives the order and performs the actual

start- or stop-processing. Furthermore, the agent delivers

monitoring information to the manager.

To achieve a high level of availability, both the

Manager–Agent communication and the Automation Man-

ager’s internal processing is implemented on top of IBM’s

transaction-based middleware MQSeries.

2.2. Automation Manager architecture

The Automation Manager receives monitoring infor-

mation from the Automation Agents and uses this

information to compute different status values; it sends

commands, called orders, to the Automation Agents to

control their assigned applications; and it contains the

expert system controlling the Sysplex behavior. The

automation manager internally represents real entities, like

applications or systems, and virtual entities like application

groups (aggregations of multiple applications) as abstract

resources. As the expert system depends on the resources

present in the cluster and their dependencies, it has to be

user-adaptable to different scenarios.

The expert system representing the whole cluster is

composed of a set of local expert systems for each resource.

To model dependencies between resources, these expert

systems communicate via special variables which have their

values automatically exchanged by the Automation Man-

ager. The rule set of each local expert system is composed of

a multitude of predefined special-purpose rule sets, called

triggers. The whole bunch of predefined triggers containing

a few hundred rules is called the Logic Deck.

To achieve a high degree of adaptability, the Automation

Manager is implemented as a virtual machine with its own

instruction set of a few hundred instructions, specialized on

abstract resource management. There are instructions to

specify resources and their dependencies, or to change

variables’ values; other instructions start the evaluation and

application of the rules. The user specifies the resources and

their dependencies in a so-called Automation Policy. At

initialization time, the Automation Manager therefore loads

a configuration file containing the Automation Policy. This

file contains virtual machine instructions for each appli-

cation, group, and system. Moreover, it includes instructions

that generate relationships between those abstract resources,

for example to reflect start or stop dependencies. Abstract

Fig. 1. General operation scheme of IBM SA.
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resources and their relationships internally build up a graph

which is called the Resource Structure (see Fig. 2).

Each abstract resource maintains its own set of state

variables, containing variables for status information,

configuration specific information, or local variables used

for internal processing. The rules are shared between

different resources via triggers. A local expert system,

contained in the Resource Structure above, is shown in

Fig. 3.

Execution of the whole expert system now works as

follows. After the virtual machine is initialized and the

resource structure is built up, the system waits for changes

of its variables. These may occur for either internal or

external reasons. The latter may happen due to a variable

update provided by the Automation Agent, or by a human

operator directly interacting with SA. The former is

triggered by other variables of the same resource altering

their values, or by a change of a dependent variable of

another resource. When such a change occurs, all rules are

re-evaluated. This process is described below in greater

detail.

The verification we present here is not concerned with

the verification of a certain scenario represented by some

Resource Structure, but with the whole set of predefined

rules, the Logic Deck, itself.

2.3. The Automation Manager’s rule base

All correlation rules are of the form

correlation knamel:
when kformulal
then kaction listl

where formula is a finite domain formula with atomic

propositions of the form

kvarl E {kval1l,…,kvalnl}
kvarl NOT E {kval1l,…,kvalnl}

Fig. 2. Resource structure representation in the Automation Manager.

Fig. 3. Local expert system of a resource.
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and the usual Boolean connectives AND, OR, and NOT.

Variable names may contain alpha-numerical characters

and the slash. E denotes set membership. The only actions in

the then-part we are interested in are assignment statements

of the form SetVariable kvarl ¼ kvalil. Other actions

in the SA system are mainly used for event logging and to

present messages to the user. We assume that only one

SetVariable-action is present in each rule’s action list.

This is not enforced by the instruction language of the

Automation Manager, but turned out to be the case for the

rules we encountered. Fig. 4 shows a typical correlation

rule.

To compute, for example, the compound state of a

resource, rules are evaluated according to the following

scheme: As soon as an abstract resource instance’s variable

changes its value, the automation has to re-evaluate to

reflect this change. Therefore the manager takes all rules of

the triggers that are linked to the instance into consideration:

the rules are tested one by one whether the formula of the

rule’s when-part evaluates to true under the current variable

assignment. If this is the case, the action part is executed,

which may result in further variable changes, repeating the

process. The order in which rules are evaluated is only

partially specified using priority schemes for rules. Thus, in

our formalization we do not make any assumptions about

the rule evaluation order and consider it completely

unspecified.

Because resources have relationships like start or stop

dependencies, a state change on one resource can lead to

state changes on other resources. This is implemented with

relationship correlations. The basic idea is to copy the value

of a state variable from one instance to another, by which

state variables from different resources behave identical and

thus can be identified. Thus, by means of relationship

correlations, communication between resources is realized.

This also implies that changes on one resource can cause re-

evaluations on others.

As seen above, changes on the variables’ values may

occur for two reasons: (i) by a ‘spontaneous’ change of

volatile (transient, observed) external variables not con-

trolled by the correlation rule system, or (ii) by execution of

SetVariable-actions in the then-part of a rule. We

therefore partition the set V of variables contained in the

correlation rules into two disjoint sets: a set of computed

state variables VS; and a set of observed external variables

VO; such that V ¼ VS ] VO: VS comprises exactly those

variables that occur in a rule’s action part, i.e. variables that

may be changed by rule execution. The values of externally

controlled, observed variables are delivered to the rule

system either by the resource’s automation agent or by the

central Automation Manager itself.

3. Formalization of correlation rules and consistency

properties

We have selected PDL as formalization language for the

correlation rules and the computations done by the

Automation Manager. There are several reasons for our

choice. First, correlation rules can easily be translated to

PDL, and the resulting formulae are quite comprehensible.

Furthermore, the employed rule-based computation con-

tains an indeterminism in that the exact order of rule

evaluation is not specified; PDL allows the easy formulation

of, and reasoning about, indeterministic programs. Com-

munication between resources is not the key issue here, so

the formalization language need not reflect this aspect. For

the specification of the correlation rules we only need

constructs from PDL, whereas formalization of the

termination property of the Automation Manager requires

an extension of ordinary propositional dynamic logic. We

employ DPDL, which adds a divergence operator D to PDL

to enable the notion of infinite computation. DPDL was

introduced by Streett [37], and a similar extension is due to

Harel and Sherman [13].

PDL allows reasoning about programs (denoted by

a;b;…) and their properties, and therefore contains

language constructs for programs as well as for prop-

ositional formulae. Atomic propositions ðP;Q;R;…Þ can be

combined to compound PDL formulae ðF;G;…Þ using the

Boolean connectives :;_; and ^: Composite programs are

composed out of atomic programs using three different

Fig. 4. Example of a correlation rule.
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connectives: a;b denotes program sequencing, a< b non-

deterministic choice, and ap a finite, non-deterministic

number of repetitions of program a: For a formula F, the

program F? denotes the test for property F; i.e. F? proceeds

if F is true, and fails otherwise. The modal formulae ½a�F

and kalF have the informal meaning ‘all terminating

executions of program a lead to a situation in which F

holds’, respectively ‘there is a (terminating) program run of

a after which F is true’. DPDL adds the construct Da to the

language, expressing that the program ap can diverge, i.e.

enter a non-halting computation.

A summary of the syntactical components of PDL and

their semantics is shown in Table 1. PDL semantics is based

on the notions of computation states, transitions between

them, and properties that hold in these states. Therefore, let

S denote the set of all (not further specified) computation

states, s : F! 2S is a valuation function, mapping a

formula to the states in which it is valid, and t : P! 2S£S

is a transition function, mapping a program a to the pairs of

states ðs; tÞ such that execution of program a may lead from

state s to state t. Let s0 : F0 ! 2S resp. t0 : P0 ! 2S£S be

the restrictions of s resp. t to atomic formulae resp.

programs. Then s (resp. t) is uniquely determined by s0

(resp. t0) using the semantical definitions of Table 1. The

triple K ¼ ðS;s0; t0Þ is called a Kripke frame and assigns

meaning to PDL expressions. For a fixed K and a state

s [ S; we write s o F for s [ sðFÞ; and say that s satisfies

F. If s o F for all states s [ S and all Kripke frames K we

say that F is valid, and write o F: If K has to be made

explicit, we also use the notations ðK; sÞ o F and K o F:

Some program constructs occurring frequently in

conventional programming languages are expressed in

PDL as:

if F then a else b ¼ ðF?;aÞ< ð: F?;bÞ

while F do a ¼ ðF?;aÞp;: F?

repeat a until F ¼ a; ð: F?;aÞp;F?

As another example consider Hoare’s partial correctness

assertion {F}a{G}: It says that if program a is started in a

state satisfying F, then, provided that a halts, it does so in a

state where G holds. In PDL the equivalent to Hoare’s

assertion is F ) ½a�G:

We refer the reader to Harel’s introductory chapter on

PDL [12] for a more complete elaboration.

3.1. Encoding of the correlation rules and the status

computation

Encoding of correlation rules and the formalization of the

Automation Manager program is accomplished in four

steps: First, we encode the variable’s finite domains in

Boolean logic; then we translate the rule’s actions and their

semantics to PDL; afterwards we are able to give PDL

encodings of complete correlation rules; and finally we give

a formal description of program executions of the rule-based

Automation Manager.

3.1.1. Finite domains

Each variable v occurring in a correlation rule can take a

value of a finite domain Dv depending on the variable. For

our PDL encoding, we first need to decompose the finite

domains into Boolean propositions. We therefore introduce

new propositional variables Pv;d for each possible value d [
Dv of each variable v, expressing the fact that variable v

takes value d. We then need additional restrictions,

expressing that each finite domain variable takes exactly

one of its possible values. For any set V of correlation rule

variables, we thus get an additional propositional restriction

RESV:

^
v[V

_
d[Dv

Pv;d ^
^

d1;d2[Dv ;d1–d2

: ðPv;d1
^ Pv;d2

Þ

0
@

1
A

Formulae similar to RESV also occur in the context of

propositional encodings of planning problems, where they

are referred to as linear encodings [18].

3.1.2. Atomic programs

The atomic programs of our formalization are

Table 1

DPDL symbols and their semantics (adapted from Ref. [12])

Symbol Name Semantics s,t

` Truth sð`Þ ¼ S

’ Falsity sð’Þ ¼ u

: Negation sð: FÞ ¼ S\sðFÞ

_ Disjunction sðF _ GÞ ¼ sðFÞ< sðGÞ

^ Conjunction sðF ^ GÞ ¼ sðFÞ> sðGÞ

kal Possible postcondition sðkalFÞ ¼ {s [ Sl’t:ðs; tÞ [ tðaÞ ^ t [ sðFÞ}

[a ] Necessary postcondition sð½a�FÞ ¼ {s [ Sl;t:ðs; tÞ [ tðaÞ ) t [ sðFÞ}

Da Divergence of a p sðDaÞ ¼ {s0 [ Sl’s1; s2;…;i $ 0: ðsi; siþ1Þ [ tðaÞ}

; Consecutive execution tða;bÞ ¼ tðaÞ·tðbÞ ¼ {ðs; tÞl’u:ðs; uÞ [ tðaÞ ^ ðu; tÞ [ tðbÞ}

< Non-deterministic Choice tða> bÞ ¼ tðaÞ< tðbÞ

p Repetition tðapÞ ¼ {ðs; tÞl’k’s0…sk :s0 ¼ s ^ sk ¼ t ^ ðsi; siþ1Þ [ tðaÞ}

F? Test tðF?Þ ¼ {ðs; sÞls [ sðFÞ}
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assignment programs, denoted by av;d; where av;d assigns

value d [ Dv to variable v [ VS: Each assignment program

is, of course, deterministic, and after its execution the

variable has the indicated value. Other variables in VS are

not affected. Therefore the following PDL properties hold

for each program av;d and all propositions p:

(1) ½av;d�p , kav;dlp
(2) ½av;d�Pv;d

(3) Pw;e ) ½av;d�Pw;e for all w [ VS; w – v and e [ Dw:

We will denote the conjunction of these propositions for

all atomic programs by RESa:

Using techniques from modal correspondence theory

[39,40] we can derive properties of the program transition

relation imposed by the restriction RESa: Therefore, an

admissible program transition relation tðav;dÞ for an atomic

program av;d must have the following properties:

(P1a) ;s0’s1.ðs0; s1Þ [ tðav;dÞ

(P1b)

;s0s1.ðs0; s1Þ [ tðav;dÞ ^ ðs0; s2Þ [ tðav;dÞ ) s1 ¼ s2

(P2) ;s0s1.ðs0; s1Þ [ tðav;dÞ ) s1 [ sðPv;dÞ

(P3)

;s0s1.s0 [ sðPw;eÞ ^ ðs0; s1Þ [ tðav;dÞ ) s1 [ sðPw;eÞ

for w – v; which correspond to the respective PDL

formulae.

3.1.3. Correlation rules

In the following, we assume that for each variable-value

pair ðv; dÞ there is at most one rule Rðv; dÞ with an action

setting variable v to d in its then-part. If this is not the case,

the when-parts of rules with common actions can be merged

disjunctively. To encode a correlation rule, its when-part is

recursively translated into a Boolean logic formula using

transformation t; which is defined for the base case by

tðv E{d0;…; dj}Þ ¼ Pv;d0
_ · · · _ Pv;dj

;

tðv NOT E{d0;…; dj}Þ ¼: Pv;d0
^ · · ·^ : Pv;dj

;

and extended to complex formulae in the obvious way.

Thus, for each pair ðv; dÞ we obtain a unique translation Fv;d

of the when-part of the associated rule Rðv; dÞ: For the then-

part we only have to consider actions setting variables,

which are translated by t to their corresponding atomic PDL

programs:

tðSetVariable v ¼ dÞ ¼ av;d:

Given a rule’s translated when-part Fv;d and its translated

then-part av;d; we get as PDL program Rv;d for that rule:

Rv;d U ðFv;d^ : Pv;dÞ?;av;d;

expressing that the action of the then-part is executed,

provided the when-part holds and the variable is not already

set to the intended value. The additional restriction : Pv;d

prevents rule executions that do not produce any change of

variable values, corresponding to loops of length 1.

3.1.4. Automation Manager

We are now able to formally specify the computations

performed by the Automation Manager program. As there is

no rule evaluation order, the program just selects any rule,

evaluates its formula, executes the action part and starts

over again. The single-step Automation Manager program S

and the Automation Manager program AM therefore look

like this:

S ¼
[

v[VS;d[Dv

Rv;d; AM ¼ Sp;
^

v[VS;d[Dv

ðFv;d ) Pv;dÞ

0
@

1
A?

For each SA resource a program of the above kind is

generated. Each Automation Manager program runs until no

further rules can be applied (reflected by the last test in the

Automation Manager program AM), and is restarted as soon

as an observed external variable vo [ VO changes its value.

3.2. Consistency properties of the correlation rule system

The computation relation generated by the correlation

rules should be functional and terminating. For example, a

status computation should not result in different values

depending on the exact order of rule application, and it

should produce a result in a finite number of computation

steps. However, there are external variables (observation

variables) that may change their values during computation.

For our consistency properties we assume all external

observed variables to be fixed.

We now turn to the formalization of the two consistency

criteria termination and functionality. As above, we denote

by AM, respectively S, the part of the Automation Manager

program that deals with full, respectively single step,

computations. In the following, formula PRE encodes

common preconditions for all consistency criteria. This

includes the finite domain restrictions RESV, the atomic

program specifications RESa; and the fixing of all

observation variables during computation. We therefore

define

PRE U RESV ^ RESa ^
^

v[VS;w[VO;d[Dv ;e[Dw

ðPw;e ) ½av;d�Pw;eÞ:

The last part of PRE, fixing the observation variables, also

has a first order predicate logic equivalent, which is obtained

using correspondence theory as for RESa above. We get

ðP4Þ

;s0s1:s0 [ sðPw;eÞ ^ ðs0; s1Þ [ tðav;dÞ ) s1 [ sðPw;eÞ

for all v [ VS; w [ VO:

Now addressing consistency properties, the following
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DPDL formula, provided it is valid, guarantees that there is

no divergent computation:3

PRE ) : DS: ð1Þ

To ensure functionality for a computation starting in some

state, we need a final result that is unique. So, if there is a

terminating computation sequence of the Automation

Manager all other computations have to end in the same

state:

PRE ) ðkAMlp , ½AM�pÞ: ð2Þ

Confluence of the rule system, i.e. the property that all

ambiguities about which rule should be applied next,

eventually are irrelevant because they lead to the same

computation state, is expressed as follows:

PRE ) ðkSpl½Sp�p ) ½Sp�kSplpÞ: ð3Þ

The corresponding first order formula in this case is

;stu:ðs; tÞ [ tðSpÞ ^ ðs; uÞ [ tðSpÞ

) ’v:ðt; vÞ

[ tðSpÞ ^ ðu; vÞ [ tðSpÞ:

Obviously, there are many more consistency criteria that we

will, however, not elaborate on. Instead, we concentrate on

the termination property.

As termination is defined as the absence of an infinite

sequence of consecutive computation states, we have to

make the notion of a state more precise. We will use a state

space that is isomorphic to the exponential-sized (in the

number of predicates) collapsed model. A state s is an

assignment to the propositional variables PROP ¼

{Pv;dlv [ V ; d [ Dv}; i.e. a function

s : PROP ! {0; 1}:

A state s is said to be proper if it correctly reflects the finite

domain restriction RESV, i.e. if s is a model of RESV, or,

equivalently in symbols, s o RESV: A pair of states ðs0; s1Þ

is called an Rv;d-transition, if execution of the rule that sets

variable v to value d leads from s0 to s1:

Definition 1. Let v [ VS; d [ Dv; and let K ¼ ðS;s0; toÞ

be a Kripke frame. A pair of states ðs0; s1Þ is called an Rv;d-

transition, denoted by s0 !
v¼d

s1, when ðsi;KÞ o PRE for i [
{0; 1} and ðs0; s1Þ [ tðRv;dÞ:

Lemma 1. Let s0 !
v¼d

s1: Then the following holds:4

(a) s0; s1 o RESV

(b) s0 o Fv;d^ : Pv;d

(c) s1 o Pv;d

(d) s0 o Pw;e , s1 o Pw;e for all w – v; e [ Dw:

Lemma 1 clarifies some properties of Rv;d-transitions, but

its main use will be later on in translating PDL formulae to

propositional logic formulae.

Turning back to divergent computations, and noting that

as the number of states is finite, all non-terminating

computations are caused by loops in the program transition

graph. For example, the 2-loop

s0 !
v¼d1

s1 !
v¼d0

s0 ð4Þ

generates an infinite computation oscillating between the

states s0 and s1: As another example, consider the 4-loop

s00 !
v0¼d0

1
s01 !

v1¼d1
1
s11 !

v0¼d0
0
s10 !

v1¼d1
0
s00:

It involves two variables and cannot be decomposed into

two simpler 2-loops. Showing termination of the Auto-

mation Manager program can thus be accomplished by

proving the absence of n-loops for all n $ 2: Note that the

case n ¼ 2 in particular covers those situations where the

loops are due to an overlap of the when-parts of two rules

for the same variable, i.e. when s0; s1 o Fv;d0
^ Fv;d1

: It is

thus of particular importance.

To prove the non-existence of loops—as well as the other

consistency criteria—directly within the DPDL formalism,

we can in principle distinguish two main approaches: either

by model checking or by theorem proving. For the first

approach, a Kripke structure has to be created based on the

elementary properties RESa of the atomic assignment

programs and on the validity of the propositions Pv;d;

considering the restrictions RESV. This step builds a

structure that fulfills the general precondition PRE: Then

it is checked whether or not the DPDL consistency criteria

(without preconditions) are fulfilled in the generated model.

In the theorem proving formalism, we try to derive the

consistency criteria directly from the preconditions.

We have chosen yet another way which translates the

PDL proof obligations into purely propositional logic

formulae. This facilitates the application of advanced

propositional SAT-checkers which have shown good

performance on a number of industrial strength problems

(see, for example, Refs. [3,20]).

3.3. Conversion to propositional satisfiability

Conversion to a purely propositional formalism requires

handling different states within one formula. We use

restrictions to achieve this goal.

The proper restriction Fjv¼d of a propositional formula F

is defined as the homomorphic extension of the function

Pv0;d0

��
v¼d¼

8>><
>>:

` if v ¼ v0; d ¼ d0
;

’ if v ¼ v0; d – d0
;

Pv0;d0 if v – v0:

The following lemma allows the formulation of prop-

ositional properties concerning multiple computation states.

3 Note that this property cannot be expressed in ordinary PDL [37].
4 Proofs of all lemmas can be found in Appendix A.
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Lemma 2. Let s0 !
v¼d

s1: Then s1 o F iff s0 o Fjv¼d:

The Automation Manager program terminates if o
PRE ): DS: By definition of the semantics of DPDL and

the single-step Automation Manager program S, this is

equivalent to

ðK; s0Þ o

PRE ) : ’s1; s2…;i $ 0:
_

v[VS;d[DV

ðsi; siþ1Þ [ tðRv;dÞ

for all K; s0: By using Definition 1 we get for all s0

s0 o PRE ): ’s1; s2…;i $ 0’vidi·si !
vi¼di

siþ1: ð5Þ

We want to specialize on 2-loops now. According to

Formula (5), absence of 2-loops is expressed by

s0 o PRE ): ’s1; v; d0; d1·s0 !
v¼d1

s1 !
v¼d0

s0: ð6Þ

The two Rv;d0=1
-transitions can be performed provided the

following holds (by Lemma 1):

s0; s1 o RESV s1 o Pv;d1
s0 o Pv;d0

s0 o Fv;d1
^ : Pv;d1

s1 o Fv;d0
^ : Pv;d0

s0 o Pw;e , s1 o Pw;e for all w – v; e [ Dw

According to Lemma 2, this is equivalent to

s0 o RESV ^ Pv;d0
^ ðFv;d1

^

: Pv;d1
Þ ^ ðRESV ^ Pv;d1

^ Fv;d0
^ : Pv;d0

Þjv¼d1
;

which can be further simplified to

s0 o RESV ^ Pv;d0
^ Fv;d1

^ Fv;d0
jv¼d1

:

Substituting this formula back into Formula (6) we obtain,

after dropping the now superfluous existential quantification

over s1;

s0 o PRE ): ’v; d0; d1·RESV ^ Pv;d0
^ Fv;d1

^ Fv;d0
jv¼d1

:

As the properties of atomic programs are not needed any

more now, we can replace PRE by RESV. Simplification and

moving the quantifiers to the front yields

RESV ): ðPv;d0
^ Fv;d1

^ Fv;d0
jv¼d1

Þ ;v; d0; d1:

The propositional formula expressing absence of 2-loops

therefore reads

RESV ): ðPv;d0
^ Fv;d1

^ Fv;d0
jv¼d1

Þ; ð7Þ

which has to be valid for all v; d0; and d1: Similarly, the

absence of 3-loops is reflected by the validity of

RESV ): ðPv;d0
^ Fv;d1

^ Fv;d2
jv¼d1

^ Fv;d0
jv¼d2

Þ

for all v; d0; d1; and d2: The extension to n-loops involving

only one variable v is obvious. The general case of n-loops is

more complicated due to different types of loops involving

modification of multiple finite domain variables.

3.4. Generalization to n-loops

We now consider the general case of n-loops, assuming

that the potential loop involves states s0;…; sn21: We then

have si !
vi¼di

siþ1 for all i with 0 # i , n 2 1; and

sn21 !
vn21¼dn21

s0: As in the restricted cases above, by

Lemma 1, the Rvi ;di
-transitions can be performed provided

the following holds:

si o RESV for 0 # i , n ð8aÞ

s0 o Pvn21;dn21
ð8bÞ

si o Pvi21;di21
for 0 , i , n ð8cÞ

si o Fvi ;di
^ : Pvi;di

for 0 # i , n ð8dÞ

si o Pw;e , si21 o Pw;e

for w – vi21; e [ Dw and 0 , i , n

ð8eÞ

s0 o Pw;e , sn21 o Pw;e for w – vn21; e [ Dw ð8fÞ

Of course, it would be possible to test for all possible n-

loops whether the formulae above hold for the inclosed

states si: But as there are NS ¼
Q

v[V 2lDvl states (and still

NP ¼
Q

v[V lDvl proper states), the number NSEQ
n of possible

n-loop sequences grows very quickly with NSEQ
n ¼ ðNSÞ

n

(resp. ðNPÞ
n). Moreover, most of the states trivially do not

fulfill the above formulae, independent of the Fvi;di
involved.

Therefore we try to consider only ‘sensible’ loops.

In the following, a sequence ~a ¼ ða0;…; an21Þ of atomic

programs ai ¼ avi ;di
is called an action sequence. Each

action sequence ~a is related to a whole set Tð~aÞ of transition

sequences by

Tðav0;d0
;…;avn21;dn21

Þ

¼ {ðs0;…; sn21Þjsi !
vi¼di

siþ1; sn21 !
vn21¼dn21

s0}:

Note that it is the action sequence ~a that determines whether

or not all of the associated transition sequences form a loop.

Thus, in the following we characterize action sequences that

may lead to loops.

Definition 2 (Loop Candidate Sequence). An action

sequence ~a ¼ ða0;…; an21Þ with ai ¼ avi ;di
is a loop

candidate sequence, provided that the following two criteria

hold:

(1) There are either none or at least two actions for each

variable: For all ai ¼ av;d there exist j and d0 – d such

that aj ¼ av;d0 :

(2) Between two actions setting variable v to the same

value d there must be another action involving variable

v: If ai ¼ aj ¼ av;d and i , j then there exist indices k; l

such that

(a) i , k , j and ak ¼ av;d0 for some d0 and

(b) either l , i or l . j; and ak ¼ av;d0 0 for some d00:
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Definition 3 (Last Action Set). Given an action sequence ~a;

the last action set Lð~aÞ contains those actions that are the last

for that variable in the sequence:

Lð~aÞ ¼ {ai ¼ av;dlaj ¼ av;d0 ) j # i}:

Lemma 3. Let ~a ¼ ða0;…; an21Þ be a loop candidate

sequence. Then

LOOPð~aÞ U RESV ^
^

av;d[Lð~aÞ

Pv;d ^
^

0#i,n;ai¼avi ;di

Fvi;di
jvi21¼di21;…;v0¼d0

ð9Þ

is satisfiable iff there is a looping transition sequence in

Tð~aÞ: Moreover, the models of LOOPð~aÞ are (starting )

states of looping transition sequences.

Lemma 4. Let ~a be an action sequence. If Tð~aÞ – Y; then ~a

is a loop candidate sequence.

Theorem 1. LOOPð~aÞ is unsatisfiable for all loop candidate

sequences ~a of length n iff the expert system contains no n-

loops.

The maximal length of a loop that we have to search for

is only limited by the number of different computation

states. Thus, we have to check for loops of length n up to

nmax ¼
Q

v[VS
lDvl: It is even possible to construct a rule

system that loops but contains no loops of length n , nmax:

Consider, for example, the generalization of an m-bit

counter, where the only loop involves 2m states. In a

practical setting, there may be an a priori limit on loop

lengths that can be considerably smaller.

Compared to the n-fold product of the set of all states, the

set of loop candidate sequences of length n can cause a

substantial reduction on cases to be checked. As mentioned

above, the number of proper state sequences of length n is

determined by NSEQ
n ¼ ð

Q
v[V lDvlÞn: The number of action

sequences of length n is (asymptotically) already much

lower with NrmASEQ
n ¼ ð

P
v[VS

lDvlÞn: For a further analysis

of the number of loop candidate sequences NLCS
n ; we make

some simplifying assumptions. Let d ¼ maxv[VS
{Dv} be

the maximal variable domain size, and k ¼ lVSl be the

number of state variables. Then the number of all loop

candidate sequences of length n can be approximated by

ðd·kÞn: The number of sequences violating criterion (1) of

Definition 2 can be approximated by

N1 ¼ d·k·n·ðd·ðk 2 1Þn21
;

and the number of sequences violating criterion (2) by

N2 ¼ d·k·n·ðn 2 3Þ·ðd·ðk 2 1Þðn22Þ=2·ðd·kÞðn22Þ=2
:

Thus, NLCS
n < ðd·kÞn 2 N1 2 N2:

What is not considered so far, but leads to a further

improvement, is that only those loop candidate sequences

have to be examined which do not contain another loop

candidate sequence as a subsequence.

3.5. Rule evaluation order

Not all loops detected by the presented method inevitably

have to occur in an actual implementation. For example, in

the formulae above, the states of the loop have to be

reachable states of the computation. With regard to

observation variables, we are not allowed to suppose any

restrictions on possible variable values, so all combinations

have to be considered viable for them. But some

computation states may not occur due to a pre-imposed

rule evaluation order. So, some states may be unreachable,

and do not have to be considered.

We modeled the evaluation order by assuming that all

rules changing variables with higher priority have been

computed already. We denote by w . v that the evaluation

priority of w is greater than that of v, i.e. all rules Rw;e are

evaluated before any rule Rv;d setting variable v is

considered. Then, to take into account rule evaluation

priority, we can use the following extended formula instead

of Formula (7) to check for 2-loops:

RESV ^
^

w[VS;w.v;e[Dw

ðFw;e ) Pw;eÞ )

: ðPv;d0
^ Fv;d1

^ Fv;d0
jv¼d1

Þ: ð10Þ

This modification naturally extends to the case of 3-loops

and n-loops. In our experiments, however, we only

considered the case of 2-loops.

Note that rule evaluation order may counteract fairness

of rule evaluation. That is, by fixing a certain rule evaluation

order some rules may not be evaluated at all, because of

either a loop in the computation of values for variables with

higher priority, or because of two simultaneously activated

rules, where due to the fixed evaluation order always the

same one rule is selected. Assuming that no such loops

occur during the computations of variables with higher

priority, the first case vanishes and only the second case

remains. Thus, fairness of rule selection has to be assured

only for variables with the same priority.

4. Verification techniques

We will now describe the techniques we used to prove

the propositional formulae of Section 3. We also show how

the counter-models that appear in case a proposition could

not be proved can be made more intelligible.

Davis–Putnam-Style Prover. We used a Davis–Putnam-

style (DP) prover to show the unsatisfiability of the

negations of the 2-loop formulae. The prover was developed

in the Symbolic Computation group at the University of

Tübingen in collaboration with A. Kaiser for checking
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industrial product documentation [16,20,31]. In contrast to

other DP implementations [21,42], it is specifically geared

towards industrial strength inputs. First because it does not

require the (potentially very large) input to be in conjunctive

normal form. Second, it allows the direct specification of n-

out-of-m-constructs that frequently occur in practical

applications, in our case in the translation of the finite

domain restriction RESV to Boolean logic. More precisely,

there is a set of n-ary selection operators Sn
1; such that

Sn
1ðF1;…;FnÞ holds when exactly one of the formulae

F1;…;Fn holds. Using this selection operator, and assuming

that the variable domains are ordered, i.e. Dv ¼

ðdv
1;…; dv

lDvlÞ; we can restate RESV as
^
v[V

S
lDvl
1 ðPv;dv

1
;…;Pv;dv

lDv l
Þ:

So instead of the original formula RESV, which is quadratic

in the domain sizes lDvl; we just have to deal with a linear-

size formula in the extended language. Third, it contains an

explanation component that helps to pinpoint small

unsatisfiable subsets of the input.

Today’s SAT-solvers are often very efficient in solving

encodings of real-world problems, where they are capable

of handling problems containing up to several thousands of

variables. On the other hand, as the SAT problem is NP

complete, there are obviously much harder SAT instances

even at smaller sizes. However, it turned out that they occur

infrequently in practice [19]. Our experiments corroborate

this observation.

BDD-based approach. Another technique to prove

propositional formulae are binary decision diagrams

(BDDs). BDDs uniquely represent Boolean functions as

binary graphs, so that validity can be checked in constant

time, once the BDD is built. BDDs were successfully

employed in the realm of hardware verification [5] where

one of the most common applications is to prove the

equivalence of two hardware designs. So, in addition to DP

solvers, we also experimented with BDDs, where we used

Somenzi’s CU Decision Diagram package [33].

The Davis–Putnam algorithm produces as output either

‘satisfiable’ or ‘unsatisfiable’, in the former case possibly

accompanied by a list of models (examples). In contrast to

this, BDD construction always results in a formula. So if the

problem is satisfiable, i.e. not equivalent to ’ (false), the

resulting BDD encodes all satisfiable instances. This is a big

advantage over DP-style SAT-solvers, as it allows further

inspection of the resulting formula. Hence, if the outcome

‘unsatisfiable’ needs explanation, the minimal unsatisfiable

subsets as computed by our DP implementation are needed;

otherwise, we need a concise representation of the

satisfiable cases, much as by BDDs. In our application of

proving termination of the expert system, we were thus able

to further simplify the counter-model representation of the

cases in which the expert system starts oscillating between

different computation states.

The simplification we applied to Formula (10) dis-

tinguishes between main variables and side variables. Main

variables are those variables occurring in the rules Rv;d0
resp.

Rv;d1
: These are of special importance, as these are variables

of the rules making up the possible 2-loop. All variables

occurring only in RESV or in rules with higher priority, i.e.

in Rw;e with w . v; are side variables, which can be thought

of as describing the environment in which the loop possibly

occurs. In order not to confuse the user with additional

variables irrelevant to the occurrence of the loop, we

therefore applied existential abstraction over all side

variables. Thus, we are only interested in assignments to

main variables that can in some way be extended to all side

variables, while still fulfilling the side conditions of

Formula (10).

More formally, we generated a quantified Boolean

formula ’~X:F where F is Formula (2-loop-exp-for) and ~X

contains exactly those variables not appearing in Rv;d0
and

Rv;d1
; i.e. ~X ¼ V w ðVarðRv;d0

Þ< VarðRv;d1
Þ:

It would be interesting to compare the efficiency of the

two approaches for generating proofs of consistency

properties of expert systems in general, as the two methods

have shown advantages in differing fields [38]. In our

experiments, however, the formulae were too small to

observe a significant discrepancy in efficiency.

Implicit assumptions on observation variables. Not all

combinations of possible values for observation variables

really do occur. But which of them are possible and which

are not is not laid down in the Automation Manager’s expert

system. For our verification task we thus added some further

restrictions to the set RESV reflecting cases that do not occur

in practice. These cases were specified by SA experts from

IBM after an investigation of the counter-models.

5. Experimental results

We conducted experiments with a subset of the rules of

the Automation Manager’s Logic Deck and exemplarily

investigated the 41 rules for the compound status compu-

tation. The compound status indicates the overall status of a

resource depending on its automation goal, the actual state,

and on the states of other resources. It can take any of seven

different values, so we had to perform 21 proofs of Formula

(10) to show the absence of 2-loops. Instead of proving these

formulae directly, we tested their negations for

unsatisfiability.

We used our DP-style prover implementation to check

the generated formulae. As our implementation allows

special select-n-out-of-m-constructs [16], formula sizes

could be kept small. All formulae contained 72 prop-

ositional variables, 39 of them were state variables, 33

observation variables. The generated propositional logic

formulae contained around 1500 atomic symbols. Proofs or

counter-models for all formulae were found in under a

second. Initially, seven of the 21 instances were satisfiable,

each indicating a possible non-terminating computation.
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However, further examination showed that most of these cases

cannot occur in practice. The reason for these false error

readings lies in an incomplete formalization of the rule system.

Implicit assumptions on which states are reachable have to be

made explicit in order to achieve practically useful results.

Thus, we added the above-mentioned further restrictions on

observation variables, which brought down the number of

inconsistencies to three. For these three cases we generated

BDDs of the 2-loop-formulae. The times to build up the BDDs

again were under a second. For simplification, we then made

use of the BDD representation by applying existential

abstraction to variables not occurring in the rules’ when-

parts. This helped greatly to find out in which situations a loop

occurs and thus facilitated correction of the rules.

All of our detected 2-loops were reproduced by

emulation on a zSeries test system and resulted in a

modification of the final product. Thus the final version is

verified to contain no 2-loop-errors. So, by identifying real

defects, we could further increase the reliability of the

Automation Manager.

Fig. 5 further illustrates the results of our experiments. The

upper part shows two correlation rules for which a 2-loop was

detected. The generated propositional verification condition

for these rules, according to Formula (10), contains encodings

of both rules’ when-parts (on the right hand side of the

implication), as well as the remaining 34 rules (as part of the

left hand side of the implication). We also added further

restrictions on observation variables, for example,5

status_startable_no

) status_observed_starting:

Running our DP-style prover for this particular case generates

a list of 301 models providing examples for which Formula (2-

loop-exp-for) does not hold. One of these models consists of

the following propositional variables set to true, and all others

set to false:

Using the BDD representation of the 2-loop-formula and

existentially quantifying over all variables that do no occur

in the when-parts of the two correlation rules of Fig. 5, we

arrive at one remaining case:

status_startable_yes
status_observed_degraded
status_desired_available
status_automation_internal
test_0var_off
correlation_external_stop_failed

The variable setting corresponding to this case is also

shown at the bottom of Fig. 5. So when the variables are set as

indicated, SA’s rule system oscillates between the state

where status_compound ¼ Degraded and the

state with status_compound ¼ Problem. SA

experts at IBM corrected this loop by modifying the

second correlation rule.

In the other two situations where 2-loops have shown up,

three cases remained to consider (as opposed to one in the

example above) after application of BDD simplification

techniques.

Fig. 5. Correlation rules and variable settings causing 2-loop.

_fd_extstopdelayed_true correlation_can_be_started
correlation_external_stop_failed correlation_may_send_orders
correlation_set_status_compound_degraded correlation_set_status_compound_problem
flag_automation_disabled flag_expect_extstop_yes flag_external_stop_always flag_hold_no
group_nature_basic request_desiredstatus_da request_desiredstatus_origin
status_automation_internal status_compound_automating status_desired_available
status_observed_degraded status_observed_null status_startable_yes test_0var_off

5 Names for propositional variables are constructed by replacing slashes

by underscores and appending the variable’s value with an underscore to

the finite domain’s variable name. The translation of Boolean finite domain

variables (i.e. with domains{True, False}) is simplified, as should be

obvious.
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6. Industrial experiences summary

The performance and impact of formal methods in

industrial settings has been the subject of many articles, see

Refs. [4,6,11,26], for example. Hall [11], and Bowen and

Hinchey [4], have reported success stories and have used

these to argue that widely held concerns and reservations

about formal methods are indeed myths that need to be

dispelled. Fenton and Pfleeger have taken a more cautious

view (Ref. [7], embedded in Ref. [26]). Some of their

concern is that most work to date has been on specification,

that we must better understand how to choose among the

many competing formal methods, and that there is still no

hard evidence to show that formal methods are cost

effective, or that sufficient numbers of developers and

users can be trained in them.

Combining experiences from this project and our

previous BIS6 project for proving consistency assertions

for automotive product data [20,31], we now report on some

of our own findings, and we try to relate them to the well-

known 7 þ 7 ‘myths’ [4,11]. Note that both projects are

concerned with finding and removing defects in mostly

finished products (BIS is concerned with data consistency

only). Since both originated in an order from industry, we

would at once argue that they help dispel myths 6 and 7,

because our formal methods were acceptable to users and

were used on real software, resp. real data. In both cases, the

methods were also necessary, dispelling myth 12, because

we found residual bugs; however, it can be argued that the

bugs were unlikely to surface.

Verification, validation, and debugging. First, let us turn

to Hall’s myth 1: ‘Formal methods can guarantee that

software is perfect’. Formal verification is attractive

because, as Dijkstra has observed, it can prove the absence

of errors while testing can only prove their presence. The

notion of formal verification carries the connotation of

complete correctness: First, a formal model MP and a

specification SP are produced, and then it is shown that

MP o SP; i.e. SP holds of MP: In contrast, validation

must needs remain incomplete, because the user’s expec-

tations are informal. However, providing complete formal

specifications and formal semantics is very hard and time

consuming for humans, and mastering the ensuing proofs is

just as hard for theorem provers, whether human or

mechanical. In rule-based systems, at least the semantics

part is manageable, due to their proximity to logic

formalisms. Complete formal specifications, however, just

do not exist in practice, or they are feasible only for a small

subset of the entire system. It is only possible to capture a

few of the requirements formally, as a set TP of theorems

which are necessary for the correctness of P. Hence the

distinction between validation and verification begins to

blur because all we can hope for is the formal verification of

TP; which amounts to formal validation. Therefore it is

already interesting to apply formal verification techniques to

selected types of theorems, which, if they hold, will greatly

increase our confidence in the system.

Both our projects are about finding bugs in existing

systems. In practice, even the complete verification of a

program P is less important than the discovery of program

bugs, or errors. This is because the successful verification

will only happen once, at the end of the development of P,

whereas errors must be found during the entire development

process leading up to the verification. The final verification,

proving that P is free of errors of this type, is very nice to

have, but in practice, due to the many additional informal

requirements and parameters, it never means that P is totally

correct [11]. So the real issue is debugging rather than

verification in the pure sense.

Business objectives. Total correctness is practically never

achievable, so the business objective is usually not total

correctness. It is to make money by delivering a product

which has the best quality that can be afforded. Since quality

is important, elaborate quality assurance methods will

already be in place (which dispels myth 10 that formal

methods replace traditional ones). Formal methods are

expensive to apply because they need highly trained

personnel (confirming myth 4). If other methods are able

to deliver the necessary quality, they will most likely be

cheaper and win.

Business processes. Quality assurance is only one step in

the business process of producing a product. Established

successful business processes are extremely valuable and

expensive to change because of many interdependent issues.

At the same time they may only be laid down informally. It

is very difficult to come up with a formal specification for

even a part of such a business process, and it is almost

impossible to change the process. New methods, such as

formal methods, must be seamlessly integrated into the

process and function with the established work force. As

Craigen, Gerhart, and Ralston have observed [6]: “Industry

will not abandon its current practices, but it is willing to

augment and enhance its practices.”

Time and efficiency. The time of all personnel integrated

into a business process is exceedingly expensive. There is

little spare time for experimentation. Formal methods must

run very efficiently. While it may be of little concern how

much time it takes to prove a new mathematical theorem

(once), it is of great concern whether a human operator is

delayed for minutes every time a formal method is activated

in a development cycle. The industrial propositional

formulae we faced were extremely large for BIS (hundreds

of thousands of terms), but surprisingly ‘harmless’ for SAT

checking. However, the formulae may be generated

automatically from real data, so a great many of them

must be handled efficiently. At one time, conversion to

conjunctive normal form was a real problem for BIS until a

new prover [16] was developed. We also parallelized our

6 Baubarkeits-Informations-System (constructibility information

system).
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algorithms [30], but we did not yet apply parallelism in

industry.

Meaningful explanation. Since debugging is the real

issue rather than verification, even failed validations can be

extremely useful, provided that they reveal costly errors that

established processes fail to expose. Therefore we cannot

take ‘no’ for an only answer. A failed proof is useful only if

it can be explained in an intelligible way. It has been

observed in this context that explanation is a sadly neglected

area of automated deduction [6]. Furthermore, it must be

possible to locate the corresponding defects in the source

program readily from the explanation. Formulas represent-

ing real errors must be succinct and intelligible. For SA, we

normalized them using BDDs; in BIS, they are way beyond

what BDDs can handle, so a special explanation component

was developed by A. Kaiser to find those (very few)

constraints and variables which cause the huge constraint

sets of BIS to become unsatisfiable [17].

Due to incomplete formalizations of the business

process, there may be failed proofs that do not correspond

to real (application) errors (false positives). Nobody has

time to sift through reams of false positives. For both BIS

and SA we had to go back and add extra axioms to our

models to exclude false positives. False negatives (a failure

to capture problems) can seriously undermine the credibility

of formal methods, so only well debugged verification

systems should be deployed; there is no time for

experimentation and only a finite amount of good will out

there.

7. Related work

There are two classes of related work, namely in Formal

Methods in general, and in verifying expert systems in

particular. Examples of the former have appeared in IEEE

Computer, IEEE Software, and IEEE Transactions on

Software Engineering, such as Refs. [4,6,11,26]. Craigen,

Gerhart, and Ralston [6] point out that formal methods can

be used to assure that code conforms; that a simple

description of the semantics of the language is of relevance;

that checkers of decidable fragments of theories are

important; that feedback on failed proofs is sorely needed;

and that formal methods need to augment industry’s

practices. These points are all confirmed by our experience,

hence our emphasis on a simple logic with a highly efficient

checker augmented by explanation components. We also

find it highly interesting that we have found two industrial

applications where propositional logic is genuinely used so

that we could add SAT-based verification components with

tolerable effort.

On the other hand, many different procedures for

verifying rule based expert systems are proposed, covering

a broad range of methods [8,10,23,24,27–29,41]. Unfortu-

nately, the underlying semantics of the rules is not uniform:

some systems interpret rules purely declarative as logical

implications [25,28], whereas in other systems rules have an

operational semantics, in which facts are added or removed

from a pool of working knowledge (state space model) [8,

14,27]. Grumberg et al. consider an even more general

(programming) system of (iterated) guarded commands

[10].

Moreover, the inference mechanism is not standardized.

Here, we want to point out just two differentiating aspects:

forward-chaining vs. backward reasoning, and sequential

vs. parallel rule execution. Whereas the former usually does

not have a direct impact on rule semantics, the latter can

induce considerable differences. In the parallel execution

scheme the IF-statements of all rules are evaluated, and all

matching actions are then executed in parallel. In the

sequential setting, one of the matching actions is chosen

non-deterministically. Induced differences on possible

inconsistencies will be pointed out below.

Obviously—reflecting the diversity in expert systems’

semantics—there is a huge variety of different error

detection and verification methods. The types of errors

under consideration, however, are relatively uniform, and it

is gradually becoming common practice to classify them

into four groups (see Refs. [22,28]): redundancy, conflict,

incompleteness, and circularity errors.

Redundant rules (or parts of rules) can be removed from

the expert system without affecting its deductive power.

Redundant rules can arise because of duplication, subsump-

tion, unnecessary parts in the IF statements, or more

complicated forms such as chained redundancy [28].

Conflicts arise when contradictory facts can be derived

from the knowledge base. In systems interpreting rules as

logical implications conflicts directly correspond to logical

inconsistencies. In the hypergraph approach of Ramaswamy

et al. [28], where no negations can occur, additional

consistency conditions (constraints) are used for expressing

forbidden variable combinations. Systems employing the

state space model reveal a different perspective of conflicts.

In models with sequential execution, where negations

correspond to the absence of facts in the working memory,

no conflicts can occur, as it is impossible for a fact to be

simultaneously present and not present. In this setting,

inconsistencies are all due to additional integrity constraints

on the variables—as is the case in the hypergraph approach.

Parallel execution, on the other hand, can activate

complementary actions, one erasing, and the other setting

the same fact. Thus, conflicts between an action and its

negation can directly occur in this setting.

Incompleteness deals with facts that the expert system

cannot derive, but is supposed to do so. Obviously, this is

more a validation than a verification issue. Often incom-

pleteness is subdivided into three error categories [22,29]:

missing rules, dead-ends (rules that produce no facts that are

further needed) and unreachable goals (when the antecedent

of a rule can never be satisfied).

Circularity is mainly understood in the same sense as in

our paper, but in the purely declarative interpretation, this
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kind of circularity cannot occur. Therefore, in the rules-as-

implications picture circularity usually refers to premises of

a rule that can be derived by the rule system [28].

Among the rare industrial verifications of expert systems

we want to mention the following: Spreeuwenberg et al.

present a tool to verify knowledge bases built with

Computer Associate’s Aion system [9]; they also treat

real-life applications, for example for the Postbank Neder-

land BV’s assessment knowledge base [35]. Representative

of many other similar projects, Hörl and Aichernig [15]

formalized and verified a set of test cases for an air traffic

voice communication system.

8. Conclusion

In this paper, we reported on an additional quality

assurance effort involving formal methods on an industrial

system close to shipment. By formalizing the IBM SA

Automation Manager’s rule-based expert system we could

prove a restricted non-looping property for a part of the rule

system, and we could locate program bugs from failed proof

attempts. After modelling the rule actions and consistency

properties in DPDL, we converted them to a set of

propositional SAT properties that current SAT-checking

techniques can easily handle.

As an interesting task for the future we see an integrated

verification approach for both the high-level dependency

conditions on resources and the low-level Automation

Manager’s rule-system. As the high-level conditions can be

edited by SA users, verification cannot remain a step in the

product development cycle, but becomes part of the users’

administration work, with all the induced demands this

entails on the verification process such as user-friendliness

or fully automatic proofs.

In this work, we have found a case in industry where

formal methods could be brought in very late to help debug

an almost finished product. This was made possible because

the program consists of a relatively abstract rule system

given in terms of (almost) propositional logic. There was

still a substantial, but manageable, formal modelling effort,

described in Section 3 above. Since we mainly stayed within

propositional (Boolean) logic, we had powerful industrial

strength decision procedures at our disposal: advanced

SAT-checking algorithms and normal form representations

using BDDs. There is even some leeway here, because we

did not have to resort to our parallel SAT-checker [30] yet.

In those cases where our validation lemmas did not hold, we

represented the error conditions as concise BDDs and could

then trace the problem back from the model to error states of

the original rule system. We also consider it an important

observation that in practice rule systems may be incomple-

tely specified and that formalization requires to make

implicit assumptions explicit in order to avoid meaningless

results (false positives).

We conclude that Formal Methods need not all be about

specification, and that they can even be applied very late in

industrial projects to debug, respectively validate, important

aspects, provided the project already contains abstract

interfaces from which the validation can proceed.

Appendix A. Proofs of lemmas and theorem

Lemma 1. Let s0 !
v¼d

s1: Then the following holds:

(a) s0; s1 o RESV

(b) s0 o Fv;d^ : Pv;d

(c) s1 o Pv;d

(d) s0 o Pw;e , s1 o Pw;e for all w – v; e [ Dw:

Proof. (a) is obvious, as PRE contains RESV as a conjunct,

(b) follows from definition of tðRv;dÞ; (c) from property (P2)

of atomic program av;d : (d) is a consequence of (P3) and

(P4) in conjunction with RESV. A

Lemma 2. Let s0 !
v¼d

s1: Then s1 o F iff s0 o Fjv¼d:

Proof. We prove the lemma by induction on the structure of

F. Assume F is atomic, i.e. F ¼ Pw;e: We distinguish three

cases: first, if w – v; then Pw;elv¼d ¼ Pw;e; and by Lemma

1(d) the claim holds. Second, if w ¼ v and d ¼ e; then

Pw;elv¼d ¼`; and by Lemma 1(c) we also have s1 o Pv;d:

Third, if w ¼ v; d – e; then Pw;elv¼d ¼’; i.e. so p Flv;d:
Also, by Lemma 1(a) and (c), we have s1 p F: The other

cases are proved using the property that the restriction is a

homomorphic extension of the atomic case. A

Lemma 3. Let ~a ¼ ða0;…; an21Þ be a loop candidate

sequence. Then

LOOPð~aÞ U RESV ^
^

av;d[Lð~aÞ

Pv;d ^
^

0#i,n;ai¼avi ;di

Fvi;di

��
vi21¼di21;…;v0¼d0

ð9Þ

is satisfiable iff there is a looping transition sequence in

Tð~aÞ: Moreover, the models of LOOPð~aÞ are (starting )

states of looping transition sequences.

Proof. Let ~a ¼ ða0;…; an21Þ with ai ¼ avi;di
:

‘ ) ‘: Assume LOOPð~aÞ is satisfiable. Then there is a state

s0 with s0 o LOOPð~aÞ: We now construct a looping

transition sequence ~s ¼ ðs0;…; sn21Þ with ~s [ Tð~aÞ; starting

with s0: Define

siþ1ðPw;eÞ U

1 if w ¼ vi; e ¼ di;

0 if w ¼ vi; e – di;

siðPw;eÞ if w – vi:

8>><
>>:

We now show that Eqs. (8a)–(8f) hold for this ~s:
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(8a) By induction on i, using the recursive definition of si;

and the fact that s0 o RESV:

(8b) As avn21;dn21
is obviously in LðaÞ; we have s0 o

Pvn21;dn21
:

(8c) siðPvi21;di21
Þ ¼ 1 holds for 0 , i , n by definition of

si:

(8e) Holds by definition of si; as siþ1ðPw;eÞ ¼ siðPw;eÞ for

w – vi:

(8f) Consider any variable w – vn21: First, assume there

are no al and d0 with al ¼ aw;d0 : Then s0 o Pw;e , s1 o
Pw;e , · · · , sn21 o Pw;e for all e [ Dw; which proves

the claim. Otherwise, there is an al [ Lð~aÞ with al ¼

aw;d0 for some d0: The precondition w – vn21 excludes

the case l ¼ n 2 1: Therefore, we have slþ1 o Pw;d0 by

Eq. (8c) and l , n 2 1: By repeatedly using Eq. (8e), we

get sk o Pw;d0 for all l þ 1 # k # n 2 1: s0 o Pw;d0 holds

by definition of LOOPð~aÞ; so that s0 o Pw;e , sn21 o
Pw;e for all e [ Dw by Eq. (8a).

(8d) We first prove that si o Fvi ;di
: By Lemma 2 we have

si21 o Flvi21¼di21
, si o F for all F and 0 , i , n: So,

by induction, s0 o Flvi21¼di21;…;v0¼d0
, si o F for 0 ,

i , n: s0 o Fv0;d0
obviously holds. Let us now turn to the

proof of the second part, i.e. si o: Pvi ;di
: Let J1 ¼ {j ,

ilai ¼ av;d0 for some d0} and J2 ¼ {j . ilai ¼ av;d0 for

some d0}: First, assume that J1 – Y: Then let jm ¼

max{J1}: We now have ajm
¼ av;d0 with d0 – d because

of Definition 2(2). So sjmþ1 o Pv;d0 ; by Eq. (8e) si o Pv;d0 ;

and by Eq. (8a) si o: Pv;d : Now, for the second case,

assume J1 ¼ Y: Then, as Definition 2(1) yields J1 < J2 –
Y; we get J2 – Y: Let jm ¼ max{J2}: Then ajm

¼ av;d0

with d0 – d because of Definition 2(2) and J1 ¼ Y:
Again, we have sjmþ1 o Pv;d0 ; and by repeatedly using Eq.

(8e), and once Eq. (8f), we get si o Pv;d0 : Thus, by Eq.

(8a), si o: Pv;d:

‘ ( ‘: Assume there is a looping transition sequence in Tð~aÞ;

say ~s ¼ ðs0;…; sn21Þ: Then Eqs. (8a)–(8f) holds for ~s by

Lemma 1. Now, because of Eq. (8a), s0 o RESV: Repeated

application of Lemma 2, as above, in conjunction with Eq.

(8d) yields s0 o Fvi ;di
lvi21¼di21;…;v0¼d0

for 0 # i , n: By

repeated application of Eq. (8e) and finally Eq. (8f) we get

s0 o Pv;d for all av;d [ Lð~aÞ: This proves

s0 o LOOPð~aÞ: A

Lemma 4. Let ~a be an action sequence. If Tð~aÞ – Y; then ~a

is a loop candidate sequence.

Proof. As Tð~aÞ – Y; there is a sequence of states

ðs0;…; sn21 2 1Þ [ Tð~aÞ with si !
vi¼di

siþ1 for 0 # i # n 2 1

and sn21 !
vn21¼dn21

s0: Assume now that ~a is not a loop

candidate sequence. Then we can distinguish two cases:

(1) There is a variable v occurring only once in ~a; say

ai ¼ av;d: By Eq. (8b) or (8c) we either have siþ1 o Pv;d

if i , n 2 1 or s0 o Pv;d if i ¼ n 2 1: In both cases

sj o Pv;d for n . j . i by Eq. (8e), and, moreover, by

Eqs. (8f) and (8e) sk o Pv;d for k # i: This is a

contradiction to si o: Pv;d ; which follows from Eq.

(8d).

(2) There are two actions ai ¼ aj ¼ av;d; i , j; but there is

(a) no index k with i , k , j and ak ¼ av;d0 for some

d0; or there is (b) no index l with either l , i or l . j

such that al ¼ av;d00 for some d00: Let us first assume that

(a) holds. Then, by Eq. (8c), we have siþ1 o Pv;d : As

there is no k with i , k , j and ak ¼ av;d0 for some d0;

we get by Eq. (8e) that sm o Pv;d for i , m # j: But

sj o: Pv;d by Eq. (8d), a contradiction. Case (b) is

handled similarly.

As a contradiction occurs in both cases, we can conclude

that our assumption that ~a is not a loop candidate sequence

is wrong. A

Theorem 1. LOOPð~aÞ is unsatisfiable for all loop candidate

sequences ~a of length n iff the expert system contains no n-

loops.

Proof. ‘ ) ‘: Let LOOPð~aÞ be unsatisfiable for all loop

candidate sequences ~a of length n. Now, assume that the

expert system contains an n-loop. Then there is a looping

transition sequence ~s ¼ ðs0;…; sn21Þ: Let ~b ¼ ðb0;…; bn21Þ

be the associated action sequence. By Lemma 4, as ~s [
Tð~bÞ; ~b is a loop candidate sequence, and by Lemma 3

LOOPð~bÞ is satisfiable, a contradiction.

‘ ˆ ‘: Let the expert system contain no n-loops, i.e. there is

no looping transition sequence of length n. Now assume,

that LOOPð~aÞ is satisfiable for some loop candidate

sequence ~a ¼ ða0;…; an21Þ: Then, by Lemma 3, there is a

looping transition sequence in Tð~aÞ of length n, a contra-

diction. A
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[30] C. Sinz, W. Blochinger, W. Küchlin, PaSAT—parallel SAT-checking

with lemma exchange: implementation and applications, in: H. Kautz,

B. Selman (Eds.), LICS’2001 Workshop on Theory and Applications

of Satisfiability Testing (SAT’2001), Electronic Notes in Discrete

Mathematics, Boston, MA, vol. 9, Elsevier Science, 2001.
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