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Abstract

We address the parallelization and distributed execution of an algorithm from the area of

symbolic computation: propositional satisfiability (SAT) checking with dynamic learning. Our

parallel programming models are strict multithreading for the core SAT checking procedure,

complemented by mobile agents realizing a distributed dynamic learning process. Individual

threads treat dynamically created subproblems, while mobile agents collect and distribute per-

tinent knowledge obtained during the learning process. The parallel algorithm runs on top of

our parallel system platform Distributed Object-Oriented Threads System, which provides

support for our parallel programming models in highly heterogeneous distributed systems.

We present performance measurements evaluating the performance gains by our approach

in different application domains with practical significance.
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1. Introduction

This paper deals with the parallelization of a novel propositional satisfiability

(SAT) checking algorithm with dynamic learning. The SAT problem asks whether

one can find for a given Boolean formula a variable assignment such that the for-

mula evaluates to true. Besides its theoretical importance, also many problems with
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practical relevance from a wide range of disciplines, including hardware verification,

cryptanalysis, or planning and scheduling, can be encoded as SAT instances and

efficiently solved by SAT checkers.

SAT has been the first problem proven to be NP-complete [12]. Consequently, for

all currently known SAT algorithms there exist problem instances with exponential
run-times. However, advanced methods along with sophisticated heuristics can dra-

matically reduce the computation time for many problem classes of practical rele-

vance. In these cases, parallel SAT checking is an important means to reduce the

computation time even further.

The classical Davis–Putnam–Logemann–Loveland SAT procedure [13,14] was

introduced in the early 1960s, and parallel versions of this algorithm have been

developed by Zhang et al. [36] and by Boehm and Speckenmeyer [8] in 1996, both

using similar techniques. In this paper we address the parallelization of the state-
of-the-art algorithm introduced by Marques-Silva and Sakallah [24] which

enhances the Davis–Putnam–Logemann–Loveland method with dynamic learning

techniques based on conflict analysis and lemma generation. The dynamic learning

process can further dramatically reduce the run-time for a number of important

problem classes. (Table 1 in Section 5 shows examples of performance improve-

ments for the sequential algorithm which can be obtained using the dynamic

learning technique.) Due to this significant improvement of the sequential algo-

rithm it is crucial that the parallel variant also incorporates a dynamic learning
process.

Generally, the parallelization of algorithms from the field of symbolic computa-

tion, like SAT checking, has not been as extensively investigated as the paralleliza-

tion of numerical algorithms. One reason for this might be that symbolic

algorithms tend to be more unstable in several respects. First, symbolic algorithms

are typically very data dependent and therefore highly irregular in their course of ac-

tion; as a consequence, static parallelization or static load balancing are not feasible.

Second, theoretical enhancements of the sequential algorithms often lead to dramatic
performance gains. It is therefore crucial to base the parallel application on the best

known sequential algorithm, but optimized algorithms frequently accumulate

knowledge in complex data-structures or state information which must now be dis-

tributed to the parallel tasks, increasing their synchronization overhead. Neverthe-

less, parallelization can also be very beneficial, because in the field of symbolic

computation algorithm complexities are very high and there is little other hardware

support.

The remainder of the paper is organized as follows. In Section 2 a brief intro-
duction to the SAT problem is given and the state-of-the-art sequential SAT

checking algorithm is explained. Section 3 discusses suitable parallel programming

models for its parallelization and presents our parallel approach. Section 4 gives a

brief description of our parallel system platform Distributed Object-Oriented

Threads System (DOTS) and focuses on details of the implementation of our par-
allel algorithm using DOTS. The results of performance measurements are

reported in Section 5. Section 6 discusses related work, and Section 7 contains

a conclusion.
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2. Introduction to SAT checking

2.1. Problem description

The SAT problem asks whether or not a Boolean formula has a model. We may
assume w.l.o.g. that the formula is in conjunctive normal form (CNF), i.e., it is a

conjunction of clauses, where a clause is a disjunction of literals, and a literal is a

propositional variable or its negation. A clause containing exactly one literal is called

a unit clause, the empty clause ; is a clause containing no literals at all. A solution to
a SAT problem instance assigns to each variable a value (either TRUETRUE or FALSEFALSE),

such that in each clause at least one literal becomes true, and thus all clauses are si-

multaneously satisfied. Thus, a set of clauses containing the empty clause is inconsis-

tent, because it never has a solution.
Since in a formula in CNF the logical connectives (disjunction _ and conjunction

^) are determined by its structure, they are often omitted. Clauses are then repre-
sented as sets of literals, and formulae as sets of clauses. For example, the Boolean

logic formula
ðx2 _ x3Þ ^ ðx1 _ x3Þ ^ ðx1 _ x2 _ x3Þ ^ x3;
which is in CNF, translates into the set of clauses
ffx2; x3g; fx1; x3g; fx1; x2; x3g; fx3gg:

For this formula, resp. clause set, the function assigning TRUETRUE to x2 and x3, and
FALSEFALSE to x1, is the only model resp. solution.
2.2. The DP algorithm with dynamic learning

Basically, by trying out all possible variable assignments one after the other, one

finally finds a solution to a given SAT-instance, provided that such a solution exists.

The Davis–Putnam–Logemann–Loveland algorithm [14,13] (also commonly known

as the DP algorithm) performs an optimized search by extending partial variable as-

signments, and by simplifying the resulting subproblems by applying two constraint

propagation operations known as unit subsumption and unit resolution. In 1996,

Marques-Silva and Sakallah proposed an extension of the classical DP algorithm

by dynamic learning techniques based on conflict analysis and––as a by-product––
non-chronological backtracking [24]. This enhancement often leads to considerable

improvements, especially on structured real-world SAT instances. It has now become

a quasi-standard, and is implemented in most of today�s SAT checkers [27,35].
Since our parallel SAT checker also employs these new techniques, this section

presents the basic concepts of the DP algorithm with dynamic learning. The algo-

rithm is shown in Fig. 1, where the first call to DP is made with the initial problem

description S and a starting level of d ¼ 0.
In the following, we associate with each run of DP a search tree, which is a finite

binary tree generated by the recursive calls of the case splitting step. The nodes of the

tree represent execution states of DP with a fixed input clause set S. We will label the



Fig. 1. The sequential DP algorithm with dynamic learning.
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outgoing edges of each node with the literal L, resp. L, which is conceptually added to
S to generate the new subproblem. Fig. 2 depicts such a search tree.
Dynamic learning aims at reducing the search space by adding information to the

problem instance�s clause set which is derived during the search. This works as fol-
lows: As soon as DP reaches a leaf of the search tree which is not a solution (i.e., when

an empty clause is found), the reason for the generation of the empty clause (or con-

flict) is analyzed [24]. Often, not all selected splitting literals Ld are a necessary condi-

tion for the conflict to emerge, and therefore we obtain a set Ld1 ; . . . ; Ldk of remaining

literals whose simultaneous satisfaction is a sufficient condition for the conflict. By
Fig. 2. Guiding Path ððx;BÞ; ðy;NÞ; ðz;BÞÞ, left-to-right Search Tree Traversal.
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adding the conflict-induced clause, also called lemma, CC ¼ fLd1 ; . . . ; Ldkg to the clause
set, we can thus prevent a useless repeated search of the same subtree in other regions

of the search space. We will not describe in detail how the literals evoking a conflict

are computed, but refer the reader to the literature instead (see for example [24]).

Adding all conflict clauses can result in an exponential blow-up of the clause set.
Therefore it is common practice to limit the addition of clauses to those containing

less than a threshold number of literals. The use of this simple size parameter is jus-

tified by the fact that smaller clauses have the potential to cut off larger fractions of

the search space: a clause of length n can truncate up to 1=2n of the search space.
3. Parallel SAT checking with distributed dynamic learning

3.1. Basic problem decomposition technique

For the parallel execution of the DP algorithm the search space has to be divided

into mutually disjoint portions to be treated in parallel. We adopt a dynamic search

space splitting technique proposed by Zhang et al. [36] which is based on the notion

of a guiding path. A guiding path describes the current state of the search process.

More precisely, a guiding path is a path in the search tree from the root to the cur-

rent node, with additional labels attached to the edges. Each level of the tree where a
case splitting literal is added to the clause set S, i.e. each (recursive) call to the DP
procedure, corresponds to an entry in the guiding path, and each entry consists in

turn of the following information:

(1) The literal Ldþ1 which was selected at level d.
(2) A flag indicating whether we are in the first or in the second branch. We use B to

indicate the first branch, where backtracking is needed, and N to indicate the sec-
ond branch, where no backtracking is needed.

Each entry in the guiding path with flag B set is a potential candidate for a search
space division, as the sequential search has to backtrack to this point and examine

the second branch later. The whole subtree rooted at the node corresponding to this

entry can thus be examined by another independent task, where at the same time the

first task switches the flag in its guiding path from B to N. The second recursive call
of the DP procedure is only executed if the backtrack flag is set to B.
As an example, assume that the search process has reached the state indicated by

the marked guiding path in Fig. 2. In this situation a new task may be started with

literal x set to true, as this part of the search tree has not been examined so far. So by
starting a new task with an initial guiding path of ðx;NÞ we start a parallel search of
independent subtrees. The spawning task can proceed with its search, after having

changed its guiding path from ððx;BÞ; ðy;NÞ; ðz;BÞÞ to ððx;NÞ; ðy;NÞ; ðz;BÞÞ. It has
proved advantageous to choose for splitting purposes the backtracking node that

is closest to the root of the search tree, i.e. to select i in such a way that fj ¼ N
for all j < i.
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The guiding path approach allows dynamic problem decomposition, as at any

point in time during the search any task may decide to further split its portion of

the search space. Moreover, the selected literals coincide with the selections of the

sequential version––at least in the absence of dynamic learning. Approved literal

selection strategies may therefore be carried over to the parallel version of the DP
algorithm. We have modified algorithm DP to be started at an arbitrary point in

the search tree, specified by an initial guiding path.
3.2. Distributed learning

For a distributed parallel version of the DP algorithm with dynamic learning,

splitting the search space is only one problem to be settled. The other one is to find

a suitable scheme for distributing newly gained knowledge.
Such a scheme has to decide about questions such as:

• When should knowledge be exchanged between two tasks?

• Which newly derived facts should be made available to other tasks?

• Which knowledge is relevant and should be integrated into a task�s clause set?

For all of these questions side conditions have to be considered, such as network

bandwidth and time to assemble and incorporate new knowledge.
The simplest schema for distributed learning is to have all tasks working indepen-

dently and to exchange no knowledge at all. This scheme has the advantage of being

very simple (to implement, too), but it suffers from the drawback that important

knowledge may be utilized incompletely. This holds particularly when learning has

a considerable effect, as is the case with structured real-world instances of the

SAT problem.

Our approach is to exchange selected knowledge––in the form of newly derived

lemmas (conflict clauses)––between the nodes of the distributed environment. The
lemmas that are made available to other tasks are selected using one simple crite-

rion: the clause length. All lemmas with fewer than a fixed number of literals are

offered to all other tasks. This policy is consistent with the schema applied for de-

ciding the lemmas to be added to the clause set in the sequential algorithm (see Sec-

tion 2.2). In order to determine an appropriate value for this size parameter we

conducted experiments, which are reported in Section 5. When inserting foreign

lemmas into a task�s clause set, these are filtered, and only those lemmas are incor-
porated that are not subsumed by the task�s initial guiding path. This prevents in-
sertion of lemmas that are superfluous for the currently examined part of the search

space.
3.3. Parallel programming models and implementation concepts

Since the dynamic learning process represents an orthogonal procedure to the

search process in the sequential algorithm, it is natural to also separate both pro-
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cesses in the parallel algorithm. Thus, the parallel execution is organized in two dif-

ferent logical layers. On the first layer, a parallel search process is carried out, while

on the second layer the exchange of newly created knowledge between the processors

is accomplished.

In this section the selection of suitable parallel programming models and the re-
sulting conceptual parallel organization of the two logical layers is discussed. Section

4 gives further details of the actual implementation of both layers using the DOTS
parallel system platform.

Many parallel programming models have been proposed in the past [2,32]. Besides

the different levels of abstraction they provide, they also differ with respect to their

applicability to specific problem domains. Subsequently, we identify specific require-

ments for the parallelization of our algorithm and choose suitable parallel program-

ming models.

3.3.1. Parallel search

Using the guiding path technique, it is easily possible to create disjoint subprob-

lems for carrying out a parallel search. But it is in principle impossible to estimate the

run-time of a subproblem, since the extent of problem reduction delivered by the

constraint-propagation and especially by the dynamic learning process cannot be

predicted. Especially when dealing with SAT encodings of real-world problems,

the run-times of the created subproblems differ considerably. This means that for
the realization of the parallel search process on the first logical layer, the program-

ming model has to support task parallel programs exhibiting highly irregular work-

loads and resulting in highly irregular communication patterns. In particular, it

should be possible to efficiently implement the presented dynamic search space split-

ting technique.

The application of higher level parallel programming models which are supported

by parallelizing compilers is mainly restricted to regular applications and thus not

possible in our case. Also, lower level models like message passing are not well suited
for the efficient parallelization of applications with highly irregular communication

structures, because for every send primitive also a corresponding receive primitive

has to be executed. The explicit placement of these receive statements in the program

code turns out to be difficult when dealing with highly irregular communication pat-

terns.

The multithreading programming paradigm, located at a medium level of abstrac-

tion, provides transparent synchronization on the receiver side and hides communi-

cation by an argument-result abstraction. It turned out to be a well suited model for
the parallelization of highly irregular applications. Moreover using this parallel pro-

gramming model, different load balancing strategies can be applied orthogonally.

Multithreaded computations can further be classified according to the number

and course of data-dependency edges present in the execution graph of a computa-

tion [7]. In simple multithreaded computations (also called asynchronous procedure

calls or fork/join computations) each thread produces one result which is consumed

by its parent. In fully strict multithreaded computations a thread can produce an

arbitrary number of results, consumed by its parent. The more general strict
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multithreaded computations allow that the results of a thread can be consumed by an

ancestor of the thread in the activation tree. (Further details on this classification can

be found in [7].)

The strict multithreading model is very well suited for implementing the parallel

DP search procedure within a scalable dynamic master-slave approach. Dynamic
problem decomposition is achieved by dynamically creating new threads, where a

parent thread assigns a portion of its own search space to its child by applying the

described search space splitting technique, and continues the search in its (reduced)

search space. Both, parent and child, can create additional threads to further

increase the available parallelism. All threads pass the result of their search process

directly to the master thread. The master thread only spawns the initial thread and

subsequently collects the results of all dynamically generated threads until a model is

found or all created threads have finished their search without finding a model.

3.3.2. Knowledge exchange

To establish a global learning process considering all generated knowledge, the

lemmas have to be exchanged between the nodes. Since at every leaf in the search

tree a conflict analysis is carried out, a vast number of lemmas are generated at each

node. This makes the exchange of all created lemmas among all nodes difficult, if

bandwidth limitations of the network exist or when a large number of nodes are

used. Thus lemmas must be filtered at the source, and the underlying programming
model used for implementing the lemma exchange should support such a selection

process.

In case of a parallel computer with physical shared memory, the knowledge ex-

change can be carried out by maintaining a shared clause store object into which

all created lemmas are inserted and from which they are selectively read by all prover

instances. Using distributed shared memory models this concept could also be used

in distributed architectures. However, this approach suffers from limited scalability.

Another possibility would be to use broadcasting capabilities of message passing
environments, but filtering at the source is difficult to realize with this technique.

In our approach we use (a simple form of) mobile agents [34] to gather suitable

new knowledge on other nodes. For each SAT prover instance, a mobile agent is cre-

ated that visits the nodes in the distributed system. The agents gather new lemmas

according to the criteria specified in Section 3.2. Whenever the mobile agent delivers

the collected lemmas on its home node, information about the current state of the

local search process is passed to the agent and is used in the selection process on

its next trip to the other nodes. The mobile agent paradigm is distinguished by its
high scalability, thus enabling the deployment of our algorithm in large scale parallel

environments, e.g. computational grids.
4. Implementation on the DOTS parallel platform

DOTS is a system platform for building and executing parallel C++ programs that
integrates a wide range of different computing systems into a homogeneous parallel
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environment. Although DOTS was originally designed for the parallelization of algo-
rithms from the realm of symbolic computation [6], it has also been used in other

application domains like parallel computer graphics [26]. The primary design goal

of DOTS is to provide a flexible and handy tool for the rapid prototyping of algo-
rithm designs especially for highly irregular symbolic computations, e.g. in data-
dependent divide-and-conquer algorithms.

DOTS supports a wide range of hardware and software platforms [4]. Up to now,
it has been deployed on (heterogeneous) clusters composed of the following plat-

forms:

• Microsoft Windows 98/NT/2000/XP

• Solaris, IRIX, AIX

• FreeBSD, Linux
• QNX Realtime Platform and

• IBM Parallel Sysplex Clusters (clusters of IBM S/390 (respectively zSeries) main-

frames running under OS/390) [5]
4.1. System overview

4.1.1. DOTS APIs

DOTS applications can be based on several APIs, see Fig. 3. It is possible to mix
primitives from different APIs within an application.
4.1.1.1. Task API. The Task API represents the basic API layer of DOTS on

which the other APIs are based. It provides support for DOTS task objects, which
are instances of application specific classes that are derived from the base class

DOTS_Task and implement a run() method. The code provided in the run() method
is executed on its own thread when the task object is scheduled for execution

(see Section 4.1.2). The base class DOTS_Task also provides methods for explicit
program controlled migration of the task object in the case of a distributed execution

of the parallel application.
Fig. 3. DOTS application programming interface.
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4.1.1.2. Autonomous Tasks API. The Autonomous Tasks API can be used to create

task objects that operate as mobile agents. In contrast to normal task objects, the

execution of an autonomous task is not subject to the load distribution mechanism

of DOTS. Instead, its execution locations can be explicitly determined by the pro-
grammer. For facilitating the control of autonomous tasks, the API provides higher
level migration primitives, e.g. for organizing round trips of mobile agents within the

distributed environment.

4.1.1.3. Active Message API. The Active Message API provides support for object-

oriented message passing. After a message object has been transferred to its desti-

nation node it becomes an active object i.e., a new thread is created that executes

application specific code contained in the message object.

4.1.1.4. Thread API. The Thread API offers support for strict multithreading. To

facilitate the parallelization of C++ programs using this programming model, the

Thread API is enhanced with object-oriented features, like argument and result

objects for threads. The basic primitives provided by the Thread API are dots_fork
and dots_hyperfork for thread creation, dots_ join for synchronizing with the results
computed by other threads (which are returned using dots_return), and dots_cancel
for thread cancellation.

Each thread of a computation is assigned to a thread group. Depending on the
primitive used for its creation, a thread is placed explicitly or implicitly into a thread

group. If a thread is created using the dots_fork primitive, it is explicitly placed into a
specified thread group. If a thread is created using dots_hyperfork, it is implicitly
placed in the same thread group as its closest ancestor in the thread activation tree

which has been created using dots_fork.
When dots_ join is called on a thread group, join-any semantics is applied: The first

result which becomes available from a thread in the given group is delivered, regard-

less of whether the thread has been placed explicitly or implicitly into the group. If
no result is available, the calling thread is blocked until one thread of the group de-

livers a result.

The Thread API is implemented on top of the Task API by defining a special class

of DOTS task objects called DOTS_Thread, which encapsulates argument and result
objects and additional information like the procedure to be executed.

4.1.2. DOTS architecture

The major design goal for the DOTS architecture is the strict separation of execu-
tion and distribution aspects. The benefits of this approach are that DOTS applica-
tions can be efficiently executed on SMPs as well as on clusters without any

modifications (e.g. recompilation). Moreover, custom load distribution schemes

and new functionality (e.g. checkpointing) can easily be integrated.

Fig. 4 shows the main functional units of the architecture. DOTS tasks are exe-
cuted within the Execution Unit (shown in Fig. 5). They can be executed in immedi-

ate mode or in queued mode. In the former case, an OS native thread is created that

executes the run() method of the task object. DOTS tasks that are intended for
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queued execution are placed into a task queue. A pool of (pre-forked, OS native)

worker threads dequeue task objects from the queue and execute the corresponding

run() method. The number of worker threads can be determined by the programmer.
Normally, for each node the number of available processors is chosen. However, in

some cases an oversaturation with worker threads can be desirable, so that commu-

nication latency is implicitly hidden by running another thread. After the execution

of a DOTS task object is completed, it is placed into a ready queue. Ready queues

correspond to thread groups on the API level; for each thread group that is created,
a ready queue is allocated within the execution unit. The ready queue is removed

from the execution unit when the corresponding thread group is canceled.

To support the execution of DOTS tasks in a distributed environment, the DOTS
architecture includes additional components. The Task Transfer Unit transfers (seri-

alized) task objects between queues of execution units residing on different nodes.

Task transfer is needed for task migration or load distribution. The Load Monitoring

Framework traces all events concerning the execution of DOTS tasks and provides
status information like the current load or the current length of the task queue.
Based on the Load Monitoring Framework, different load distribution strategies

can be integrated. The occurrence of an event is transformed by the Load Monitor-

ing Framework into a call of a corresponding event handler method that can be
Fig. 5. DOTS execution unit.
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(re-)implemented by a load distribution strategy class derived from the Load Moni-

toring Framework. In turn, event handler methods initiate appropriate actions, like

task transfer or sending requests for task transfer. As an example for the usage of the
Load Monitoring Framework, Fig. 6 shows the code for a simple randomized work-
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stealing distribution scheme. Using the Load Monitoring Framework, the program-

mer can easily register custom load distribution schemes within an application with-

out any modification of DOTS internals.
Basic distributed schemes based on sender initiated work-sharing or receiver ini-

tiated work-stealing are predefined. The target, resp. victim node, can be selected
randomly, by round-robbin selection, or by an application specific strategy.
4.2. Implementation of the parallel SAT checker using DOTS

In this section, we present the implementation of the two logical layers of our par-

allel SAT checker (see Section 3.3) using DOTS.

4.2.1. Parallel search with DOTS threads

To initiate the parallel search process the main thread forks one DOTS thread that
has the entire search space assigned. During the whole computation all created

threads periodically monitor the length of the local task queue. If a thread sees that

the length of the task queue falls below a given threshold, it forks a new DOTS
thread. The parent thread splits off a region of its search space (see Section 3.1)

and assigns it to the new thread. To prevent the uncontrolled splitting-off of very

small fractions of the search space, a predefined time interval has to elapse before

the next split can be carried out by the thread. The newly created DOTS task object
is queued and can be executed by a local worker thread or can be transferred to other

nodes.

The above splitting procedure generates subproblems on demand. This ensures

that new subproblems are generated on the one hand during the initialization phase

of the computation to exploit the available processing capacity and on the other

hand every time a subproblem has been completely processed without finding a so-

lution.

After forking the initial DOTS thread, the main thread immediately calls dots_ join
to wait for all subsequently created threads. All DOTS threads (except the initial one)
are created with the dots_hyperfork primitive. This has the effect that these threads
can be joined by the main thread (and are not to be joined by their actual parent

threads). The result of a thread indicates whether a solution was found within the

assigned search region. The processing is completed either if all created DOTS
threads have been joined (indicated by a return value of 0 from dots_ join) without
returning a solution, or when the first DOTS thread is joined that has found a solu-
tion. In the latter case, all remaining DOTS threads are immediately canceled.
As load distribution scheme, task stealing with randomized victim selection

(similar to the example code given in Fig. 6) was used. It has been shown that ap-

plying a randomized work-stealing strategy to distribute the load in backtrack

search algorithms is likely to yield a speedup within a constant factor from opti-

mal (when all solution are required) [22]. Since this load distribution scheme in-

volves only local information the scalability of the parallel search algorithm is

ensured.
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4.2.2. Knowledge exchange using DOTS autonomous tasks

For each available processor on a node a Clause Store object is created that holds

the set of clauses for a SAT checker instance. The clause set consists of initial input

clauses as well as lemmas generated by the associated SAT checker. Lemmas can

easily be exchanged between clause store objects residing on the same node, using
shared memory. Lemmas from clause stores on other nodes are exchanged by em-

ploying DOTS autonomous tasks. In Fig. 7 the (simplified) code of an autonomous
task is shown.

For each clause store object a DOTS autonomous task object is created that acts
as a mobile agent for gathering lemmas from other nodes. It visits all nodes in a

round robin fashion looking for new lemmas. Every time it is back on its home node
Fig. 7. Simplified code of the lemma agent.



W. Blochinger et al. / Parallel Computing 29 (2003) 969–994 983
it inserts the collected lemmas into the local clause store. Because of the huge amount

of generated lemmas it is impossible to exchange all lemmas in larger distributed sys-

tems. Therefore, agents gather only lemmas that meet some criteria. As selection cri-

teria the length of the lemmas and the requirement that the considered lemma is not

already subsumed is used. (If a lemma is subsumed, it contains only information that
is obviously irrelevant in the part of the search space assigned to the agent�s associ-
ated SAT checker task.) The description of which part the SAT checker task is cur-

rently working on––in the form of a list of fixed literals––is transferred to the lemma

exchange agent every time the agent visits its home node.
5. Experimental results

For a performance evaluation of our parallel approach to SAT checking with dy-

namic learning, we carried out a series of run-time measurements in a cluster com-

posed of 24 SUN workstations. Each node of the cluster was equipped with an

UltraSparcII processor running at 500 MHz and 512 MB of main memory. All

nodes were connected by a 100 Mbps switched Ethernet. Our run-times and speedup

values are based on measurements of the wall-clock time of program runs. Since it

turned out that the parallel execution of the SAT checker with dynamic learning ex-

hibits a significant non-deterministic behavior in some cases, we performed ten indi-
vidual parallel runs for each setting. In addition to the arithmetic mean of the

measured results we also give the minimum and maximum values, if the individual

values show a significant spread.

As benchmarks we used the following SAT encoded problems of both theoretical

and practical importance:

• QG7-12: quasi-group existence problem

This problem encodes a quasi-group existence problem of the kind QG7 given by
Fujita et al. [19]. A quasi-group is a cancellative finite groupoid consisting of a

base set S and a binary multiplication 
. The multiplication table is also known
as a ‘‘latin square’’, i.e. each row and column is a permutation of the base set

S. QG7-x asks for the existence of a quasi-group of order x with the additional
property that ððx 
 yÞ 
 xÞ 
 y ¼ x holds for all x; y. As no quasi-group of order
12 with this property exists, QG7-12 is unsatisfiable.

• DES: logical cryptanalysis

This benchmark stems from the area of logical cryptanalysis [25] and encodes the
problem of finding an encryption key given three plaintext and three ciphertext

blocks that were produced using three rounds of the DES algorithm. As there

is (at least one) key matching the plaintext/ciphertext blocks, the DES problems

are satisfiable.

• LONGMULT: hardware verification

This benchmark problem is taken from the realm of hardware verification using

bounded model checking [3]. It represents a boolean formula expressing the equiv-

alence of two different 16-bit multiplier hardware designs. Using the usual



able 1

equential run-times of the benchmarks

Benchmark Satisfiable? Sequential time

without learning

Sequential time with

learning (s)

QG7-12 No 5203 s 2772

DES Yes >7 days 2984

LONGMULT No 99,009 s 4313
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T

S

problem encoding technique of bounded model checking, equivalence of hard-

ware designs is represented by unsatisfiability.

Table 1 shows the the sequential run-times of the benchmark problems with and

without dynamic learning measured on one cluster node. The computation time of

all benchmark problems can be reduced by dynamic learning. While the effect im-

posed by dynamic learning is moderate for the quasi-group existence problem, the

run-time of the other considered benchmark problems can be dramatically reduced

using this technique.
5.1. Evaluation of the work-stealing load sharing strategy

In a first series of measurements the performance of our work-stealing load shar-

ing strategy was analyzed and then optimized for subsequent measurements. In order

to get suitable data for this analysis, we used as input the QG7-12 benchmark where

among the considered benchmarks the effect of dynamic learning is the smallest and

performed no lemma exchange. This strategy minimizes both, the non-determinism

of parallel runs (see also Fig. 13 below), and the overhead imposed by the mobile

agents on the parallel search.
Fig. 8. Speedups and number of generated threads for QG7-12 using different work-stealing thresholds

with one worker thread per node.



Fig. 9. Speedups and number of generated threads for QG7-12 using different work-stealing thresholds

with two worker threads per node.
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5.1.1. Work-stealing threshold parameters

The work-stealing load sharing strategy is controlled by the value of two different

threshold parameters:

• Split-Threshold

When the length of the local task queue is less than, or equal to, this threshold, a

search space split is performed to produce an additional thread (which can be sto-

len by other nodes).

• Steal-Threshold

When the length of the local task queue is less than, or equal to, this threshold, the

load distribution system tries to steal a thread from the run queue of a randomly

chosen victim node.

Fig. 8 shows the obtained speedups and the number of dynamically generated

threads for different values of the Split-Threshold and Steal-Threshold parameter

using 24 nodes with one worker thread on each node. In Fig. 9 the results of the cor-

responding measurements using two worker threads per node are given.

5.1.1.1. Discussion. The speedups obtained using one worker thread ranged

from 15.7 to 18.1 and with two worker threads per node they ranged from 14.9 to

17.6.

The best speedup could be achieved by using a value of 0 for the Split-Threshold

and the Steal-Threshold parameter, both when using one or two worker threads.

Also the number of created threads is the smallest with this parameter setting.

Using a larger value for the Steal-Threshold causes additional task transfers over
the network leading to smaller speedups. Also, using a larger Split-Threshold causes

the creation of a larger number of threads, particularly for smaller values for the

Steal-Threshold parameter. Thus, the strategy of trying to keep a larger number of

parallel task available turned out to be not beneficial for this application.



986 W. Blochinger et al. / Parallel Computing 29 (2003) 969–994
Using two worker threads per node decreases the performance of the parallel ap-

plication. The additional synchronization overhead needed when using two prover

threads outweighs the performance improvements obtained by overlapping compu-

tation and communication. In general it turned out that due to the internal multi-

threaded implementation of the communication system of DOTS the effect of
using a larger number of worker threads is only marginal. Despite the high variabil-

ity in the number of generated threads, the resulting speedups are relatively stable.

E.g., for the parameter setting that results in the highest thread load when using

one worker thread, still about 87 percent of the maximal speedup could be obtained.

According to the results of this test, for all subsequent measurements the value of

the Split-Threshold and the Steal-Threshold parameter were set to 0 and one worker

thread per node was used.

5.1.2. Work-stealing timing parameters

After finding the optimal thresholds for the work-stealing load sharing strategy,

we studied the influence of the following related timing parameters on the speedup

and the number of created threads.

• Split-Wait Time

This is the minimal time interval that has to elapse between consecutive search

space splits on a node.
• Queue-Check Interval

This parameter controls how frequently the local task queue is checked whether

its length has fallen below the given threshold parameter.

Fig. 10 shows the speedups and number of generated threads using different com-

binations of the described timing parameters.

5.1.2.1. Discussion. For a wide range of parameter settings the obtained speedups
differ only marginally (ranging from 17.8 to 18.1), while the number of generated
Fig. 10. Speedups and number of generated threads for QG7-12 using different work-stealing timing

parameters.
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threads is affected by these parameters to a greater extent. Only when using a

comparatively large queue check interval of 1000 ms the speedups drop significantly

to values in the range between 14.1 and 14.9, and the largest number of threads

occur. In this case, mainly at the end of the computation, many nodes ran idle for a

larger time interval leading to a poor parallel efficiency. Moreover, only a few nodes
could be chosen as victim for work-stealing. Consequently, these nodes had to

perform many search space splits within a short time interval. The resulting small

subproblems amplified the described effect, also leading to a larger number of gene-

rated threads.

For all further measurements a Split-Wait Time value of 10 ms and a Queue-

Check Interval value of 10 ms were chosen since for these values the speedup ob-

tained was the highest.

5.2. Evaluation of distributed learning

For analyzing the effects of knowledge exchange realized by our mobile agents ap-

proach, we studied for each benchmark the influence of the maximum length of the

lemmas to be gathered by the mobile agents. This parameter mainly influences

the footprint (the size) of the mobile agents. On the one hand, smaller values for

the maximum length lead to faster round trip times of the agents, so that the trans-

ferred new knowledge is rapidly available on other nodes of the distributed system.
Also the overhead imposed by the mobile agents on the parallel search process in

terms of cpu-time and bandwidth consumption can be reduced. On the other hand,

by choosing a too small size for the lemmas to be exchanged, too many generated

lemmas are filtered out from the global learning process, so that important knowl-

edge may not be provided to other nodes, leading to a larger degree of redundant

searching.

Fig. 11 shows the speedups and the total size of the search tree (given in the num-

ber of leaves of the tree) for the LONGMULT benchmark using different maximum
length values. A maximum length of 0 represents the case where no lemmas are
Fig. 11. Influence of lemma exchange for the LONGMULT benchmark.



Fig. 12. Influence of lemma exchange for the DES benchmark.
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Fig. 13. Influence of lemma exchange for the QG7-12 benchmark.
exchanged at all, and consequently no mobile agents are created. Figs. 12 and 13

present the corresponding results for the DES and QG7-12 benchmarks.

5.2.1. Discussion

Coordinating the distributed learning process with our mobile agent approach

leads to significantly better speedup values and to smaller search trees in all our

benchmarks. Moreover, it could be observed that the maximum size of the collected

lemmas influences the obtained speedups as well as the size of the search tree for all
benchmarks. In particular, this effect is very pronounced for the DES benchmark.

It turned out that for all benchmarks the maximum size of exchanged lemmas that

leads to the best speedups is smaller than the maximum lemma size which results in

the smallest search tree. By choosing a larger size, more lemmas are selected and ex-

changed, which on the one hand can further reduce the search tree since more knowl-

edge is distributed. But on the other hand, the clause set gets bigger, slowing down

the constraint propagation process of the DP algorithm and thus decreasing the

overall performance. Moreover the resource consumption of the agents is increased,
additionally slowing down the parallel search.
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Also, super-linear speedups could be observed for the LONGMULT and the DES

benchmarks. One typical source of super-linear speedups are system effects such as

cache or memory effects: due to the problem decomposition the resulting smaller

subproblems can often be processed more efficiently. In our application this is un-

likely to be the case since for treating a subproblem a complete prover instance is
needed which requires the same resources as in the sequential execution.

Another typical source of super-linear speedups are algorithmic effects. In parallel

search processes these occur, if the processing of a parallel subproblem quickly leads

to a solution. Since the DP algorithm is essentially a search algorithm, super-linear

speedups can occur due to this parallel search effect, if the considered problem in-

stance is satisfiable.

Parallel dynamic learning processes are another potential source for algorithmic

super-linear speedups. Compared to the sequential execution, it is possible that in
the parallel case additional important knowledge becomes available when treating

a particular region of the search space. Thus, the search tree can be reduced to a

greater extent than in the sequential case.

This observation provides an explanation of the occurrence of super-linear speed-

ups in the parallel execution of the LONGMULT benchmark. For the DES bench-

mark, super-linear speedups are the result of a superposition of both parallel search

and parallel learning.
6. Related work

6.1. Parallel SAT checking and combinatorial optimization

B€oohm and Speckenmeyer presented a parallel SAT-solver for a Transputer system
consisting of 256 processors [8]. Their work concentrates on aspects of the parallel-

ization of SAT checking for hard randomly generated SAT instances. The SAT al-
gorithm executed on each processor is based on the classical DP algorithm

without conflict analysis and lemma generation and consequently no inter-node

learning process is realized in this work. A dynamic problem decomposition tech-

nique similar to the guiding path technique is used. The employed load balancing

scheme depends on a workload measure of subproblems which is based on the num-

ber of unset variables of the subproblem. This approach is feasible for random SAT

instances where the extent of problem reduction delivered by the constraint-propa-

gation step of the DP algorithm can be assumed to be the same for all subproblems.
However, for many real-world SAT instances, this assumption cannot be made.

Therefore our approach uses a dynamic receiver initiated load distribution scheme

in order to better cope with the highly irregular workload when treating real-world

SAT instances.

Zhang�s PSATO [36] is a distributed parallel propositional prover for networks
of workstations, based on the sequential prover SATO. Compared to PSATO,

our work implements a distributed dynamic learning process and applies more

sophisticated load distribution schemes leading to better scalability. PSATO also
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employs a master-slave approach for carrying out the parallel search. In contrast to

our work, the master is additionally responsible for performing search space split-

ting and scheduling of the created subproblems. In PSATO, new tasks are not cre-

ated on demand (when a processor is available), but the following procedure is

applied: After a predefined time interval a slave terminates its computation and re-
ports its current guiding path to the master. If there is another idle processor, the

master performs a search space split and assigns the two resulting subproblems to

the idle processors. Due to this highly centralized policy of dynamic problem de-

composition scalability is limited, especially when treating highly irregular problem

instances.

In the neighboring field of combinatorial optimization, parallelization is also an

active area of research. Grama and Kumar [20] give a comprehensive overview of

the state-of-the-art in this field. They report on the parallelization of different search
algorithms, the role of heuristics, and the phenomenon of speedup anomalies.

Habbas et al. [21] examine different load balancing strategies for parallel forward

search with conflict based backjumping. Search algorithms of this kind frequently

occur in constraint satisfaction problems (CSPs) and are similar to the DP algorithm

with conflict analysis presented here. In the CSP community, the analogy to lemma

generation is no-good generation, but this is not part of Habbas� analysis. So, in their
parallel algorithms the focus is on load balancing, and distributed learning is not

considered.
Br€uungger�s ZRAM search library [10] offers a framework for parallel search. In

their work they exemplarily apply their system to the traveling salesman problem

(TSP) and to the quadratic assignment problem (QAP). Their library offers diffe-

rent parallel search engines, for example for branch and bound search, and in-

cludes a search space estimator for irregular search problems, which is based on

ideas of Knuth [23]. In their framework, communication between different tasks

is done exclusively for load distribution, so the focus again is not on distributed

learning.
6.2. System platforms for multithreading in distributed systems

In Section 3.3 we have stated the general suitability of multithreading for the par-

allelization of highly irregular combinatorial search problems. In the last decade,

many distributed multithreaded environments for high performance computing have

been developed. In this section we carry out a classification of these approaches into

three categories according to functional aspects and the intended purpose of the sys-
tem platform. For the category to which DOTS belongs, we make a more detailed
comparison with other systems.
6.2.1. Shared memory multithreading based on distributed shared memory

Here, the common goal of approaches to distributed multithreading is to use the

shared memory multithreading programming model, e.g. provided by many modern

operating systems, on parallel architectures with distributed memory as transpa-
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rently as possible. Typical representatives of this category are: distributed shared

memory (DSM)-Threads [28], Millipede [18], or DSM-PM2 [1].

Due to the consistency problem caused by the replication of shared data objects,

all approaches to DSM multithreading have to cope with the problem of combining

efficiency and programmability (transparency) on large scale distributed (hetero-
geneous) parallel machines [33]. In principle, strict multithreading and mobile agents

could be realized using DSM, if the stated drawbacks are not relevant for the in-

tended application area. Since SAT checking does not further profit from DSM,

we argue that it is better to use DOTS, whose system model supports larger scale

heterogeneous distributed systems.
6.2.2. HPC middleware for integrating communication and multithreading

The system platforms in this category pursue the tight integration of communica-
tion and multithreading. However, the intention of the realized parallel programming

model is not to carry out communication completely transparently. Examples of

members of this category are Nexus [17], Panda [31], or Athapascan-0 [9].

These system platforms are primarily designed to be used as compiler targets or as

middleware for building higher-level parallel system platforms. Due to their general

nature, strict multithreading as well as mobile agents could be realized with all of

these platforms. But using their low level programming models would lead to rela-

tively complex programs when implementing both strict multithreading and autono-
mous tasks.
6.2.3. Platforms supporting the fork/join multithreading programming model

Systems in this category are most similar to DOTS; they realize distributed mul-
tithreading by employing the fork/join parallel programming model or generaliza-

tions thereof, like strict multithreading (see Section 3.3.1). This approach to

distributed multithreading carries out communication completely transparently by

using argument–result semantics. However, communication between the threads of
a computation is restricted to specific points during the execution of a thread. The

simplest form are asynchronous remote procedure calls that allow the passing of

one argument from the parent thread to the child thread and the communication

of one result back to the parent thread. More general models, like strict multithread-

ing, additionally allow the transfer of possibly several results to any ancestor of a

thread in the call tree.

DTS [11] (which is the predecessor of DOTS) realizes asynchronous remote pro-
cedure calls in C and Fortran. No support for object-oriented programming was pro-
vided in DTS, and its deployment was limited to distributed systems composed of

UNIX nodes.

Cilk [30] is a language for multithreaded parallel programming that represents a

superset of ANSI C. It uses pre-compilation techniques for static code instrumenta-

tion in order to support the Cilk runtime system. There exists a prototype implemen-

tation of a distributed version of Cilk, called distributed Cilk [16], that spans clusters

of SMPs. DOTS is library based and therefore avoids typical problems of systems
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that extend standard languages, like the lack of standard development tools (e.g.

debuggers). Moreover, DOTS is based on C++ and supports object-oriented pro-
gramming. Since distributed Cilk is currently available only on a few platforms,

its usability in highly heterogeneous distributed environments is limited.

Virtual Data Space (VDS) [15] is a load balancing system for irregular applica-
tions also supporting strict multithreading. It is implemented in C and therefore pro-

vides no direct support for object-oriented programming. It is not available for a

wider range of common platforms, resulting in a limited support for heterogeneous

high performance computing.

PM2 (Parallel Multithreaded Machine) [29] is a distributed multithreaded envi-

ronment designed to efficiently support irregular parallel applications on distributed

architectures. A key feature of PM2 is its thread migration mechanism.

While all these system platforms provide for fork/join multithreading in distri-
buted systems, only VDS and PM2 could also be used to implement the autonomous

tasks that act as mobile agents supporting distributed learning. Their implementa-

tion could be based on the VDS task model resp. on the sophisticated migration

facilities of PM2.

DOTS is distinguished from these systems by its native support for object-oriented
programming, its support for highly heterogeneous environments, and by its tight

integration of strict multithreading and autonomous tasks realized by its basic task

execution model.
7. Conclusion

In this paper we presented the parallelization of the state-of-the-art SAT checking

algorithm which enhances the classical Davis–Putnam–Logemann–Loveland SAT

checking procedure with dynamic learning techniques. Our approach uses strict mul-

tithreading to cope with the highly irregular search process and employs a random-
ized work stealing strategy. The knowledge exchange is carried out by using the

mobile agent paradigm.

The main contribution of this paper is the beneficial combination of parallel com-

binatorial search with distributed learning. We thus achieve an improved global

learning effect on a set of collaborating search tasks. Our experiments indicate that

distributed learning can result in considerable speedup compared to independently

learning individuals.

As the learning effect helps reveal the internal structure of a problem instance, it is
especially well-suited for structured real-world problems. This is the case, for exam-

ple, in hardware verification, where SAT algorithms (as the core of a bounded model

checker) are increasingly employed, and where a parallel approach allows further

progress.

Research directions for the future may include adaptation to large-scale applica-

tions by employing grid computing, as well as a thorough theoretical investigation of

the effects of distributed learning.
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