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Abstract

We address in this paper the question of how the knowledge of
the marginal distribution P (x) can be incorporated in a learning
algorithm. We suggest three theoretical methods for taking into
account this distribution for regularization and provide links to
existing graph-based semi-supervised learning algorithms. We also
propose practical implementations.

1 Introduction

Most existing learning algorithms perform a trade-off between fit of the data and
’complexity’ of the solution. The way this complexity is defined varies from one
algorithm to the other and is usually referred to as a prior probability or a regular-
izer. The choice of this term amounts to having a preference for certain solutions
and there is no a priori best such choice since it depends on the learning problem
to be addressed. This means that the right choice should be dictated by prior
knowledge or assumptions about the problem or the class of problems to which
the algorithm is to be applied. Let us consider the binary classification setting. A
typical assumption that is (at least implicitly) used in many learning algorithms is
the following

Two points that are close in input space should have the same label.

One possible way to enforce this assumption is to look for a decision function which
is consistent with the training data and which does not change too much between
neighboring points. This can be done in a regularization setting, using the Lips-
chitz norm as a regularizer. For differentiable functions, the Lipschitz norm of a
function is the supremum of the norm of the gradient. It is thus natural to consider
algorithms of the form

min
f

sup
x

‖∇f(x)‖ under constraints yif(xi) ≥ 1. (1)

Performing such a minimization on the set of linear functions leads to the maximum
margin solution (since the gradient x 7→ 〈w,x〉 is w), whereas the 1-nearest neighbor
decision function is one of the solutions of the above optimization problem when
the set of functions is unconstrained [13].
Although very useful because widely applicable, the above assumption is sometimes
too weak. Indeed, most ’real-world’ learning problems have more structure than
what this assumption captures. For example, most data is located in regions where



the label is constant (clusters) and regions where the label is not well-defined are
typically of low density. This can be formulated via the so-called cluster assumption:

Two points that are connected by a line that goes through high den-
sity regions should have the same label

Another related way of stating this assumption is to say that the decision boundary
should lie in regions of low density.

Our goal is to propose possible implementations of this assumption. It is important
to notice that in the context of supervised learning, the knowledge of the joint prob-
ability P (x, y) is enough to achieve perfect classification (taking arg maxy P (x, y)
as decision function), while in semi-supervised learning, even if one knows the dis-
tribution P (x) of the instances, there is no unique or optimal way of using it. We
will thus try to propose a principled approach to this problem. A similar attempt
was made in [10] but in a probabilistic context, where the decision function was
modeled by a conditional probability distribution, while here we consider arbitrary
real-valued functions and use the standard regularization approach.

We will use three methods for obtaining regularizers that depend on the distri-
bution P (x) of the data. In section 2 we suggest to modify the regularizer in a
general way by weighting it with the data density. Then in section 3 we adopt a
geometric approach where we suggest to modify the distances in input space (in
a local manner) to take into account the density (i.e. we stretch or blow up the
space depending on the density). The third approach presented in section 4 builds
on spectral methods. The idea is to look for the analogue of graph-based spectral
methods when the amount of available data is infinite. We show that these three
approaches are related in various ways and in particular we clarify the asymptotic
behavior of graph-based regularization. Finally, in section 5 we give a practical
method for implementing one of the proposed regularizers and show its application
on a toy problem.

2 Density based regularization

The first approach we propose is to start with a gradient-based regularizer like
‖∇f‖ which penalizes large variations of the function. Now, to implement the
cluster assumption one has to penalize more the variations of the function in high
density regions and less in low density regions. A natural way of doing this is
to replace ‖∇f‖ by ‖p∇f‖ where p is the density of the marginal distribution P .
More generally, instead of the gradient, one can can consider a regularization map

L : R
X 7→ (R+)

X
, where L(f)(x) is a measure of the smoothness of the function f

at the point x, and then consider the following regularization term

Ω(f) = ‖ L(f)χ(p) ‖ , (2)

where χ is a strictly increasing function.

An interesting case is when the norm in (2) is chosen as the L2 norm. Then, Ω(f)
can be the norm of a Reproducing Kernel Hilbert Space (RKHS), which means that
there exist an Hilbert space H and a kernel function k : X 2 7→ R such that

√

〈f, f〉H = Ω(f) and 〈f, k(x, ·)〉H = f(x). (3)

The reason for using an RKHS norm is the so-called representer theorem [5]: the
function minimizing the corresponding regularized loss can be expressed as a linear
combination of the kernel function evaluated at the labeled points.



However, it is not straightforward to find the kernel associated with an RKHS norm.
In general, one has to solve equation (3). For instance, in the case L(f) = (f 2 +

‖∇f‖2
)1/2 and without taking the density into account (χ = 1), it has been shown in

[3] that the corresponding kernel is the Laplacian one, k(x,y) = exp(−‖x − y‖L1
)

with associated inner product 〈f, g〉H = 〈f, g〉L2
+ 〈∇f,∇g〉L2

. Taking the density
into account, this inner product becomes

〈f, g〉H =
〈
f, χ2(p)g

〉

L2

+
〈
∇f, χ2(p)∇g

〉

L2

.

Plugging g = k(x, .) in above and expressing that (3) should be valid for all f ∈ H,
we find that k must satisfy

χ2(p)k(x, .) −∇(χ2(p)∇k(x, .)) = δ(x − .),

where δ is the Dirac delta function. However, solving this differential equation is
not an easy task for arbitrary p.
Since finding the kernel function associated to a regularizer is, in general, a difficult
problem, we propose to perform the minimization of the regularized loss on a fixed
set of basis functions, i.e. f is expressed as a linear combination of functions ϕi.

f(x) =

l∑

i=1

αiϕi(x) + b. (4)

We will present in section 5 a practical implementation of this approach.

3 Density based change of geometry

We now try to adopt a geometric point of view. First we translate the cluster as-
sumption into a geometric statement, then we explore how to enforce it by changing
the geometry of our underlying space. A similar approach was recently proposed by
Vincent and Bengio [12]. We will see that there exists such a change of geometry
which leads to the same type of regularizer that was proposed in section 2.
Recall that the cluster assumption states that points are likely to be in the same
class if they can be connected by a path through high density regions. Naturally
this means that we have to weight paths according to the density they are going
through. This leads to introducing a new distance measure on the input space
(typically R

d) defined as the length of the shortest weighted path connecting two
points. With this new distance, we simply have to enforce that close points have
the same label (we thus recover the standard assumption).
Let us make this more precise. We consider the euclidean space R

d as a flat Rieman-
nian manifold with metric tensor δ, denoted by (Rn, δ). A Riemannian manifold
(M, g) is also a metric space with the following path (or geodesic) distance:

d(x, y) = inf
γ
{L(γ)|γ : [a, b] → M, γ(a) = x, γ(b) = y}

where γ is a piecewise smooth curve and L(γ) is the length of the curve given by

L(γ) =

∫ b

a

√

gij(γ(t))γ̇iγ̇jdt (5)

We now want to change the metric δ of R
d such that the new distance is the weighted

path distance corresponding to the cluster assumption. The only information we
have is the local density p(x), which is a scalar at every point and as such can
only lead to an isotropic transformation in the tangent space TxM. Therefore we
consider the following conformal transformation of the metric δ

δij → gij =
1

χ(p(x))
δij (6)



where χ is a strictly increasing function. We denote by (Rd, g) the distorted eu-
clidean space. Note that this kind of transformation also changes the volume ele-
ment

√
gdx1 . . . dxd, where g is the determinant of gij .

dx1 . . . dxd → √
gdx1 . . . dxd =

1

χ(p)d/2
dx1 . . . dxd (7)

In the following we will choose χ(x) = x, which is the simplest choice which gives
the desired properties.
The distance structure of the transformed space implements now the cluster as-
sumption, since we see from (5) that all paths get weighted by the inverse density.
Therefore we can use any metric based classification method and it will automat-
ically take into account the density of the data. For example the nearest neigh-
bor classifier in the new distance is equivalent to the Lipschitz regularization (1)
weighted with the density proposed in the last section.
However, implementing such a method requires to compute the geodesic distance
in (Rd, g), which is non trivial for arbitrary densities p. We suggest the following
approximation which is similar in spirit to the approach in [11].
Since we have a global chart of R

d we can give for each neighborhood Bε(x) in the
euclidean space the following upper and lower bounds for the geodesic distance:

inf
z∈Bε(x)

√

1

p(z)
‖x − y‖ ≤ d(x, y) ≤ sup

z∈Bε(x)

√

1

p(z)
‖x − y‖, ∀ y ∈ Bε(x) (8)

Then we choose a real ε and set for each x the distance to all points in a p(x)−1/2ε-
neighborhood of x as d(x, y) = p(x+y

2 )−1/2‖x− y‖. The geodesic distance can then
be approximated by the shortest path along the obtained graph.

We now show the relationship to the the regularization based approach of the pre-
vious section. We denote by ‖·‖L2(Rd,g,Σ) the L2 norm in (Rd, g) with respect to

the measure Σ and by µ the standard Lebesgue measure on R
d. Let us consider

the regularizer ‖∇f‖2
L2(Rd,δ,µ) which is the standard L2 norm of the gradient. Now

modifying this regularizer according to section 2 (by changing the underlying mea-

sure) gives S(f) = ‖∇f‖2
L2(Rd,δ,P ). On the distorted space (Rd, g) we keep the

Lebesgue measure µ which can be done by integrating on the manifold with re-
spect to the density σ = 1√

g = pd/2, which cancels then with the volume element

σ
√

gdx1 . . . dxd = dx1 . . . dxd. Since we have on (Rd, g), ‖∇f‖2 = p(x)δij ∂f
∂xi

∂f
∂xj we

get equivalence of S(f).

S(f) = ‖∇f‖2
L2(Rd,δ,P ) =

∫

Rd

p(x)δij ∂f

∂xi

∂f

∂xj
dx1 . . . dxd = ‖∇f‖2

L2(Rd,g,µ) (9)

This shows that modifying the measure and keeping the geometry, or modifying
the geometry and keeping the Lebesgue measure leads to the same regularizer S(f).
However, there is a structural difference between the spaces (Rd, δ, P ) and (Rd, g, µ)
even if S(f) is the same. Indeed, for regularization operators corresponding to
higher order derivatives the above correspondence is not valid any more.

4 Link with Spectral Techniques

Recently, there has been a lot of interest in spectral techniques for non linear di-
mension reduction, clustering or semi-supervised learning. The general idea of these
approaches is to construct an adjacency graph on the (unlabeled) points whose
weights are given by a matrix W . Then the first eigenvectors of a modified version



of W give a more suitable representation of the points (taking into account their
manifold and/or cluster structure). An instance of such an approach and related
references are given in [1] where the authors propose to use the following regularizer

1

2

m∑

i,j=1

(fi − fj)
2Wij = f>(D − W )f , (10)

where fi is the value of the function at point xi (the index ranges over labeled and
unlabeled points), D is a diagonal matrix with Dii =

∑

j Wij and Wij is chosen as

a function of the distance between xi and xj , for example Wij = K(‖xi − xj‖ /t).
Given a sample x1, . . . ,xm of m i.i.d. instances sampled according to P (x), it is
possible to rewrite (10) after normalization as the following random variable

Uf =
1

2m(m − 1)

∑

i,j

(f(xi) − f(xj))
2K(‖xi − xj‖ /t) .

Under the assumption that f and K are bounded, the result of [4] (see Inequality
(5.7) in this paper, which applies to U-statistics) gives

P [Uf ≥ E [Uf ] + t] ≤ e−mt2/C2

,

where C is a constant which does not depend on n and t. This shows that for each
fixed function, the normalized regularizer Uf converges towards its expectation when
the sample size increases. Moreover, one can check that

E [Uf ] =
1

2

∫ ∫

(f(x) − f(y))2K(‖x − y‖ /t)dP (x)dP (y) . (11)

This is the term that should be used as a regularizer if one knows the whole distri-
bution since it is the limit of (10)1.
The following proposition relates the regularizer (11) to the one defined in (2).

Proposition 4.1 If p is a density which is Lipschitz continuous and K is a contin-
uous function on R

+ such that x2+dK(x) ∈ L2, then for any function f ∈ C2(Rd)
with bounded hessian

lim
t→0

d

C t2+d

∫ ∫

(f(x) − f(y))2K(‖x − y‖ /t)p(x)p(y)dxdy (12)

=

∫

‖∇f(x)‖2
p2(x)dx, (13)

where C =
∫

Rd ‖x‖2
K(‖x‖) dx.

Proof: Let’s fix x. Writing a Taylor-Lagrange expansion of f and p around x in
terms of h = (y − x)/t gives

∫

(f(x) − f(y))2K

(‖x − y‖
t

)

p(y)dy

=

∫

(t 〈∇f(x),h〉 + O(t2 ‖h‖2
))2K(‖h‖)(p(x) + O(t ‖h‖)tddh

= td+2p(x)

∫

〈∇f(x),h〉2 K(‖h‖)dh + O(td+3) , (14)

1We have shown that the convergence of Uf towards E [Uf ] happens for each fixed f but
this convergence can be uniform over a set of functions, provided this set is small enough.



To conclude the proof, we rewrite this last integral as
∇f(x)>

(∫
hh>K(‖h‖)dh

)
∇f(x) = ‖∇f(x)‖2 C

d . The last equality comes

from the fact that, by symmetry considerations,
∫

hh>K(‖h‖)dh is equal to a
constant (let’s call it C2) times the identity matrix and this constant can be
computed by C2d = trace

(∫
hh>K(‖h‖)dh

)
= trace

(∫
h>hK(‖h‖)dh

)
= C. �

Note that different K lead to different affinity matrices: if we choose K(x) =
exp(−x2/2), we get a gaussian RBF affinity matrix as used in [7], whereas K(x) =
1x≤1 leads to an unweighted neighboring graph (at size t) [1].
So we have proved that if one takes the limit of the regularizer (10) when the sample
size goes to infinity and the scale parameter t goes to 0 (with appropriate scaling),
one obtains the regularizer

∫

‖∇f(x)‖2
p2(x)dx =

〈
f,∇∗D2

p∇f
〉
,

where ∇∗ is the adjoint of ∇, Dp is the diagonal operator that maps f to pf and
〈., .〉 is the inner product in L2.
In [2], the authors investigated the limiting behavior of the regularizer D − W ob-
tained from the graph and claimed that this is the empirical counterpart of the
Laplace operator defined on the manifold. However, this is true only if the distri-
bution is uniform on the manifold. We have shown that, in the general case, the
continuous equivalent of the graph Laplacian is ∇∗D2

p∇.

5 Practical Implementation and Experiments

As mentioned in section 2, it is difficult in general to find the kernel associated with
a given regularizer and instead, we decided to minimize the regularized loss on a
fixed basis of functions (ϕi)1≤i≤l, as expressed by equation (4).

The regularizer we considered is of the form (2) and is,

Ω(f) = ‖ ‖∇f‖√p ‖2
L2

=

∫

∇f(x) · ∇f(x)p(x)dx.

Thus, the coefficients α and b in expansion (4) are found by minimizing the following
convex regularized functional

1

n

n∑

i=1

`(f(xi), yi)

︸ ︷︷ ︸

Remp(f)

+λ

l∑

i,j=1

αiαj

∫

∇ϕi(x) · ∇ϕj(x)p(x)dx

︸ ︷︷ ︸

‖L(f)
√

p‖2

L2

. (15)

Introducing the l × l matrix Hij =
∫
∇ϕi(x) · ∇ϕj(x)p(x)dx and the n × l matrix

K with Kij = ϕj(xi), the minimization of the functional (15) is equivalent to the
following one for the standard L1-SVM loss:

min
α,b

α>Hα + C
n∑

i=1

ξi

under constraints ∀i, yi(
∑l

j=1 Kijαj + b) ≥ 1 − ξi. The dual formulation of this
optimization problem turns out to be the standard SVM one with a modified kernel
function (see also [9]):

max
β

n∑

i=1

βi −
1

2

n∑

i,j=1

βiβjyiyjLij ,
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Figure 1: Two moons toy problem: there are 2 labeled points (the cross and the
triangle) and 200 unlabeled points. The gray level corresponds to the output of the
function. The function was expanded on all unlabeled points (m=200 in (4)) and
the widths of the gaussians have been chosen as σ = 0.5 and σp = 0.05.

under constraints 0 ≤ βi ≤ C and
∑

βiyi = 0, with L = KH−1K>.
Once the vector β has been found, the coefficients α of the expansion are given by

α = H−1K>diag(Y )β.

In order to calculate the Hij , one has to compute an integral. From now on, we
consider a special case where this integral can be computed analytically:

• The basis functions are gaussian RBF, ϕi(x) = exp
(

−‖x−xi‖2

2σ2

)

, where

the points x1, . . . ,xl can be chosen arbitrarily. We decided to take the
unlabeled points (or a subset of them) for this expansion.

• The marginal density p is estimated using a Parzen window with a Gaussian

kernel, p(x) = 1
m

∑m
i=1 exp

(

−‖x−xi‖2

2σ2
p

)

.

Defining h = 1/σ2 and hp = 1/σ2
p, this integral turns out to be, up to an irrelevant

constant factor,

Hij =
m∑

k=1

exp

(

− h2

2h + hp

‖xi − xj‖2

2
− hhp

2h + hp

‖xi − xk‖2
+ ‖xj − xk‖2

2

)

(
h2

p(xk − xi) · (xk − xj) − h(h + hp)(xi − xj)
2 + d(2h + hp)

)
,

where d is the dimension of the input space.

After careful dataset selection [6], we considered the two moons toy problem (see
figure 1). On this 2D example, the regularizer we suggested implements perfectly
the cluster assumption: the function is smooth on high density regions and the
decision boundary lies in a low density region.

We also tried some real world experiments but were not successful. The reason
might be that in dimension more than 2, the gradient does not yield a suitable
regularizer: there exists non continuous functions whose regularizer is 0. To avoid
this, from the Sobolev embedding lemma, we consider derivatives of order at least
d/2. More specifically, we are currently investigating the regularizer associated with



a Gaussian kernel of width σr [8, page 100],

∞∑

p=1

σ2p
r

p!2p

∫

‖∇pf(x)‖2
p(x)dx, with ∇2p ≡ ∆p.

6 Conclusion

We have tried to make a first step towards a theoretical framework for semi-
supervised learning. Ideally, this framework should be based on general principles
which can then be used to derive new heuristics or justify existing ones.
One such general principle is the cluster assumption. Starting from the assumption
that the distribution P (x) of the data is known, we have proposed several ideas
to implement this principle and shown their relationships. In addition, we have
shown the relationship to the limiting behavior of an algorithm based on the graph
Laplacian.
We believe that this topic deserves further investigation. From a theoretical point
of view, other types of regularizers, involving, for example, higher order derivatives
should be studied. Also from a practical point of view, we should derive efficient
algorithms from the proposed ideas, especially by obtaining finite sample approxi-
mations of the limit case where P (x) is known.
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