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Abstract

A natural representation of data is given by the parameters
which generated the data. If the space of parameters is con-
tinuous, then we can regard it as a manifold. In practice, we
usually do not know this manifold but we just have some rep-
resentation of the data, often in a very high-dimensional fea-
ture space. Since the number of internal parameters does not
change with the representation, the data will effectively lie on
a low-dimensional submanifold in feature space. However,
the data is usually corrupted by noise, which particularly in
high-dimensional feature spaces makes it almost impossible
to find the manifold structure. This paper reviews a method
calledManifold Denoising, which projects the data onto the
submanifold using a diffusion process on a graph generated
by the data. We will demonstrate that the method is capable
of dealing with non-trival high-dimensional noise. Moreover,
we will show that using the denoising method as a prepro-
cessing step, one can significantly improve the results of a
semi-supervised learning algorithm.

Introduction
If one observes an image sequence of a moving head all
the information of each image is contained in the param-
eters of the current head position. In this example, two
parameters, the two angles which describe in which direc-
tion the head is pointing, are sufficient. Even though we
have a high-dimensional representation of the data, the pix-
els of the image, the data can be effectively described by
two parameters. Since the head moves continuously, the
images corresponding to all possible values of the angles
will form a two-dimensional submanifold in pixel space. It
is obvious that using thisinternal parametrization should
be helpful in learning problems. In recent years, several
methods have been developed in the machine learning com-
munity which are based on the assumption that the data
lies on a submanifoldM in R

d. They have been used in
semi-supervised learning (Zhouet al. 2004), dimension-
ality reduction (Tenenbaum, de Silva, & Langford 2000;
Belkin & Niyogi 2003) and clustering. However, there ex-
ists a certain gap between theory and practice. Namely, in
practice the data lies almost never exactly on the subman-
ifold but, due to noise, is scattered around it. Several of
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the existing algorithms, in particular graph based methods,
are quite sensitive to noise. All of these methods basically
use the same principle: The global structure of the data,
the manifold the data lies on, is reconstructed by “gluing”
together local structure in the data. In graph-based meth-
ods this principle is implemented by connecting only points
which are close to each other. However, this concept breaks
down in the presence of high-dimensional noise since the
local neighborhoods are corrupted. The following Lemma
illustrates this point.

Lemma 1 Let x, y ∈ R
d andε1, ε2 ∼ N(0, σ2) and define

X = x + ε1 andY = y + ε2, then

E ‖X − Y ‖
2

= ‖x − y‖
2

+ 2 d σ2,

Var ‖X − Y ‖
2

= 8σ2 ‖x − y‖
2

+ 8 d σ4.

We observe that the expected squared distance of two points
x, y which are perturbed by high-dimensional Gaussian
noise is dominated by the noise term ifd σ2 is sufficiently
large. Thus, points which are initially close together can be
far apart after the noise is added.

The process of denoising has the goal to project the data
points, which are scattered around the manifold, back onto
the submanifold. In the literature there already exist some
methods which have related objectives, like principal curves
(Hastie & Stuetzle 1989) and the generative topographic
mapping (Bishop, Svensen, & Williams 1998). For both
methods one has to know the intrinsic dimension of the sub-
manifold as a parameter of the algorithm. However, in the
presence of high-dimensional noise it is almost impossible
to estimate the intrinsic dimension correctly. Moreover, usu-
ally problems arise if there is more than one submanifold.
Our algorithmManifold Denoising(Hein & Maier 2007) ad-
dresses these problems. It works well for low-dimensional
submanifolds corrupted by high-dimensional noise and can
deal with multiple submanifolds. The basic principle behind
our denoising method has been introduced in the seminal
work of (Taubin 1995) as a surface processing method inR

3.
We extend this method to general submanifolds inR

d, where
our emphasis lies on dealing with high-dimensional noise.
Moreover, we provide a new interpretation of the denoising
algorithm. This interpretation takes into account the proba-
bilistic setting encountered in machine learning and differs
from the one given in (Taubin 1995).



The noise model and problem statement
We assume that the data lies on an abstractm-dimensional
manifold M , where the dimensionm is the number of in-
dependent parameters in the data. This data is mapped via
a smooth, regular embeddingi : M → R

d into the feature
spaceRd. In the following we will not distinguish between
M and i(M) ⊂ R

d since it should be clear from the con-
text which case we are considering. The Euclidean distance
in R

d then induces a metric onM . This metric depends on
the embedding/representation (e.g. scaling) of the data in
R

d but is at least continuous with respect to the intrinsic pa-
rameters. Furthermore, we assume that the manifoldM is
equipped with a probability measurePM which is absolutely
continuous with respect to the natural volume element1 dV
of M .
With these definitions the model of the noisy data-generating
process inRd has the following form:

X = i(Θ) + ε,

whereΘ ∼ PM andε ∼ N(0, σ). Note that the probability
measure of the noiseε has full support inRd. We consider
here for convenience a Gaussian noise model but also any
other reasonably concentrated isotropic noise should work.
The densitypX of the noisy dataX can be computed from
the true data-generating probability measurePM :

pX(x) = (2π σ2)−
d
2

∫

M

e−
‖x−i(θ)‖2

2σ2 p(θ) dV (θ). (1)

The Gaussian measure is equivalent to the heat kernel

pt(x, y) = (4πt)−
d
2 exp

(

− ‖x−y‖2

4t

)

of the diffusion pro-
cess onRd, see for example (Grigoryan 2006), if we make
the identificationσ2 = 2t. Therefore an alternative point of
view on pX is to seepX as the result of a diffusion of the
density functionp(θ) of PM stopped at timet = 1

2σ2. The
basic principle behind the denoising algorithm of this paper
is to reversethis diffusion process.

The denoising algorithm
In practice we have only an i.i.d. sample{Xi}

n
i=1 of PX .

The ideal goal would be to find the corresponding set of
points{i(θi)}

n
i=1 on the submanifoldM which generated

the pointsXi. However, due to the random nature of the
noise this is in principle impossible. Instead the goal is to
find pointsZi on the submanifoldM which are close to the
data pointsXi. However, we are facing several problems.
Since we are only given a finite sample, we do not knowPX

or evenPM . Moreover, we have to discretize the reversal of
the diffusion process which amounts to solving a PDE.
We do so by solving the diffusion process directly on a graph
generated by the sampleXi. This can be motivated by re-
cent results in (Hein, Audibert, & von Luxburg 2005) where
it was shown that the generator of the diffusion process, the
Laplacian∆Rd , can be approximated by the graph Laplacian
of a random neighborhood graph.

1In local coordinatesθ1, . . . , θm the natural volume element
dV is given asdV =

√
det g dθ1 . . . dθm, wheredet g is the de-

terminant of the metric tensorg.

The denoising algorithm As introduced in the previous
section the denoising will be done using a backward dif-
fusion process on the graph generated by the data points.
We use a symmetric k-nearest neighbor graph (k-NN) with
weights defined as

w(Xi,Xj) = exp
(

−
‖Xi − Xj‖

2

(max{h(Xi), h(Xj)})2

)

,

if ‖Xi − Xj‖ ≤ max{h(Xi), h(Xj)} andw(Xi,Xj) = 0
otherwise, whereh(Xi) is the distance ofXi to its k-nearest
neighbor. Additionally, we setw(Xi,Xi) = 0, so that the
graph has no loops. Furthermore, we denote byd the de-
gree functiond(Xi) =

∑n
j=1 w(Xi,Xj) of the graph. Let

D be the diagonal matrix with the degree function on the di-
agonal. Then the graph Laplacian in matrix form is given as
∆ = 1−D−1W , see (Hein, Audibert, & von Luxburg 2005)
for more details. Since the graph Laplacian is the genera-
tor of the diffusion process on the graph, we can formulate
the algorithm by the following differential equation on the
graph:

∂tX
α = −γ ∆Xα, α = 1, . . . , d (2)

whereγ > 0 is the diffusion constant andXα is the α-
th component of a vectorX. Since the points change with
time, the whole graph is dynamic in our setting. In order
to solve the differential equation (2), we choose an implicit
Euler-scheme, that is

Xα(t + 1) − Xα(t) = −δt γ ∆Xα(t + 1), (3)
whereδt is the time-step. Since the implicit Euler is uncon-
ditionally stable, we can choose the factorδt γ arbitrarily.
For the experiments we setγ = 1 andδt = 0.5. The solution
of the implicit Euler scheme for one timestep in Equation 3
can then be computed as,Xα(t + 1) = (1 + δt ∆)−1Xα(t)
for α = 1, . . . , d. After each timestep the point configura-
tion has changed so that one has to recompute the weight
matrix W of the graph. This procedure is continued until a
predefined stopping criterion is satisfied, see (Hein & Maier
2007). The pseudo-code is given in Algorithm 1.

Algorithm 1 Manifold denoising
1: Chooseδt, k
2: while Stopping criterion not satisfieddo
3: Compute thek-NN distancesh(Xi), i = 1, . . . , n,
4: Compute the weightsw(Xi,Xj) of the graph with

w(Xi,Xi) = 0,

w(Xi,Xj) = exp
(

−
‖Xi−Xj‖

2

(max{h(Xi),h(Xj)})2

)

, if

‖Xi − Xj‖ ≤ max{h(Xi), h(Xj)},
5: Compute the graph Laplacian∆, ∆ = 1−D−1W ,
6: SolveXα(t+1)−Xα(t) = −δt ∆Xα(t+1) ⇒

Xα(t + 1) = (1+ δt ∆)−1Xα(t) for α = 1, . . . , d.
7: end while

Large sample limit
Our qualitative theoretical analysis of the denoising algo-
rithm is based on recent results on the limit of graph Lapla-
cians (Hein, Audibert, & von Luxburg 2005) as the neigh-
borhood size decreases and the sample size increases. We



use this result to study the continuous limit of the diffusion
process. The following theorem about the limit of the graph
Laplacian applies toh-neighborhood graphs (Xi andXj are
connected if‖Xi − Xj‖ ≤ h), whereas the denoising algo-
rithm is based on ak-NN graph. Our conjecture is that the
result carries over tok-NN graphs.
Theorem 1 (Hein, Audibert, & von Luxburg 2005) Let
{Xi}

n
i=1 be an i.i.d. sample of a probability measurePM

on am-dimensional compact submanifoldM of R
d, where

PM has a densitypM ∈ C3(M). Let f ∈ C3(M) and
x ∈ M\∂M , then ifh → 0 andnhm+2/ log n → ∞, we
have almost surely

lim
n→∞

1

h2
(∆f)(x) ∼ −(∆Mf)(x) −

2

p
〈∇f,∇p〉TxM ,

where∆M is the Laplace-Beltrami operator ofM and ∼
means up to a constant.
We derive the continuum limit of our graph based diffusion
process in the noise free case, for the noisy case see (Hein &
Maier 2007). In that caseX = i(Θ), Θ ∼ PM . A change
of the data pointsX is therefore equivalent to a change of the
embeddingi of the manifoldM into R

d. Thus, it is more ap-
propriate to think of the diffusion process of the data points
as a change of the embedding. In order to study the limit
of the graph-based diffusion process, we make the usual ar-
gument for the transition from a difference equation on a
grid to the corresponding differential equation. We rewrite
the diffusion equation (3) on the graph with∆ → 1

h2 ∆ and

γ = h2

δt
as

i(t + 1) − i(t)

δt
= −

h2

δt

1

h2
∆i

Performing the limith → 0 andδt → 0 such that the diffu-
sion constantγ = h2

δt
stays finite and using Theorem 1 for

the limit of 1
h2 ∆, we get the following differential equation,

∂ti = γ [∆M i +
2

p
〈∇p,∇i〉]. (4)

Note that for thek-NN graph the neighborhood sizeh is a
function of the density which implies that the diffusion con-
stantγ also becomes a function of the densityγ = γ(p(x)).
It is well known that∆M i = mH whereH is the mean
curvature. Thus the differential equation (4) is equivalent to
a generalized mean curvature flow.

∂ti = γ [mH +
2

p
〈∇p,∇i〉], (5)

The equivalence to the mean curvature flow∂ti = mH
is usually given in computer graphics as the reason for the
denoising effect, see (Taubin 1995). However, as we have
shown the diffusion already has an additional part if one has
a non-uniform probability measure onM .

Experiments
In the experimental section we test the performance of the
denoising algorithm on two datasets. Furthermore, we ex-
plore the possibility to use the denoising method as a pre-
processing step for semi-supervised learning. Due to lack
of space we have to omit other applications of denoising as
preprocessing for clustering or dimensionality reduction.

Denoising The first experiment is done on a toy-dataset.
The manifoldM is given ast → [sin(2πt), 2πt], t is sam-
pled uniformly on[0, 1]. We embedM into R

200 and put
full isotropic Gaussian noise withσ = 0.4 on each data-
point resulting in the upper part of Figure . We verify the
effect of the denoising algorithm by estimating continuously
the dimension of the data for different scales using the cor-
relation dimension estimator of (Grassberger & Procaccia
1983). Note that for a discrete set of points the estimate
of the dimension depends on the scale at which one “exam-
ines” the data. The result of the denoising algorithm with
k = 25 for thek-NN graph and10 timesteps is given in the
lower part of Figure . The dimension estimate and the his-
togram of distances show that the algorithm has reduced the
noise significantly. One can also see two undesired effects.
First as discussed in the last section the diffusion processhas
a component which moves the manifold in the direction of
the mean curvature, which leads to a smoothing of the sinu-
soid. Second, at the boundary the sinusoid shrinks due to
the missing counterparts in the local averaging done by the
graph Laplacian, which results in an inward tangential com-
ponent.

Next we apply the denoising method to the handwritten
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Figure 1: Top:500 samples of the noisy sinusoid inR200 to-
gether with the dimension estimate plotted over a logarith-
mic scale and the histogram of distances, Bottom: Result
after 10 steps of the denoising method withk = 25, note
that the estimated dimension is much smaller and the scale
has changed as can be seen from the histogram of distances.

digit dataset USPS. There the manifold corresponds to vari-
ations in writing styles. In order to check if the denoising
method can also handle several manifolds at the same time,
which would make the method useful for clustering and di-
mensionality reduction, we fed all the 10 digits into the al-
gorithm. As distance measure we used the two-sided tangent
distance in (Keyserset al. 2004) which provides a certain in-
variance against translation, scaling, rotation and line thick-
ness. In Figure 2 a sample of the result across all digits is
shown. Some digits are transformed wrongly. This happens
since they are outliers with respect to their digit manifold



and lie closer to another digit component. An improved han-
dling of invariances should resolve partially this problem.
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Figure 2: Left: Original images from USPS, right: after 15
iterations withk = [9298/50].

Denoising as pre-processing for semi-supervised learning
In semi-supervised learning (SSL) only a small amount of
the data is labeled and a huge amount is unlabeled. The goal
in SSL is to use the unlabeled data as a kind of world knowl-
edge in order to learn even quite complex decision bound-
aries with only a few labeled points. In this respect, it is the
type of learning which is closest to human learning, where
due to a huge domain knowledge a new concept can often be
learned with little training examples.
Most semi-supervised learning (SSL) algorithms are based
on the cluster assumption, that is the decision boundary
should lie in a low-density region. The denoising algorithm
is consistent with that assumption since it moves data points
towards high-density regions. This is in particular helpful if
the original clusters are distorted by high-dimensional noise.
In this case the distance structure of the data becomes less
discriminative, see Lemma 1, and the identification of the
low density regions is quite difficult. Therefore manifold
denoising as a pre-processing step should improve the per-
formance of graph-based methods. However, the denoising
algorithm does not take into account label information. In
the case where the cluster assumption is not fulfilled the de-
noising algorithm might therefore decrease the performance.
In order to avoid this, we add the number of iterations of the
denoising process as an additional parameter in the SSL al-
gorithm.
As SSL-algorithm we use a slight variation of the one by
Zhou et al. (Zhouet al. 2004). It can be formulated as the
following regularized least squares problem.

f∗ = argminf∈Rn

n
∑

i=1

di(yi − fi)
2 +µ

n
∑

i,j=1

wij(fi − fj)
2,

wherey is the label vector withyi ∈ {−1,+1} for the la-
beled data andyi = 0 for the unlabeled data. The solution
is given asf∗ = (1 + µ∆)−1y with ∆ = 1 − D−1W .
For the SSL-algorithm we used a symmetrick-NN graph
with the weights: w(Xi,Xj) = exp(−γ ‖Xi − Xj‖

2
) if

‖Xi − Xj‖ ≤ min{h(Xi), h(Xj)}. The best parameters
for the number of iterations as well ask andµ were found
by cross-validation, see (Hein & Maier 2007) for the set of

parameters. The Figure 3 shows the test error for the hand-
written digit dataset MNIST. SSL with denoising outper-
forms SSL without denoising significantly. For 50 labeled
points (on average only 5 training examples per class) the
digit classification can be done already very accurately if
denoising is used as a preprocessing step.
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Figure 3: Test error on the MNIST dataset for varying num-
ber of labeled points. The test error is averaged over 20 ran-
dom choices of the labeled points. SSL with denoising (solid
line) is significantly better than SSL (dashed line).
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