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1 Missing Proof from Section 2

Lemma 1 Let N be a complete metric space such that d(x,y) < oo for all z,y € N and every
closed and bounded set is compact. If T is (v, s)-bounded and Ry-(x, q) < oo for some g € N, then

o Rp(x,p) < ooforallp € N,
o Rp(x,-) is continuous on N,

o The set of minimizers Q* = argmin R[.(x, q) exists and is compact.
qeEN

Proof: As I is montonically increasing and convex, we have for any p,y € N,

L(dn(p,y)) <T(dn(p,q) +dn(q,y)) < [F(QdN(IL q)) +T'(2dn(q,))],

Moreover, since I is (o, s)-bounded we have,
I'2z) < al'(z)1ly>s + T'(28)1p<s.
Taking expectations with respect to Y| X = x we get,
Ri(z,p) < T(28) + 5T (dn (p. ) + 5 Rr(@,0).
Next, we show continuity of Rf.(z,.). Using Lemma 2 we get,
|Rp(z,p) = Rp(z,9)| = [E[C(dn(p,Y)) = T(dn(g, V)]l
< d(p, q) [Emax{I" (dn (p,Y)), " (dn (¢, ) }I-
Now, for x > s we have I''(z) < w < (a- )F(T) and for z < s, I'(z) < T'(s). Thus

B (dx (V)] < VB (a0, 1)] + 7).

which shows using max{a, b} < a + b the continuity of R[(z, -).

Finally, we consider the set S; = {q € N | Rp(x,q) < inf,en Rp(x,p) + €} which is closed since
R/ (x,-) is continuous. Moreover, let g1, g2 € Se, then

I (dn(q1,q2)) <T(2s) + %F(dN((ha y)) + gr(dzv(q%y)) <T'(2s) + gR/r(:E,ql) + %R’r(l’, ).

For « > s we have shown above z < (a — 1) ((x )) < FF,((;C)) and thus either dy (q1,¢2) < s or
( ) % ($7Q1)+%Rr(w7Q2)
I"(s) ’

dn(q1,942) < (a—1)

—_—



which shows that the set S. is bounded and thus compact. It is non-empty since Rp(x,-) is
continuous. The set of minimizers Q* = N.~S; is compact and non-empty as it is the intersection
of a nested sequence of non-empty, compact sets. |

2 Missing Proofs from Section 5 and 7

The supplementary material contains the proofs which due to space constraints could not be included
into the paper. For convenience we restate here Assumptions (A1) from the paper.

Assumptions (Al):

e (X;,Y;)!_, isani.i.d. sample of P on M x N,
e M and N are compact manifolds,

e The data-generating measure P on M X N is absolutely continuous with respect to the
natural volume element,

The marginal density on M fulfills: p(z) > pmin, V& € M,

The density p(y, ) is continuous on M forally € N,
The kernel fulfills: als<,, < k(s) < be 7% and S 2]l E([Jz]) dz < oo,
e ThelossT : Ry — Ry is (a, s)-bounded.

This proposition collects results from [1].

Proposition 1 Let M be a compact m-dimensional Riemannian manifold. Then, there exists ro > 0
and Sy, So > 0 such that for all v € M all balls B(x,r) with radius v < rg it holds,

Sir™ < vol (B(z,r)) < Sar™.
. . . . VOI(N) 2 m
Moreover, the cardinality K of a -covering of M is upper bounded as, K < 5 (5) .

Proposition 2 Let the assumptions Al hold, then if f is continuous we get for any x € M\OM,

lim [ kp(du(z,2))f(2)dV(2) = Cuf(z),

h—0 M
where C, = limy,_,0 fM kn(dp(x,2))dV(z) > 0. If moreover f is Lipschitz continuous with
Lipschitz constant L, then there exists a hg > 0 such that for all h < ho(z),

/M kn(dy(z,2))f(2)dV(z) = Cy f(x) + O(h).

Proof: We denote by inj(M) the injectivity radius of M. As f is continuous for any £ > 0, 36
such that d(x, z) < d implies |f(z) — f(z)| < e. Suppose that ¢ is chosen small enough, so that
§ < inj(M),

/M (dar (2, 2)) (F(2) — f(2)) AV (2)

<e [ bl aVE 20l [ (o) avie)
B(z,5) M\B(z,5)

vol(M) . _. s2
[ by + 151 e
B(=,0)

IA

where we have introduced in the last step normal coordinates centered at « on B(z,d) so that
dpyr(z,2z) = ||ly||. Note, that the second term is independent of ¢ and for each § > 0 converges



to zero as h — 0. Next, we note that the volume element on the ball B(z, J) can be upper bounded
as, dV (y) = v/det g‘y dy < Cdy. Thus,

[ mluhavey<c [ wlubds=c [ klyihar < [ ki hay.
B(z,5) B(z,5) B(z,%) R™

where we made the substitution 3’ = #. Note that thus the upper bound on the first term is indepen-
dent of h and both terms can be made arbitrarily small. Finally, using Proposition 1, we get

a a
/ kn(da(z, 2)) dV(z) > hm / ]]-dM(ac,z)ghrl dV(z) = hm vol(B(z, hr1)) > aSir",
M M

so that C, = limy, ¢ [, kn(dar (2, 2)) dV(z) > 0.

For Lipschitz continuous function f choose § = inj(M). The second term on M\B(x,d) can be

1

2
P 677'% < Csh for sufficiently small i. Moreover,

treated as above noting that

/ (s (2, 2))| () — F(@)| dV(2) < L / o (At (2, 2))das (2, 2) AV (2)
B(z,0)

B(z,0)

SLCl/ kn ([l vl dy = hClL/ Ry D 1yl dy” < hClL/ E(ly' Dyl dy',
R’I‘ﬂ,

0, B(0,2

where we again used normal coordinates y centered at - and the coordinate transformation y" = .
Moreover, [p.. k([|[¥]]) [|¥]] dy’ < oo by assumption on the kernel function. O

Lemma 2 Let ¢ : R, — R be convex, differentiable and monotonically increasing. Then
min{¢'(z),¢'(Y) Hy — 2| < |o(y) — d(x)| < max{¢'(x),¢"(y)}Hy — xl.
Proof: Using the first order condition of a convex function and ¢(z) < ¢(y) for x < y,
d(y) — ¢(x) = ¢'(2)(y —x) = d(z) — dy) < ¢ (2)(x —y),
d(@) —o(y) = d' W)@ —y) = dy) —o(x) < ¢ (y)(y —2).
The left part yields the lower bound and the right part the upper bound. ]
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