Supplementary material for the paper: Robust Nonparametric Regression with Metric-Space valued Output

Matthias Hein Department of Computer Science, Saarland University Campus E1 1, 66123 Saarbrücken, Germany hein@cs.uni-sb.de

1 Missing Proof from Section 2

Lemma 1 Let N be a complete metric space such that $d(x, y) < \infty$ for all $x, y \in N$ and every closed and bounded set is compact. If Γ is (α, s) -bounded and $R'_{\Gamma}(x, q) < \infty$ for some $q \in N$, then

- $R'_{\Gamma}(x,p) < \infty$ for all $p \in N$,
- $R'_{\Gamma}(x, \cdot)$ is continuous on N,
- The set of minimizers $Q^* = \underset{q \in N}{\arg \min} R'_{\Gamma}(x,q)$ exists and is compact.

Proof: As Γ is montonically increasing and convex, we have for any $p, y \in N$,

$$\Gamma(d_N(p,y)) \le \Gamma(d_N(p,q) + d_N(q,y)) \le \frac{1}{2} [\Gamma(2d_N(p,q)) + \Gamma(2d_N(q,y))],$$

Moreover, since Γ is (α, s) -bounded we have,

$$\Gamma(2x) \le a\Gamma(x)\mathbb{1}_{x \ge s} + \Gamma(2s)\mathbb{1}_{x < s}.$$

Taking expectations with respect to Y|X = x we get,

$$R'_{\Gamma}(x,p) \leq \Gamma(2s) + \frac{a}{2}\Gamma(d_N(p,q)) + \frac{a}{2}R'_{\Gamma}(x,q).$$

Next, we show continuity of $R'_{\Gamma}(x, .)$. Using Lemma 2 we get,

$$|R'_{\Gamma}(x,p) - R'_{\Gamma}(x,q)| = |\mathbb{E}[\Gamma(d_N(p,Y)) - \Gamma(d_N(q,Y))]|$$

$$\leq d(p,q) |\mathbb{E}[\max\{\Gamma'(d_N(p,Y)), \Gamma'(d_N(q,Y))\}]|.$$

Now, for $x \ge s$ we have $\Gamma'(x) \le \frac{\Gamma(2x) - \Gamma(x)}{x} \le (a-1)\frac{\Gamma(x)}{s}$ and for $x < s, \Gamma'(x) \le \Gamma'(s)$. Thus

$$\mathbb{E}[\Gamma'(d_N(p,Y))] \le \frac{(a-1)}{s} \mathbb{E}[\Gamma(d_N(p,Y))] + \Gamma'(s),$$

which shows using $\max\{a, b\} \le a + b$ the continuity of $R'_{\Gamma}(x, \cdot)$.

Finally, we consider the set $S_{\varepsilon} = \{q \in N \mid R'_{\Gamma}(x,q) \leq \inf_{p \in N} R'_{\Gamma}(x,p) + \varepsilon\}$ which is closed since $R'(x, \cdot)$ is continuous. Moreover, let $q_1, q_2 \in S_{\varepsilon}$, then

$$\Gamma(d_N(q_1, q_2)) \le \Gamma(2s) + \frac{a}{2} \Gamma(d_N(q_1, y)) + \frac{a}{2} \Gamma(d_N(q_2, y)) \le \Gamma(2s) + \frac{a}{2} R'_{\Gamma}(x, q_1) + \frac{a}{2} R'_{\Gamma}(x, q_2).$$

For $x \ge s$ we have shown above $x \le (a-1)\frac{\Gamma(x)}{\Gamma(x')} \le \frac{\Gamma(x)}{\Gamma'(s)}$ and thus either $d_N(q_1, q_2) \le s$ or

$$d_N(q_1, q_2) \le (a-1) \frac{\Gamma(2s) + \frac{a}{2} R'_{\Gamma}(x, q_1) + \frac{a}{2} R'_{\Gamma}(x, q_2)}{\Gamma'(s)},$$

which shows that the set S_{ε} is bounded and thus compact. It is non-empty since $R'_{\Gamma}(x, \cdot)$ is continuous. The set of minimizers $Q^* = \bigcap_{\varepsilon > 0} S_{\varepsilon}$ is compact and non-empty as it is the intersection of a nested sequence of non-empty, compact sets.

2 Missing Proofs from Section 5 and 7

The supplementary material contains the proofs which due to space constraints could not be included into the paper. For convenience we restate here Assumptions (A1) from the paper.

Assumptions (A1):

- $(X_i, Y_i)_{i=1}^l$ is an i.i.d. sample of P on $M \times N$,
- *M* and *N* are compact manifolds,
- The data-generating measure P on $M \times N$ is absolutely continuous with respect to the natural volume element,
- The marginal density on M fulfills: $p(x) \ge p_{\min}, \forall x \in M$,
- The density $p(y, \cdot)$ is continuous on M for all $y \in N$,
- The kernel fulfills: $a \mathbb{1}_{s \leq r_1} \leq k(s) \leq b e^{-\gamma s^2}$ and $\int_{\mathbb{R}^m} \|x\| \ k(\|x\|) \ dx < \infty$,
- The loss $\Gamma : \mathbb{R}_+ \to \mathbb{R}_+$ is (α, s) -bounded.

This proposition collects results from [1].

Proposition 1 Let M be a compact m-dimensional Riemannian manifold. Then, there exists $r_0 > 0$ and $S_1, S_2 > 0$ such that for all $x \in M$ all balls B(x, r) with radius $r \leq r_0$ it holds,

$$S_1 r^m \leq \operatorname{vol} (B(x, r)) \leq S_2 r^m.$$

Moreover, the cardinality K of a δ -covering of M is upper bounded as, $K \leq \frac{\operatorname{vol}(N)}{S_1} \left(\frac{2}{\delta}\right)^m$.

Proposition 2 Let the assumptions A1 hold, then if f is continuous we get for any $x \in M \setminus \partial M$,

$$\lim_{h\to 0} \int_M k_h(d_M(x,z))f(z)\,dV(z) \,=\, C_x f(x),$$

where $C_x = \lim_{h\to 0} \int_M k_h(d_M(x,z)) dV(z) > 0$. If moreover f is Lipschitz continuous with Lipschitz constant L, then there exists a $h_0 > 0$ such that for all $h < h_0(x)$,

$$\int_M k_h(d_M(x,z))f(z)\,dV(z) = C_x\,f(x) + O(h).$$

Proof: We denote by inj(M) the injectivity radius of M. As f is continuous for any $\varepsilon > 0$, $\exists \delta$ such that $d(x, z) < \delta$ implies $|f(x) - f(z)| < \varepsilon$. Suppose that ε is chosen small enough, so that $\delta < inj(M)$,

$$\begin{split} &\int_{M} k_{h}(d_{M}(x,z)) \left(f(z) - f(x)\right) dV(z) \\ &\leq \varepsilon \int_{B(x,\delta)} k_{h}(d_{M}(x,z)) dV(z) + 2 \left\|f\right\|_{\infty} \int_{M \setminus B(x,\delta)} k_{h}(d_{M}(x,z)) dV(z) \\ &\leq \varepsilon \int_{B(x,\delta)} k_{h}(\|y\|) dy + \|f\|_{\infty} \frac{\operatorname{vol}(M)}{h^{m}} b e^{-\gamma \frac{\delta^{2}}{h^{2}}}, \end{split}$$

where we have introduced in the last step normal coordinates centered at x on $B(x, \delta)$ so that $d_M(x, z) = ||y||$. Note, that the second term is independent of ε and for each $\delta > 0$ converges

to zero as $h \to 0$. Next, we note that the volume element on the ball $B(x, \delta)$ can be upper bounded as, $dV(y) = \sqrt{\det g} \Big|_{u} dy \leq C dy$. Thus,

$$\int_{B(x,\delta)} k_h(\|y\|) dV(y) \le C \int_{B(x,\delta)} k_h(\|y\|) dy = C \int_{B(x,\frac{\delta}{h})} k(\|y'\|) dy' \le C \int_{\mathbb{R}^m} k(\|y'\|) dy',$$

where we made the substitution $y' = \frac{y}{h}$. Note that thus the upper bound on the first term is independent of h and both terms can be made arbitrarily small. Finally, using Proposition 1, we get

$$\int_{M} k_h(d_M(x,z)) \, dV(z) \ge \frac{a}{h^m} \, \int_{M} \mathbb{1}_{d_M(x,z) \le h \, r_1} \, dV(z) = \frac{a}{h^m} \, \operatorname{vol}(B(x,hr_1)) \ge a \, S_1 \, r_1^m,$$

so that $C_x = \lim_{h \to 0} \int_M k_h(d_M(x, z)) \, dV(z) > 0.$

For Lipschitz continuous function f choose $\delta = \operatorname{inj}(M)$. The second term on $M \setminus B(x, \delta)$ can be treated as above noting that $\frac{1}{h^m} e^{-\gamma \frac{\delta^2}{h^2}} \leq C_2 h$ for sufficiently small h. Moreover,

$$\int_{B(x,\delta)} k_h(d_M(x,z)) |f(z) - f(x)| \, dV(z) \le L \int_{B(x,\delta)} k_h(d_M(x,z)) d_M(x,z) \, dV(z)$$

$$\le L C_1 \int_{B(0,\delta)} k_h(||y||) \, ||y|| \, dy = h C_1 L \int_{B(0,\frac{\delta}{h})} k(||y'||) \, ||y'|| \, dy' \le h C_1 L \int_{\mathbb{R}^m} k(||y'||) \, ||y'|| \, dy',$$

where we again used normal coordinates y centered at x and the coordinate transformation $y' = \frac{y}{h}$. Moreover, $\int_{\mathbb{R}^m} k(||y'||) ||y'|| dy' < \infty$ by assumption on the kernel function.

Lemma 2 Let $\phi : \mathbb{R}_+ \to \mathbb{R}$ be convex, differentiable and monotonically increasing. Then $\min\{\phi'(x), \phi'(y)\}|y-x| \le |\phi(y) - \phi(x)| \le \max\{\phi'(x), \phi'(y)\}|y-x|.$

Proof: Using the first order condition of a convex function and $\phi(x) \le \phi(y)$ for $x \le y$,

$$\begin{split} \phi(y) - \phi(x) &\geq \phi'(x)(y-x) \quad \Rightarrow \phi(x) - \phi(y) \leq \phi'(x)(x-y), \\ \phi(x) - \phi(y) &\geq \phi'(y)(x-y) \quad \Rightarrow \phi(y) - \phi(x) \leq \phi'(y)(y-x). \end{split}$$

The left part yields the lower bound and the right part the upper bound.

References

 M. Hein. Uniform convergence of adaptive graph-based regularization. In G. Lugosi and H. Simon, editors, *Proc. of the 19th Conf. on Learning Theory (COLT)*, pages 50–64, Berlin, 2006. Springer.