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1 Additional experimental results

Figures 1–4 show additional results of the proposed Hessian energy-based regression method.

Figure 1: Results of regression on the artificial digit 1 dataset. First row: the two-dimensional
embedding of the digits obtained by regression for the horizontal and vertical translation with 100
labels. Second row: 21 digit images sampled at regular intervals in the estimated translation parame-
ter spaces. Please refer to the corresponding figure in the paper. Third row: 21 digit images sampled
at regular intervals on the line between (0,0,0,0) and (1,1,1,1) in the four dimensional parameter
space (horizontal and vertical translations, thickness variation, and rotation).
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Figure 2: Regression of face images into the parameter space corresponding to tilt and yaw of the
faces. The database contains 2000 images of size 40 × 40 of faces looking in different directions
(the data was kindly provided by Jakob J. Verbeek and has been used in [13]). Before regression
the dimensionality of the data is reduced using PCA. Twenty-five images were randomly sampled
and manually labeled (tilt and yaw). Note, that we do not have ground truth for this dataset and
the labels might be noisy as it is not an easy task to manually estimate the true parameters based
on a single view. First row: the two-dimensional embedding of the faces for KRR and SSR with
Laplacian and Hessian regularization. All parameters including number of PCA components are
chosen by 5-fold cross-validation. Labeled points are marked with plus sign. Second row: two sets
of 17 images sampled at regular intervals in the estimated parameter spaces, marked as blue circles
and red circles, respectively in the first row. Images for the sequences were found in the same way
as for the digit dataset. The reference points generating the line in the parameter space correspond
to the second and second last images in the row.
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Original image KRR L H Levin et al.

Figure 3: More example of image colorization with 30 labels. See main paper for details.
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Original image KRR L H Levin et al.

Figure 4: Example of image colorization with 100 labels. See main paper for details.
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2 Ruling out unstable behaviour of Hessian regularizer using an additional
regularizer

While fixing the zeroth-order terms of the local fitting polynomials worked in all the experiments,
it does not completely rule out the possibility of producing heavy oscillations. Actually, we were
able to construct an example (unrealistically pessimistic though) which show such a behavior. One
approach for this problem is to introduce a second regularizer (or a stabilizer) S2(f) which penalizes
the deviation of f from the value of the local polynomial p(i) not only at the point of approximation
Xi (which was done by fixing the zeroth-order term of p(i) at f(Xi)), but also in the neighborhood
of it.

S2(f) =
n∑
i=1

1
k

k∑
j=1

(
p(i)(Xj)− f(Xj)

)2

W i
j

 ,

where W i
j = k(‖Xi −Xj‖2, σ2

i ), σi = maxkj=1(‖Xi −Xj‖2), and

k(d2, σ2) =

{
exp

(
σ2

d2−σ2

)
if d2 < σ2

0 otherwise.

Here, we used a slight abuse of notation such that Xj actually denotes the j-th element of Nk(Xi).

This regularizer enforces a certain smoothing of the function values and particularly kicks in when
due to underfitting, p(i) is not equal to f in the local neighbor hood of Xi. Note, that S2 does
not penalize constant or “geodesic” functions. Moreover, it is mainly influential in the estimation of
Hessian when the function is very irregular. Since we are anyway not interested to fit such functions,
the additional regularizer does not change significantly the original objective.

Since locally

1
k

k∑
j=1

(
p(i)(Xj)− f(Xj)

)2

W i
j =

∑
α∈Nk(Xi)

∑
β∈Nk(Xi)

fαfβ(BS(i))αβ ,

where

B
(i)
S =

1
k

(ΦiΦ+
i − I)>diag(W i)(ΦiΦ+

i − I)

by summing up the contributions from all points we can construct a matrix BS which has the same
sparsity structure as B and S2(f) = 〈f,BSf〉:

S2(f) =
n∑
i=1

∑
α∈Nk(Xi)

∑
β∈Nk(Xi)

fαfβ(BS(i))αβ = 〈f,BSf〉 .

The regression is then performed by solving

arg min
f∈Rn

1
l

l∑
i=1

(Yi − f(Xi))2 + λ1 〈f,Bf〉+ λ2 〈f,BSf〉 ,

or equivalently, by solving the following sparse linear system,

(I′ + l λ1B + l λ2BS)f = Y.

Figure 5 and table 1 show the performance of this new system (denoted as H2) where λ2, as an
additional parameter, was optimized based on cross-validation. Overall, the performance of this
system was slightly better than the one proposed in the main paper. However, it introduced an
additional parameter to be tunned. For practical applications, one could choose either one of them
by trading the computational complexity off with the performance.
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Figure 5: Error plots for regression on the figure dataset.

Table 1: Results on digits: mean squared error (standard deviation) (both in units 10−3).

50 labeled points 100 labeled points
h-trans. v-trans. rotation thickness h-trans. v-trans. rotation thickness

K 0.78(0.13) 0.85(0.14) 45.49(7.20) 0.02(0.01) 0.39(0.10) 0.48(0.08) 26.02(2.98) 0.01(0.00)
L 2.41(0.26) 3.91(0.59) 64.56(3.90) 0.39(0.02) 1.17(0.13) 2.20(0.22) 30.73(6.05) 0.34(0.01)
H 0.34(0.03) 0.88(0.07) 4.03(1.15) 0.15(0.02) 0.16(0.03) 0.39(0.07) 1.48(0.26) 0.06(0.01)
H2 0.33(0.04) 0.84(0.11) 3.98(1.14) 0.11(0.02) 0.16(0.03) 0.39(0.07) 1.43(0.28) 0.04(0.01)
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