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Abstract

This technical report is an appendix to the ICML 2009 submission ”Spec-
tral Clustering based on the graph p-Laplacian” [2], containing the proofs
which had to be omitted due to space restrictions. In this version, an
error occuring in a previous version has been corrected. However, note
that the error occurred in an additional statement which was not used in
any proof, thus the correctness of the other results is not affected.

1 Overview

This technical report is an appendix to the ICML 2009 submission ”Spectral
Clustering based on the graph p-Laplacian” [2], containing the proofs which had
to be omitted due to space restrictions. Our proposed method and some of the
results are based on the recent work by Amghibech [1]. In his very interest-
ing article, the author proposes the variational characterization of the second
eigenvector of the normalized graph p-Laplacian and derives the isoperimetric
inequality in the normalized case. Due to the compressed form of the proof
given in [1], some important lemmas which play a role in the proof of the vari-
ational characterization are not explicitely stated in the paper, hence we cover
the proofs in more detail in the following. Moreover, we provide basic properties
of the p-Laplacian and related functionals and extend the results of Amghibech
to the unnormalized case. However, our main result is to show that the Cheeger
cuts obtained by thresholding the second eigenvector converge to the optimal
Cheeger cut as p→ 1.

This paper is organized as follows: We start with some basic properties of the
graph p-Laplacian and related functionals in Section 2. In Section 3 we prove the
variational characterization of the second eigenvalue of the unnormalized graph
p-Laplacian (Theorem 3.2 in [2]), and Section 4 contains the corresponding
characterizations for the first and second eigenvector in the normalized case.
Section 5 contains the proof of the isoperimetric inequality from Theorem 4.3
in [2], and Section 6 an outline of the proof in the normalized case. Finally,
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Section 7 establishes the connection between the optimal Cheeger cut and the
cut obtained by thresholding the second eigenvector (Theorem 4.4 in [2]).

As in [2], the number of points is denoted by n = |V | and the complement
of a set A ⊂ V is written as A = V \A. The degree function d : V → R of
the graph is given as di =

∑n
j=1 wij and the cut of A ⊂ V and B ⊂ V , with

A∩B = ∅, is defined as cut(A,B) =
∑

i∈A, j∈B wij . Moreover, we denote by |A|
the cardinality of the set A and by vol(A) =

∑
i∈A di the volume of A.

2 The graph p-Laplacian and related functionals

The unnormalized and normalized graph p-Laplacian ∆(u)
p and ∆(n)

p are
defined for any function f : V → R and i ∈ V as

(∆(u)
p f)i =

∑
j∈V

wij φp (fi − fj) ,

(∆(n)
p f)i =

1
di

∑
j∈V

wij φp (fi − fj) ,

where φp : R→ R with φp(x) = |x|p−1 sign(x). As shown in [2], one can obtain
the eigenvalues of the unnormalized p-Laplacian ∆(u)

p as local minima of the
functional Fp : RV → R,

Fp(f) =
Qp(f)
‖f‖pp

where
Qp(f) =

〈
f,∆(u)

p f
〉

=
1
2

∑
i,j∈V

wij |fi − fj |p , (1)

and each critical point of Fp corresponds to an eigenvector of the p-Laplacian.
To obtain the second eigenvalue, we consider the functional F (2)

p : RV → R,

F (2)
p (f) =

Qp(f)

var(u)
p (f)

,

in analogy to the functional defined by Amghibech in [1]. The unnormalized
p-variance var(u)

p (f) is defined as

var(u)
p (f) = min

m∈R

{∑
i∈V

|fi −m|p
}

. (2)

Furthermore, we define the unnormalized p-mean of f as

mean(u)
p (f) = arg min

m∈R

{∑
i∈V

|fi −m|p
}

.

In Theorem 3.1 in Section 3 we show that the global minimum of the func-
tional F (2)

p is equal to the second eigenvalue of the graph p-Laplacian ∆(u)
p .
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Analogously, in the case of the normalized graph p-Laplacian, one can define
functionals Gp : RV → R and G

(2)
p : RV → R,

Gp(f) =
Qp(f)∑

i∈V di |fi|p
and G(2)

p (f) =
Qp(f)

var(n)
p (f)

,

with the normalized p-variance defined as

var(n)
p (f) = min

m∈R

{∑
i∈V

di |fi −m|p
}

, (3)

and the normalized p-mean of f as

mean(n)
p (f) = arg min

m∈R

{∑
i∈V

di |fi −m|p
}

.

Theorems 4.1 and 4.2 in Section 4 establish the connection between these func-
tionals and the eigenvalues of the normalized p-Laplacian.

2.1 Basic properties of p-Laplacian and related functionals

In the following sections we restrict ourselves in the proofs to the unnormalized
case. Proofs in the normalized case are similar.

Proposition 2.1 For any function f : V → R, and c ∈ R, the unnormalized

p-Laplacian ∆(u)
p has the following properties:

∆(u)
p (f + c1) = ∆(u)

p (f)

∆(u)
p (c · f) = φp(c) ·∆(u)

p (f) .

For any function f : V → R, and c ∈ R, the normalized p-Laplacian ∆(n)
p has

the following properties:

∆(n)
p (f + c1) = ∆(n)

p (f)

∆(n)
p (c · f) = φp(c) ·∆(n)

p (f) .

Proof: These properties follow directly from the definition, as it holds ∀i ∈ V
that (

∆(u)
p (f + c1)

)
i

=
∑
j∈V

wij φp (fi + c− fj − c) =
(

∆(u)
p (f)

)
i

and (
∆(u)

p (c · f)
)

i
=

∑
j∈V

wij φp (c · (fi − fj))

=
∑
j∈V

wij |c · (fi − fj)|p−1 sign (c · (fi − fj))

= |c|p−1 sign(c)
∑
j∈V

wij |fi − fj |p−1 sign (fi − fj)

= φp(c) ·
(

∆(u)
p (f)

)
i
.
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Proposition 2.2 For any function f : V → R, and c ∈ R, the functional Qp(f)
has the following properties:

Qp(f + c1) = Qp(f)
Qp(c · f) = |c|pQp(f) .

Proof: Again the properties follow directly from the definition. �

Proposition 2.3 For any function f : V → R, and c ∈ R, the unnormalized

p-variance var(u)
p (f) has the following properties:

var(u)
p (f + c1) = var(u)

p (f)

var(u)
p (c · f) = |c|p var(u)

p (f) .

For any function f : V → R, and c ∈ R, the normalized p-variance var(n)
p (f)

has the following properties:

var(n)
p (f + c1) = var(n)

p (f)

var(n)
p (c · f) = |c|p var(n)

p (f) .

Proof: a) Let the p-means of f and f + c1 be given by m̃1 = mean(u)
p (f) and

m̃2 = mean(u)
p (f + c1). Let now m′2 := m̃1 + c. Then it follows from the

definition of the p-variance that

var(u)
p (f + c1) = min

m∈R

{∑
i∈V

|fi + c−m|p
}

≤
∑
i∈V

|fi + c−m′2|
p

=
∑
i∈V

|fi − m̃1|p

= var(u)
p (f) .

Analogously, for m′1 := m̃2 − c, we obtain var(u)
p (f) ≤ var(u)

p (f + c1) and hence
var(u)

p (f) = var(u)
p (f + c1).

b) If c = 0, one easily sees that var(u)
p (c f) = 0 = |c|p var(u)

p (f). Let now
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c 6= 0. Then

var(u)
p (c f) = min

m∈R

{∑
i∈V

|c fi −m|p
}

= |c|p min
m∈R

{∑
i∈V

∣∣∣fi −
m

c

∣∣∣p}

= |c|p min
m2∈R

{∑
i∈V

|fi −m2|p | ∃m ∈ R : m2 =
m

c

}
= |c|p var(u)

p (f) .

�

The following property will later be used to establish a connection between the
non-constant eigenvectors of the unnormalized and normalized p-Laplacian and
the minimizers of the functionals F (2)

p resp. G(2)
p .

Proposition 2.4 Let f ∈ RV and m̃ ∈ R. Then f has unnormalized p-mean
value m̃ = mean(u)

p (f) if and only if the following condition holds:∑
i∈V

φp (fi − m̃) = 0.

Let f ∈ RV and m̃ ∈ R. Then f has normalized p-mean value m̃ = mean(n)
p (f)

if and only if the following condition holds:∑
i∈V

di φp (fi − m̃) = 0.

Proof: We have

∂

∂m

(∑
i∈V

|fi −m|p
)

= p
∑
i∈V

|fi −m|p−1 sign (fi −m) (−1)

= −p
∑
i∈V

φp (fi −m) ,

which implies that a necessary condition for any minimizer m̃ of the term∑
i∈V |fi −m|p is given as ∑

i∈V

φp(fi − m̃) = 0 .

Due to the convexity of the term
∑

i∈V |fi −m|p for p > 1, this is also a suffi-
cient condition. �

Proposition 2.5 The derivative of the unnormalized variance var(u)
p (f) with

respect to fk is given as

∂

∂fk
var(u)

p (f) = p φp

(
fk −mean(u)

p (f)
)
.
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The derivative of the normalized variance var(n)
p (f) with respect to fk is given

as
∂

∂fk
var(n)

p (f) = p dk φp

(
fk −mean(n)

p (f)
)
.

Proof: We have

∂

∂fk
var(u)

p (f) =
∂

∂fk

(∑
i∈V

∣∣∣fi −mean(u)
p (f)

∣∣∣p)

=
∑
i∈V

p
∣∣∣fi −mean(u)

p (f)
∣∣∣p−1

sign(fi −mean(u)
p (f))

·
(

∂

∂fk
(fi −mean(u)

p (f))
)

By applying the definition of φp and splitting the last term one obtains∑
i∈V

p φp

(
fi −mean(u)

p (f)
) ∂

∂fk
fi

−
∑
i∈V

p φp

(
fi −mean(u)

p (f)
) ∂

∂fk

(
mean(u)

p f
)

= p φp

(
fk −mean(u)

p (f)
)

− ∂

∂fk

(
mean(u)

p (f)
) (∑

i∈V

p φp

(
fi −mean(u)

p (f)
))

.

Due to Prop. 2.4 it holds that∑
i∈V

p φp

(
fi −mean(u)

p (f)
)

= 0 .

Thus we obtain

∂

∂fk
var(u)

p (f) = p φp

(
fk −mean(u)

p (f)
)
.

�

The following proposition provides the link between the functionals Fp and F (2)
p

as well as Gp and G(2)
p . Note that the p-mean inside the p-variance is a function

RV → R, which we have to take into account when taking the derivative.

Proposition 2.6 For any function f : V → R let f̃ denote the unnormalized
p-mean of f . Then it holds that

F (2)
p (f) = Fp(f − f̃1)(

∂

∂fk
F (2)

p

)
(f) =

(
∂

∂fk
Fp

)
(f − f̃1)(

∂2

∂fk∂fl
F (2)

p

)
(f) =

(
∂2

∂fk∂fl
Fp

)
(f − f̃1) + F (2)

p (f) · Ω(f)k,l ,
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where

Ω(f)k,l =
p(p− 1)

∣∣∣fl − f̃
∣∣∣p−2 ∣∣∣fk − f̃

∣∣∣p−2

∑
i

∣∣∣fi − f̃
∣∣∣p∑i

∣∣∣fi − f̃
∣∣∣p−2 .

For any function f : V → R let f̃ denote the normalized p-mean of f . Then
it holds that

G(2)
p (f) = Gp(f − f̃1)(

∂

∂fk
G(2)

p

)
(f) =

(
∂

∂fk
Gp

)
(f − f̃1)(

∂2

∂fk∂fl
G(2)

p

)
(f) =

(
∂2

∂fk∂fl
Fp

)
(f − f̃1) + F (2)

p (f) · Ω(f)k,l

where

Ω(f)k,l =
p(p− 1)dldk

∣∣∣fl − f̃
∣∣∣p−2 ∣∣∣fk − f̃

∣∣∣p−2

∑
i di

∣∣∣fi − f̃
∣∣∣p∑i di

∣∣∣fi − f̃
∣∣∣p−2 .

Proof: The first statement can be seen directly by the definitions of Fp and
F

(2)
p and the fact that

Qp(f) = Qp(f − f̃1) .

Using Prop. 2.5 and the definition of ∆(u)
p , the derivative of Qp(f)

varp(f) with respect
to fk can be written as

∂

∂fk

(
Qp(f)

varp(f)

)
=

p

varp(f)
(∆(u)

p f)k −
Qp(f) p
var2p(f)

φp

(
fk − f̃

)
.

By applying Prop. 2.1 and Prop. 2.2 as well as the definition of the p-variance,
the above expression can be rewritten as

p∥∥∥f − f̃1∥∥∥p

p

(
∆(u)

p (f − f̃1)
)

k
− Qp(f − f̃1) p∥∥∥f − f̃1∥∥∥2p

p

φp

(
fk − f̃

)
.

Comparison with the expression for
(

∂
∂fk

Fp

)
now yields the second statement.

For the statement for the second derivatives, one first shows that

∂

∂fl
f̃ =

|fl − f̃ |p−2∑
i |fi − f̃ |p−2

∀l = 1 . . . n

and then proceeds analogously to the first and second statement. �

3 Variational characterization of the second
eigenvalue - Unnormalized case

Theorem 3.1 The second eigenvalue of the unnormalized graph p-Laplacian
∆(u)

p is equal to the global minimum of the functional F (2)
p . The corresponding
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eigenvector v(2)
p of ∆(u)

p is then given as v(2)
p = u∗−c∗1 for any global minimizer

u∗ of F (2)
p , where c∗ = arg min

c∈R

∑n
i=1 |u∗i − c|p.

Furthermore, the functional F (2)
p satisfies F (2)

p (tu+ c1) = F
(2)
p (u) ∀t, c ∈ R.

Lemma 3.1 Let f be a critical point of the functional F (2)
p . Then the vector

v = f −mean(u)
p (f)1

is an eigenfunction of ∆(u)
p with eigenvalue λp = F

(2)
p (f).

Proof: Let f be a critical point of F (2)
p with minimum λp. Then(

∂

∂fk
F (2)

p

)
(f) = 0 .

By Prop. 2.6 this implies(
∂

∂fk
Fp

)(
f −mean(u)

p (f)1
)

= 0

as well as
λp = F (2)

p (f) = Fp

(
f −mean(u)

p (f)1
)
.

It follows that f − mean(u)
p (f)1 is a critical point of Fp, and by Theorem 3.1.

in [2] an eigenvector of ∆(u)
p with eigenvalue λp. �

Before proving the other direction, let us first derive an important property of
the non-constant eigenvectors of the p-Laplacian.

Lemma 3.2 Let v be a non-constant eigenvector of ∆p. Then∑
i∈V

φp(vi) = 0 .

Proof: Let v be a non-constant eigenvector of ∆(u)
p with eigenvalue λp. Hence

for all i ∈ V the equation

(∆pv)i − λpφp(vi) = 0

holds. As v is not the constant vector, we know that λp 6= 0 and hence ∀i ∈ V ,

φp(vi) =
(∆pv)i

λp
.

It follows that∑
i∈V

φp(vi) =
1
λp

∑
i∈V

(∆pv)i

=
1
λp

∑
i∈V

∑
j∈V

wij φp(vi − vj)

=
1
λp

∑
i,j∈V,vi>vj

wij |vi − vj |p−1 − 1
λp

∑
i,j∈V,vi<vj

wij |vi − vj |p−1

=
1
λp

∑
i,j∈V,vi>vj

wij |vi − vj |p−1 − 1
λp

∑
j,i∈V,vj<vi

wji |vj − vi|p−1

= 0 ,
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where in the penultimate step we have performed a change of the variable names
in the second term and in the last step exploited the fact that wij = wji. �

The above property can be seen as a generalization of the fact that the larger
eigenvectors of the unnormalized (standard) graph Laplacian are orthogonal to
the first eigenvector.

Lemma 3.3 Let v be a non-constant eigenvector of the p-Laplacian ∆(u)
p with

eigenvalue λp. Then there exists a function f which is a critical point of F (2)
p

with λp = F
(2)
p (f) and it holds that v = f −mean(u)

p (f)1.

Proof: By Theorem 3.1. in [2] we know that v is a critical point of Fp with
λp = Fp(v). Consider now for k ∈ R the function f : V → R defined by

f = v + k1 .

By Lemma 3.2 it holds that ∑
i∈V

φp(vi) = 0 .

It follows that ∀k:∑
i∈V

φp (fi − k) =
∑
i∈V

φp

(
(f − k1)i

)
=
∑
i∈V

φp(vi) = 0 .

By Prop. 2.4 this implies that k = mean(u)
p (f), and hence

v = f −mean(u)
p (f)1 .

Prop. 2.6 now implies that

F (2)
p (f) = Fp

(
f −mean(u)

p (f)1
)

= Fp(v) = λp

and (
∂

∂fk
F (2)

p

)
(f) =

(
∂

∂fk
Fp

)(
f −mean(u)

p (f)1
)

=
(

∂

∂fk
Fp

)
(v) = 0 .

Hence it follows that f is a minimizer of F (2)
p with minimum λp. �

Proof of Theorem 3.1: Lemma 3.1 shows the forward direction of the first
statement of Theorem 3.1. The reverse direction follows from Lemma 3.3. The
second statement follows from Prop. 2.2 and 2.3. �
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4 Variational characterization of the second
eigenvalue - Normalized case

The following theorems are the normalized variants of Theorem 3.1 and Theorem
3.2 in [2].

Theorem 4.1 The functional Gp has a critical point at v ∈ RV if and only if
v is a p-eigenfunction of the normalized graph p-Laplacian ∆(n)

p . The corre-
sponding eigenvalue λp is given as λp = Gp(v). Moreover, we have Gp(αf) =
Gp(f) for all f ∈ RV and α ∈ R.

Theorem 4.2 The second eigenvalue of the normalized graph p-Laplacian
∆(n)

p is equal to the global minimum of the functional G(2)
p . The correspond-

ing eigenvector v
(2)
p of ∆(n)

p is then given as v
(2)
p = u∗ − c∗1 for any global

minimizer u∗ of G(2)
p , where c∗ = arg min

c∈R

∑n
i=1 di |u∗i − c|p.

Furthermore, the functional G(2)
p satisfies G(2)

p (tu+ c1) = G
(2)
p (u) ∀t, c ∈ R.

The proofs of the above theorems are similar to the unnormalized case. We just
want to sketch the proof of Theorem 4.2 by giving the corresponding lemmas
without proof.

Lemma 4.1 Let f be a critical point of the functional G(2)
p . Then the vector

v = f −mean(n)
p (f)1

is an eigenfunction of ∆(n)
p with eigenvalue λp = G

(2)
p (f).

Lemma 4.2 Let v be a non-constant eigenvector of ∆(n)
p . Then∑

i∈V

di φp(vi) = 0 .

Lemma 4.3 Let v be a non-constant eigenvector of the p-Laplacian ∆(n)
p with

eigenvalue λp. Then there exists a function f which is a critical point of G(2)
p

with λp = G
(2)
p (f) and it holds that v = f −mean(n)

p (f)1.

5 Isoperimetric inequality - Unnormalized case

As shown in [2], for p > 1 and every partition of V into C,C there exists a func-
tion fp,C ∈ RV such that the functional F (2)

p associated to the unnormalized
p-Laplacian satisfies

F (2)
p (fp,C) = cut(C,C)

∣∣∣∣ 1

|C|
1

p−1
+

1∣∣C∣∣ 1
p−1

∣∣∣∣p−1

. (4)

Explicitely, the function fp,C is given as

(fp,C)i =
{

1/ |C|
1

p−1 , i ∈ C,
−1/

∣∣C∣∣ 1
p−1 , i ∈ C.

(5)

10



The expression (4) can be interpreted as a balanced graph cut criterion, and we
have the special cases

F
(2)
2 (f2,C) = RCut(C,C),

lim
p→1

F (2)
p (fp,C) = RCC(C,C).

It follows that minimizing the above balanced graph cut criterion is equivalent
to minimizing F

(2)
p with the restriction to functions that have the form given

in (5). As the second eigenvalue of the p-Laplacian is the minimum of the
functional F (2)

p taken over all possible functions (without the restriction), the
second eigenvalue can be seen as a relaxation of balanced graph cuts. The
question is, can we make any statements about the quality of this relaxation?

The isoperimetric inequality gives upper and lower bounds on the second
eigenvalue in terms of the optimal Cheeger cut value defined as

hRCC = inf
C

RCC(C,C).

Theorem 5.1 Denote by λ(2)
p the second eigenvalue of the unnormalized graph

p-Laplacian ∆(u)
p . For p > 1,(

2
maxi∈V di

)p−1(
hRCC

p

)p

≤ λ(2)
p ≤ 2p−1hRCC .

Proof of the upper bound in Theorem 5.1: Let for any p > 1 the second
smallest eigenvalue of the unnormalized p-Laplacian be given by λp. Theorem
3.1 implies that

λp = min
f∈RV

{
F (2)

p (f)
}

= min
f∈RV

{
Qp(f)

var(u)
p (f)

}
,

where Qp(f) and var(u)
p (f) are defined as in (1) and (2). Consider now for a

partition (C,C) the function fp,C : V → R which we have defined in (5). Then,
using (4), we have

λp ≤ F (2)
p (fp,C)

= cut(C,C)

∣∣∣∣∣∣ 1

|C|
1

p−1
+

1∣∣C∣∣ 1
p−1

∣∣∣∣∣∣
p−1

≤ cut(C,C)

∣∣∣∣∣∣∣2
1

min
{
|C|

1
p−1 ,

∣∣C∣∣ 1
p−1
}
∣∣∣∣∣∣∣
p−1

=
cut(C,C)

min
{
|C| ,

∣∣C∣∣} · 2p−1

= RCC(C,C) · 2p−1 .

As this inequality holds for all partitions (C,C), it follows that

λp ≤ inf
C

RCC(C,C) = hRCC .
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For the proof of the lower bound we need to introduce some notation. In the
following let us for any function f : V → R denote by f+ : V → R the function

f+
i =

{
fi , fi ≥ 0 ,
0 , else . (6)

Furthermore, we use the notation Ct
f , C

t
f for the partitioning of the vertex set

V into the sets

Ct
f = {i|fi > t} and Ct

f = V − Ct
f = {i|fi ≤ t} , (7)

where t ∈ R. Finally, for any function f : V → R, we denote by h∗f,RCC the
quantity

h∗f,RCC = inf
C

{
cut(C,C)

min
{
|C| ,

∣∣C∣∣}
∣∣∣ C = Ct

f for t ≥ 0

}
. (8)

The value of h∗f,RCC is the smallest possible RCC value obtained by thresholding
f at some t ≥ 0. If C0

f = ∅, we define h∗f,RCC =∞.
To prove the lower bound, we proceed in analogy to [1].

Lemma 5.1 Suppose there exists a λ ≥ 0 such that it holds ∀i ∈ C0
f that

(∆(u)
p f)i ≤ λfp−1

i . Then

λ ≥ Qp(f+)∥∥f+
∥∥p

p

.

Proof: We have

λ
∥∥f+

∥∥p

p
= λ

∑
i∈V

∣∣f+
i

∣∣p = λ
∑
i∈C0

f

|fi|p = λ
∑
i∈C0

f

fif
p−1
i .

Using the assumption, it follows that

λ
∥∥f+

∥∥p

p
≥
∑
i∈C0

f

fi(∆(u)
p f)i =

∑
i∈V

f+
i (∆(u)

p f)i .

Applying the definition of ∆(u)
p , this can be rewritten as

=
∑
i∈V

f+
i

∑
j∈V

wijφp(fi − fj)

=
1
2

∑
i,j∈V

wijf
+
i φp(fi − fj) +

1
2

∑
i,j∈V

wijf
+
i φp(fi − fj)

=
1
2

∑
i,j∈V

wij(f+
i − f

+
j )φp(fi − fj) .

Let us now have a closer look at the summands in the above sum. If both i and
j are in C0

f , we have

(f+
i − f

+
j )φp(fi − fj) = (f+

i − f
+
j )φp(f+

i − f
+
j )

=
∣∣f+

i − f
+
j

∣∣p .
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If i ∈ C0
f and j /∈ C0

f , it holds that

(f+
i − f

+
j )φp(fi − fj) = f+

i |fi − fj |p−1 sign(fi − fj)

= f+
i |fi − fj |p−1

≥ f+
i |fi|p−1

,

where we have used that fi > 0 and fj ≤ 0. The last term can be rewritten as∣∣f+
i

∣∣p =
∣∣f+

i − f
+
j

∣∣p .

Analogously, if i /∈ C0
f and j ∈ C0

f , we have

(f+
i − f

+
j )φp(fi − fj) = −f+

j |fi − fj |p−1 sign(fi − fj)

= f+
j |fi − fj |p−1

≥ f+
j |fj |p−1

=
∣∣f+

j

∣∣p =
∣∣f+

i − f
+
j

∣∣p .

Finally, in the case that both i and j are not in C0
f , it holds that

(f+
i − f

+
j )φp(fi − fj) = 0 =

∣∣f+
i − f

+
j

∣∣p .

If we combine these results, we obtain that

1
2

∑
i,j∈V

wij(f+
i − f

+
j )φp(fi − fj)

≥ 1
2

∑
i,j∈V

wij

∣∣f+
i − f

+
j

∣∣p = Qp(f+) ,

which completes our proof. �

The following inequality, which will be used in the next lemma, has been shown
by Amghibech [1].

Lemma 5.2 (Amghibech, [1]) If a, b ≥ 0, p > 1 and 1
p + 1

q = 1, then(
1
p

bp − ap

b− a

)q

≤ 1
2

(ap + bp) .

Lemma 5.3 For any function f ∈ RV with 0 <
∣∣∣C0

f

∣∣∣ ≤ 1
2 |V | and h∗f,RCC as

defined in (8) it holds that

Qp(f+)
‖f+‖pp

≥
(
h∗f,RCC

p

)p( 2
maxi∈V di

)p−1

.

Proof: Consider the term ∑
f+

j >f+
i

wij

(
(f+

j )p − (f+
i )p

)
.
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On the one hand we have∑
f+

j >f+
i

wij

(
(f+

j )p − (f+
i )p

)
=

∑
f+

j >f+
i

wij [tp]
f+

j

f+
i

= p ·
∑

f+
j >f+

i

wij

∫ f+
j

f+
i

tp−1dt .

We can change the order of integration and summation and obtain

p ·
∑

f+
j >f+

i

wij

∫ f+
j

f+
i

tp−1dt = p ·
∫ ∞

0

tp−1
∑

f+
j >t≥f+

i

wij dt .

Note that for t ≥ 0,∑
f+

j >t≥f+
i

wij =
∑

fj>t≥fi

wij =
∑

j∈Ct
f ,i∈Ct

f

wij = cut(Ct
f , C

t
f ) ,

which leads us to the following inequality

cut(Ct
f , C

t
f ) =

cut(Ct
f , C

t
f )∣∣∣Ct

f

∣∣∣ ·
∣∣Ct

f

∣∣ =
cut(Ct

f , C
t
f )

min
{∣∣∣Ct

f

∣∣∣ , ∣∣∣Ct
f

∣∣∣} ·
∣∣Ct

f

∣∣
≥ inf

C

{
cut(C,C)

min
{
|C| ,

∣∣C∣∣}
∣∣∣ C = Ct

f for t ≥ 0

}
·
∣∣Ct

f

∣∣
= h∗f,RCC ·

∣∣Ct
f

∣∣ ,
where in the second step we used the assumption that 0 <

∣∣∣C0
f

∣∣∣ ≤ 1
2 |V |. As

this inequality holds for all t ≥ 0, we obtain

p

∫ ∞
0

tp−1
∑

f+
j >t≥f+

i

wij dt ≥ p
∫ ∞

0

tp−1h∗f,RCC

∣∣Ct
f

∣∣ dt .
We now use that

∣∣∣Ct
f

∣∣∣ =
∑

fi>t 1 =
∑

f+
i >t 1 (for t ≥ 0), and change the order

of summation and integration again, which leads us to

p

∫ ∞
0

tp−1h∗f,RCC

∑
f+

i >t

1dt = h∗f,RCC p
∑

f+
j >0

∫ f+
j

0

tp−1dt

= h∗f,RCC

∑
f+

j >0

[tp]
f+

j

0

= h∗f,RCC

∑
f+

j >0

(
f+

j

)p
= h∗f,RCC

∥∥f+
∥∥p

p
.
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So we have just shown the inequality∑
f+

j >f+
i

wij

(
(f+

j )p − (f+
i )p

)
≥ h∗f,RCC

∥∥f+
∥∥p

p
. (9)

On the other hand we have∑
f+

j >f+
i

wij

(
(f+

j )p − (f+
i )p

)
=

1
2

∑
f+

j >f+
i

wij

(
(f+

j )p − (f+
i )p

)
+

1
2

∑
f+

i >f+
j

wij

(
(f+

i )p − (f+
j )p

)
=

1
2

∑
i,j∈V

wij

∣∣(f+
j )p − (f+

i )p
∣∣ ,

where again we exploited the symmetry of the weights in the second step. Let
q be the conjugate of p, defined by the equation 1

p + 1
q = 1. The sum can now

be decomposed into

1
2

∑
i,j∈V

wij

∣∣(f+
j )p − (f+

i )p
∣∣

=
∑

f+
j 6=f+

i

(
1
2
wij

)1/p ∣∣f+
j − f

+
i

∣∣ · (1
2
wij

)1/q (f+
j )p − (f+

i )p

f+
j − f

+
i

≤

 ∑
f+

j 6=f+
i

1
2
wij

∣∣f+
j − f

+
i

∣∣p


1/p

·

 ∑
f+

j 6=f+
i

1
2
wij

∣∣∣∣∣ (f
+
j )p − (f+

i )p

f+
j − f

+
i

∣∣∣∣∣
q


1/q

= Qp(f+)1/p ·

 ∑
f+

j 6=f+
i

1
2
wij

(
(f+

j )p − (f+
i )p

f+
j − f

+
i

)q


1/q

,

where we used Hölder’s inequality in the second step. By applying Lemma 5.2
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we obtain for the second product term (assuming that p ≥ 1)1
2

∑
f+

j 6=f+
i

wij

(
(f+

i )p − (f+
j )p

f+
i − f

+
j

)q


1/q

≤

1
2

∑
f+

j 6=f+
i

wij
pq

2

(
(f+

i )p + (f+
j )p

)
1/q

≤ p

41/q

∑
i,j∈V

wij

(
(f+

i )p + (f+
j )p

)1/q

=
p

41/q

(
2
∑
i∈V

di (f+
i )p

)1/q

≤ p

21/q

(∑
i∈V

max
i∈V

di(f+
i )p

)1/q

= p

(
maxi∈V di

2

)1−1/p ∥∥f+
∥∥p−1

p
.

Hence we have∑
f+

j >f+
i

(
(f+

j )p − (f+
i )p

)
· wij ≤ p

(
maxi di

2

)1−1/p

Qp(f+)1/p
∥∥f+

∥∥p−1

p
. (10)

By combining (9) and (10) we obtain

h∗f,RCC

∥∥f+
∥∥p

p
≤ p

(
maxi∈V di

2

)1−1/p

Qp(f+)1/p
∥∥f+

∥∥p−1

p
,

which can be rewritten as(
2

maxi∈V di

)p−1(h∗f,RCC

p

)p

≤ Qp(f+)
‖f+‖pp

.

�

Proof of the lower bound in Theorem 5.1: Let f be the eigenfunction
of ∆(u)

p corresponding to the second eigenvalue λp. Let C0
f be the set of values

where fi > 0, as defined in (7). Without loss of generality, we can assume that

0 <
∣∣C0

f

∣∣ ≤ 1
2
|V | ,

otherwise we just replace f by −f . We know that

∆(u)
p f = λpf

p−1 on C0
f ,

so our condition for Lemma 5.1 is fulfilled. Applying Lemma 5.1 and 5.3 yields

λp ≥
Qp(f+)
‖f+‖pp

≥
(

2
maxi∈V di

)p−1(h∗f,RCC

p

)p

.

Clearly, we have h∗f,RCC ≥ hRCC, which completes the proof. �
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6 Isoperimetric inequality - Normalized case

One can show that also in the normalized case, for p > 1 and every partition
of V into C,C there exists a function gp,C ∈ RV such that the functional G(2)

p

associated to the normalized p-Laplacian satisfies

G(2)
p (gp,C) = cut(C,C)

∣∣∣∣ 1

vol(C)
1

p−1
+

1

vol(C)
1

p−1

∣∣∣∣p−1

. (11)

Explicitely, the function gp,C is given as

(gp,C)i =
{

1/ vol(C)
1

p−1 , i ∈ C,
−1/ vol(C)

1
p−1 , i ∈ C.

(12)

As in the unnormalized case, the expression (11) can be interpreted as a balanced
graph cut criterion, and we have the special cases

G
(2)
2 (g2,C) = NCut(C,C),

lim
p→1

G(2)
p (gp,C) = NCC(C,C).

It follows that minimizing the above balanced graph cut criterion is equivalent
to minimizing G

(2)
p with the restriction to functions that have the form given

in (12). With the same argument as in the unnormalized case, the second
eigenvector can be seen as a relaxation of balanced graph cuts. As in the
unnormalized case, the isoperimetric inequality gives upper and lower bounds
on the second eigenvalue in terms of the optimal Cheeger cut value defined as

hNCC = inf
C

NCC(C,C).

Theorem 6.1 (Amghibech, [1]) Denote by λ(2)
p the second eigenvalue of the

normalized graph p-Laplacian ∆(n)
p . For p > 1,

2p−1

(
hNCC

p

)p

≤ λ(2)
p ≤ 2p−1 hNCC .

The proof of the upper bound is similar to the unnormalized case. For the
proof of the lower bound, we use again the notation f+ for the restriction of the
function f to positive values, as well as Ct

f , C
t
f for a partitioning of the vertex

set by thresholding, as introduced in (6) and (7). Furthermore, for any function
f : V → R, we denote by h∗f,NCC the quantity

h∗f,NCC = inf
C

{
cut(C,C)

min
{

vol(C), vol(C)
} ∣∣∣ C = Ct

f for t ≥ 0

}
.

Analogously to the unnormalized case, the value of h∗f,NCC is the smallest pos-
sible NCC value obtained by thresholding f at some t ≥ 0. Again, we set
h∗f,NCC =∞ in the case C0

f = ∅.

Lemma 6.1 Suppose there exists a λ ≥ 0 such that it holds ∀i ∈ C0
f that

(∆(n)
p f)i ≤ λfp−1

i . Then

λ ≥ Qp(f+)∑
i∈V di

∣∣f+
i

∣∣p .
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Lemma 6.2 For any function f ∈ RV with 0 < vol(C0
f ) ≤ 1

2 vol(V ) and h∗f,NCC

as defined above it holds that

Qp(f+)∑
i∈V di

∣∣f+
i

∣∣p ≥
(
h∗f,NCC

p

)p

2p−1 .

Using the above lemmas the lower bound can now be proven in a similar way
to the unnormalized case.

7 Convergence to the optimal Cheeger cut

In p-spectral clustering, a partitioning of the graph is obtained by thresholding
the real-valued second eigenvector v(2)

p of the graph p-Laplacian. The optimal
threshold is determined by minimizing the corresponding Cheeger cut, i.e. in
the case of the unnormalized graph p-Laplacian ∆(u)

p one determines

arg min
Ct={i∈V | v(2)

p (i)>t}
RCC(Ct, Ct), (13)

and similarly for the second eigenvector of the normalized graph p-Laplacian
∆(n)

p one computes
arg min

Ct={i∈V | v(2)
p (i)>t}

NCC(Ct, Ct). (14)

One can now establish a connection between the cut obtained by thresholding
according to the above scheme and the optimal Cheeger cut.

Theorem 7.1 Denote by h∗RCC the ratio Cheeger cut value obtained by tresh-
olding the second eigenvector v(2)

p of the unnormalized p-Laplacian via (13).
Then for p > 1,

hRCC ≤ h∗RCC ≤ p
(

max
i∈V

di

) p−1
p
(
hRCC

) 1
p .

Denote by h∗NCC the normalized Cheeger cut value obtained by tresholding the
second eigenvector v(2)

p of the normalized p-Laplacian via (14). Then for p > 1,

hNCC ≤ h∗NCC ≤ p
(
hNCC

) 1
p .

Interestingly, the inequalities become tight for p→ 1. This implies that the cut
found by thresholding converges to the optimal Cheeger cut, which provides the
main motivation for p-spectral clustering.

Proof of Theorem 7.1: Clearly, the lower bound holds. Let now f be the
eigenfunction of ∆(u)

p corresponding to the second eigenvalue λp. Let C0
f be the

set of values where fi > 0, as defined in (7). Without loss of generality, we can
assume that

0 <
∣∣C0

f

∣∣ ≤ 1
2
|V | ,

otherwise we just replace f by −f . We know that

∆(u)
p f = λpf

p−1 on C0
f ,
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so our condition for Lemma 5.1 is fulfilled. Applying Lemma 5.1 and 5.3 yields

λp ≥
Qp(f+)
‖f+‖pp

≥
(

2
maxi∈V di

)p−1(h∗f,RCC

p

)p

.

Note that h∗f,RCC = h∗RCC, and hence we obtain(
2

maxi∈V di

)p−1(
h∗RCC

p

)p

≤ λp .

(Note that this bound is tighter than the lower bound from Theorem 5.1). The
above inequality can be reformulated as

h∗RCC ≤ p
(

max
i∈V

di

) p−1
p

(
λp

2p−1

) 1
p

.

Using that λp ≤ 2p−1hRCC, we obtain

h∗RCC ≤ p
(

max
i∈V

di

) p−1
p
(
hRCC

) 1
p .

As shown by Amghibech [1], in the normalized case one has the inequality

λp ≥ 2p−1

(
hNCC

p

)p

.

Analogously to the unnormalized case one can show the stronger statement

λp ≥ 2p−1

(
h∗NCC

p

)p

≥ 2p−1

(
hNCC

p

)p

.

The first inequality can be reformulated as

h∗NCC ≤ p

(
λp

2p−1

) 1
p

,

and with λp ≤ 2p−1hNCC one obtains the result in the normalized case. �
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