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Abstract

The (constrained) minimization of a ratio of
set functions is a problem frequently occur-
ring in clustering and community detection.
As these optimization problems are typically
NP-hard, one uses convex or spectral relax-
ations in practice. While these relaxations
can be solved globally optimally, they are of-
ten too loose and thus lead to results far away
from the optimum. In this paper we show
that every constrained minimization problem
of a ratio of non-negative set functions al-
lows a tight relaxation into an unconstrained
continuous optimization problem. This result
leads to a flexible framework for solving con-
strained problems in network analysis. While
a globally optimal solution for the resulting
non-convex problem cannot be guaranteed,
we outperform the loose convex or spectral
relaxations by a large margin on constrained
local clustering problems.

1. Introduction

Graph-based data appear in manifold ways in learning
problems - either the data have already graph struc-
ture as in the case of social networks and biological
networks or a similarity graph is constructed using a
similarity measure based on features of the data. Sev-
eral graph-based problems in clustering and commu-
nity detection can be modelled as the optimization of
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a ratio of set functions (referred to here as fractional
set program). Prominent examples are the normalized
cut problem, from which the popular spectral cluster-
ing method is derived (Shi & Malik, 2000), and the
maximum density subgraph problem, which has appli-
cations in community detection (Fortunato, 2010) and
bioinformatics (Saha et al., 2010).

It turns out that in practice often additional back-
ground or domain knowledge about the learning prob-
lem is available. Such prior knowledge can then be
incorporated as constraints into the optimization prob-
lem. In the case of clustering, Wagstaff et al. (2001)
are the first to show how prior information given in
the form of must-link and cannot-link constraints be-
tween vertices can be integrated into the k-means al-
gorithm. Recently, Rangapuram & Hein (2012) pro-
posed a generalization of the normalized cut problem
that can handle must-link and cannot-link constraints.
In the recent work of Mahoney et al. (2012), locality
constraints in the form of a seed set and volume con-
straint have been integrated into the normalized cut
formulation. Furthermore, Khuller & Saha (2009) and
Saha et al. (2010) considered size and distance con-
straints for the maximum density subgraph problem.

Since the above-mentioned combinatorial problems are
NP-hard, the standard approach is to consider con-
vex or spectral relaxations which can be solved glob-
ally optimally in polynomial time. Due to its prac-
tical efficiency the spectral relaxation is very popular
in machine learning, e.g. spectral clustering (Hagen &
Kahng, 1991; Shi & Malik, 2000). However, it is of-
ten quite loose and thus leads to a solution far away
from the optimal one of the original problem. More-
over, spectral-type relaxations (Mahoney et al., 2012)
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fail to guarantee that the constraints which encode the
prior knowledge are satisfied.

In another line of work (Hein & Bühler, 2010; Szlam
& Bresson, 2010; Hein & Setzer, 2011; Bresson et al.,
2012), it has been shown that tight continuous relax-
ations exist for all balanced graph cut problems and
the normalized cut subject to must-link and cannot-
link constraints (Rangapuram & Hein, 2012). A tight
relaxation means that the continuous and the com-
binatorial optimization problem are equivalent in the
sense that the optimal values agree and the optimal
solution of the combinatorial problem can be obtained
from the continuous solution. While the resulting al-
gorithms provide no guarantee to yield the globally
optimal solution, the standard loose relaxations are
outperformed by a large margin in practice.

In this paper we show that any constrained minimiza-
tion problem of a ratio of non-negative set functions
allows a tight relaxation into a continuous optimiza-
tion problem. This result together with our efficient
minimization techniques enables the easy integration
of prior information in form of constraints into many
problems in graph-based clustering and community de-
tection. While the general framework introduced in
this paper is applicable to all problems discussed so
far, we will focus on two particular applications: lo-
cal clustering by constrained balanced graph cuts, and
community detection via constrained densest subgraph
problems. Compared to previous work, the algorithms
developed in this paper are the first to guarantee that
all given constraints are fulfilled by the obtained solu-
tion. Note that in principle our method could also be
applied to a setting with soft or noisy constraints, how-
ever we will focus here on the case of hard constraints.
In the experimental section we will show the supe-
rior performance compared to state of the art methods
(Andersen & Lang, 2006; Mahoney et al., 2012).

2. Fractional set programs in clustering
and community detection

In the following, G = (V,W ) denotes an undirected,
weighted graph with a non-negative, symmetric weight
matrix W ∈ Rn×n, where n = |V |. Moreover, by
assigning a non-negative weight gi to each vertex i,
we can define the general volume of a subset A ⊂ V
as volg(A) =

∑
i∈A gi. As special cases, we obtain for

gi = 1 the cardinality |A| and for gi equal to the degree
di =

∑
j∈V wij the classical volume vol(A) = vold(A).

Furthermore, A = V \A denotes the complement of A.

The balanced graph cut problem is a well-known
problem in computer science with applications rang-

ing from parallel computing to image segmentation
(Pothen et al., 1990; Shi & Malik, 2000). A very popu-
lar balanced graph cut criterion is the normalized cut1,

NCut(C,C) =
cut(C,C)

vold(C) vold(C)
, for C ⊂ V,

where cut(C,C) :=
∑
i∈C,j∈C wij . The spectral re-

laxation of the normalized cut leads to the popular
spectral clustering method (von Luxburg, 2007). A
related criterion is the normalized Cheeger cut,

NCC(C,C) =
cut(C,C)

min{vold(C), vold(C)}
, for C ⊂ V.

More general balanced graph cuts were studied by
Hein & Setzer (2011). In practice, often additional in-
formation about the desired solution is available which
can be incorporated into the problem via constraints.
This motivates us to consider a more general class of
problems where one optimizes a ratio of set functions2

subject to constraints. In the following, we discuss two
examples of constrained problems in network analysis.

Constrained balanced graph cuts for local clus-
tering. Recently, there has been a strong interest in
balanced graph cut methods for local clustering. Start-
ing with the work of Spielman & Teng (2004), initially,
the goal was to develop an algorithm that finds a sub-
set near a given seed vertex with small normalized cut
or normalized Cheeger cut value with running time lin-
ear in the size of the obtained cluster. The proposed
algorithm and subsequent work (Andersen et al., 2006;
Chung, 2009) use random walks to explore the graph
locally, without considering the whole graph. Algo-
rithms of this type have been applied for community
detection in networks (Andersen & Lang, 2006).

In contrast, Mahoney et al. (2012) give up the runtime
requirement and formulate the task as an explicit op-
timization problem, where one aims at finding the op-
timal normalized cut subject to a seed constraint and
an upper bound on the volume of the set containing
the seed set. Again, the idea is to find a local clus-
ter around a given seed set. Motivated by the stan-
dard spectral relaxation of the normalized cut prob-
lem, they derive a spectral-type relaxation which is
biased towards solutions fulfilling the seed constraint.
Their method has been successfully applied in semi-
supervised image segmentation (Maji et al., 2011) and
for community detection around a given query set (Ma-
honey et al., 2012). However, while they provide an ap-

1This is up to a constant factor the same as the usual
definition, NCut(C,C) = cut(C,C)

(
1

vold(C)
+ 1

vold(C)

)
.

2A set function Ŝ on a set V is a function Ŝ : 2V → R.
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proximation guarantee for their relaxation, they can-
not guarantee that the returned solution satisfies seed
and volume constraints.

In this paper we consider an extended version of the
problem of Mahoney et al. (2012). Let J denote the

set of seed vertices, Ŝ a symmetric balancing function
(e.g. Ŝ(C) = vold(C) vold(C) for the normalized cut)
and let volg(C) be the general volume of set C, where
g ∈ Rn+ are vertex weights. The general local cluster-
ing problem can then be formulated as

min
C⊂V

cut(C,C)

Ŝ(C)
(1)

subject to : volg(C) ≤ k, and J ⊂ C.

The choice of the balancing function Ŝ allows the user
to influence the trade-off between getting a partition
with small cut and a balanced partition. One could
also combine this with must- and cannot-link con-
straints (see Rangapuram & Hein, 2012) or add even
more complex constraints such as an upper bound on
the diameter of C. However, in order to compare to
the method of Mahoney et al. (2012), we restrict our-
selves in this paper to the normalized cut with volume
constraints, that is Ŝ(C) = vold(C) vold(C) and g = d.

Constrained local community detection. A sec-
ond related problem is constrained local community
detection. In community detection it makes more
sense to find a highly connected set instead of em-
phasizing the separation to the remaining part of the
graph by minimizing the cut. Thus, we are search-
ing for a set C which has high association, defined as
assoc(C) =

∑
i,j∈C wij . Dividing the association of

C by its size yields the density of C. The subgraph
of maximum density can be computed in polynomial
time (Goldberg, 1984). However, the obtained commu-
nities in the unconstrained problem are typically either
too large or too small, which calls for size constraints.
Note that the introduction of such constraints makes
the problem NP-hard (Khuller & Saha, 2009).

A general class of (local) community detection prob-
lems can thus be formulated as

max
C⊂V

assoc(C)

volg(C)
(2)

subject to : k1 ≤ volh(C) ≤ k2, and J ⊂ C,

where g, h ∈ Rn+ are vertex weights. This formu-
lation generalizes the above-mentioned density-based
approaches by replacing the denominator by a general
volume function volg. One can use the vertex weights
g to bias the obtained community towards one with

desired properties by assigning small weights to ver-
tices which one would prefer to occur in the solution
and larger weights to ones which are less preferred.

The problem (2) with only lower bound constraints
has been considered in team selection (Gajewar & Das
Sarma, 2012) and bioinformatics (Saha et al., 2010)
where constant factor approximation algorithms were
developed. However, in the case of equality and up-
per bound constraints the problem is very hard even
when using only cardinality constraints (i.e., hi = 1),
and it has been shown that there is no polynomial
time approximation scheme in these cases (Khot, 2006;
Khuller & Saha, 2009). Our method can handle such
hard upper bound and equality constraints. In the ex-
periments we show results for a community detection
problem with a specified query set J and an upper
bound on the size for a co-author network.

Note that if volg(C) = vold(C), one can decompose
the objective of (2) analogously to the argument for
the normalized cut (Shi & Malik, 2000) as

assoc(C)

vold(C)
= 1− cut(C,C)

vold(C)
.

This implies that for volg(C) = vold(C) in (2) and

Ŝ(C) = vold(C) in (1), the problem (2) is equivalent
to (1) if we choose the same constraints. If one has only
the constraint vold(C) ≤ 1

2 vold(V ) both problems are
equivalent to the normalized Cheeger cut.

Contributions of this paper. We show that all
constrained non-negative fractional set programs have
an equivalent tight continuous relaxation. This gen-
eral result enables the integration of prior information
in form of constraints into clustering and community
detection problems. In particular, it allows us to de-
rive efficient algorithms for problems (1) and (2). Our
algorithms consistently outperform competing meth-
ods (Andersen & Lang, 2006; Mahoney et al., 2012).
Moreover, we are not aware of any other methods for
the above problems which can guarantee that the so-
lution always satisfies volume and seed constraints.

Although the tight relaxation results in Hein & Setzer
(2011) and Rangapuram & Hein (2012) encompass a
large class of problems, they are not applicable to the
problems considered in this paper because of the fol-
lowing limitations: First, tight relaxations were shown
by Hein & Setzer (2011) only for a ratio of symmet-
ric non-negative set functions, where the numerator is
restricted to be submodular. We extend the results to
arbitrary ratios of non-negative set functions without
any restrictions concerning symmetry or submodular-
ity. Second, only equality constraints for non-negative
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set functions restricted to be either submodular or su-
permodular could be handled by Rangapuram & Hein
(2012). We generalize this to inequality constraints3

without any restrictions on the constraint set functions
in order to handle the constraints in (1) and (2).

3. Tight relaxations of fractional set
programs with constraints

The problems discussed in the last section can be writ-
ten in the following general form:

min
C⊂V

R̂(C)

Ŝ(C)
=: Q̂(C) (3)

subject to : M̂i(C) ≤ ki, i = 1, . . . ,K

where R̂, Ŝ, M̂i : 2V → R are set functions on a set
V = {1, . . . , n}. We assume here that R̂, Ŝ are non-

negative and that R̂(∅) = Ŝ(∅) = 0. No assumptions

are made on the set functions M̂i, in particular they
are not required to be non-negative. Thus also lower
bound constraints can be written in the above form.
Moreover, the formulation in (3) also encompasses the
subset constraint J ⊂ C in (1) and (2) as it can be
written as equality constraint |J | − |J ∩ C| = 0. Al-
ternatively, we will discuss a direct integration of the
subset constraint into the objective in Section 5.

The connection between the set-valued and the contin-
uous space is achieved via thresholding. Let f ∈ Rn,
and we assume wlog that f is ordered in ascending
order f1 ≤ f2 ≤ · · · ≤ fn. One defines the sets

Ci := {j ∈ V |fj ≥ fi} , i = 1, . . . , n. (4)

We frequently make use of this notation in the fol-
lowing. Furthermore, we use 1C ∈ Rn to denote the
indicator vector of the set C, i.e. the vector which is
1 at entry j if j ∈ C and 0 otherwise. A key tool for
the derivation of the results of this paper is the Lovasz
extension as a way to extend a set function (seen as
function on the hypercube) to a function on Rn.

Definition 1 Let R̂ : 2V → R be a set function with
R̂(∅) = 0, and f ∈ Rn in ascending order f1 ≤ f2 ≤
· · · ≤ fn. The Lovasz extension R : Rn → R of R̂ is
defined as R(f) =

∑n−1
i=1 R̂(Ci+1) (fi+1 − fi)+R̂(V )f1.

Note thatR(1C) = R̂(C) for all C ⊂ V , i.e. R is indeed

an extension of R̂ from 2V to Rn. In the following, we
always use the hat-symbol (̂) to denote set functions
and omit it for the corresponding Lovasz extension.

3Note that M̂(C) = k is equivalent to k ≤ M̂(C) ≤ k.

A particular important class of set functions are sub-
modular set functions since their Lovasz extension is
convex (Bach, 2011).

Definition 2 A set function R̂ : 2V → R is submod-
ular if for all A,B ⊂ V , R̂(A ∪ B) + R̂(A ∩ B) ≤
R̂(A) + R̂(B). It is supermodular, if the converse in-
equality holds true, and modular if we have equality.

The connection between submodular set functions and
convex functions is as follows (see Bach, 2011).

Proposition 1 Let R : RV → R be the Lovasz exten-
sion of R̂ : 2V → R. Then, R̂ is submodular if and
only if R is convex. Furthermore, if R̂ is submodular,
then minA⊂V R̂(A) = minf∈[0,1]n R(f).

Thus submodular minimization problems reduce to
convex minimization problems. A similar equivalence
of continuous and combinatorial optimization prob-
lems is the main topic of this paper. In the following
we list some useful properties of the Lovasz extension
(see Fujishige, 2005; Bach, 2011; Hein & Setzer, 2011).

Proposition 2 Let R : RV → R be the Lovasz exten-
sion of R̂ : 2V → R. Then,

• R is positively one-homogeneous4,

• R(f) ≥ 0, ∀ f ∈ RV and R(1) = 0 if and only if

R̂(A) ≥ 0, ∀A ⊂ V and R̂(V ) = 0,

• Let S : RV → R be the Lovasz extension of
Ŝ : 2V → R. Then, λ1R + λ2 S is the Lovasz
extension of λ1 R̂+ λ2 Ŝ, for all λ1, λ2 ∈ R.

Unconstrained fractional set programs. Using
the property of the Lovasz extension that R(1C) =

R̂(C) for all C ⊂ V , one can directly observe that the
following continuous fractional program is a relaxation
of the unconstrained version of problem (3)

inf
f∈Rn

+

R(f)

S(f)
.

The following theorem shows that the relaxation is in
fact tight, in the sense that the optimal values agree
and the solution of the set-valued problem can be com-
puted from the solution of the continuous problem.

Note that given a vector f ∈ Rn for the continuous
problem, one can construct a set C ′ by computing

C ′ = arg min
Ci,i=1,...,n

R̂(Ci)

Ŝ(Ci)
,

4R : RV → R is positively one-homogeneous if R(αf) =
αR(f), ∀α ∈ R with α ≥ 0.
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where the sets Ci are defined in (4). We refer to this
process as optimal thresholding.

Theorem 1 Let R̂, Ŝ : 2V → R be non-negative set
functions and R,S : Rn → R their Lovasz extensions,
respectively. Then, it holds that

inf
C⊂V

R̂(C)

Ŝ(C)
= inf
f∈Rn

+

R(f)

S(f)
.

Moreover, it holds for all f ∈ Rn+, R(f)
S(f) ≥

mini=1,...,n
R̂(Ci)

Ŝ(Ci)
. Thus a minimizer of the set ratio

can be found by optimal thresholding. Let furthermore
R̂(V ) = Ŝ(V ) = 0, then all the above statements hold
if one replaces Rn+ with Rn.

In practice it may sometimes by difficult to derive
and/or work with explicit forms of the Lovasz exten-

sions of R̂ and Ŝ. However, the following more gen-
eral version of Theorem 1 shows that, given a decom-
position of R̂ and Ŝ into a difference of submodular
set functions, one needs the Lovasz extension only
for the first term of R̂ and the second term of Ŝ.
The remaining terms can be replaced by any convex
one-homogeneous functions that also extend the cor-
responding set functions. Note that by Proposition 3
such a decomposition always exists.

Theorem 1 (b) Let R̂, Ŝ : 2V → R be non-negative

set functions and R̂ := R̂1 − R̂2 and Ŝ := Ŝ1 − Ŝ2

be decompositions into differences of submodular set
functions. Let the Lovasz extensions of R̂1, Ŝ2 be given
by R1, S2 and let R′2, S

′
1 be positively one-homogeneous

convex functions with S′1(1A) = Ŝ1(A) and R′2(1A) =

R̂2(A) such that S′1−S2 is non-negative. Define R :=
R1 −R′2 and S := S′1 − S2. Then,

inf
C⊂V

R̂(C)

Ŝ(C)
= inf
f∈RV

+

R(f)

S(f)
.

Moreover, it holds for all f ∈ Rn+, R(f)
S(f) ≥

mini=1,...,n
R̂(Ci)

Ŝ(Ci)
. Thus a minimizer of the set ratio

can be found by optimal thresholding. Let furthermore
R̂(V ) = Ŝ(V ) = 0, then all the above statements hold
if one replaces Rn+ with Rn.

Before we prove the above Theorem, we collect some
useful results. Lemma 1 shows that the Lovasz exten-
sion of a submodular set function R̂ is an upper bound
on any one-homogeneous convex function R′ which ex-
tends the set function R̂ to the continuous space.

Lemma 1 Let R̂ : 2V → R be a submodular set
function with R̂(∅) = 0. Let R′ be a positively one-

homogeneous convex function with R′(1A) = R̂(A) for
all A ⊂ V . Then, it holds ∀f ∈ RV+ that

R′(f) ≤
n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + f1R̂(V ).

Let furthermore R̂(V ) = 0, then the above inequality
holds for all f ∈ RV .

Proof: Let f be ordered in increasing order f1 ≤
f2 ≤ · · · ≤ fn. Note that every convex, positively one-
homogeneous function R′ : RV → R can be written
as R(f) = supu∈U 〈u, f〉, where U is a convex set (see
Hiriart-Urruty & Lemaréchal, 2001). Then, since for
any u ∈ U , 〈u, f〉 ≤ R′(f), it holds that

R̂(Ci) = R′(1Ci
) ≥ 〈u,1Ci

〉 , i = 1, . . . , n,

for any u ∈ U and hence for all f ∈ RV+,

n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + f1R̂(V )

≥
n−1∑
i=1

〈
u,1Ci+1

〉
(fi+1 − fi) + f1 〈u,1〉

=

n∑
i=1

fiui. (5)

As this holds for all u ∈ U we obtain for all f ∈ RV+,

n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + R̂(V )f1 ≥ sup
u∈U
〈f, u〉 = R′(f) .

For the second statement we use the fact that with the
condition R̂(V ) = 0 the lower bound in (5) holds for
all f ∈ RV . �

The main part of the proof of Theorem 1 (b) is the fol-
lowing Lemma which implies that optimal threshold-
ing of a vector f always leads to non-increasing values
of R(f)/S(f).

Lemma 2 Let R̂, Ŝ : 2V → R and R,S : Rn → R
satisfy the assumptions of Theorem 1 (b). Then for
all f ∈ RV+,

R(f)

S(f)
≥ min
i=1,...,n

R̂(Ci)

Ŝ(Ci)
.

Let furthermore R̂(V ) = Ŝ(V ) = 0, then the result
holds for all f ∈ RV .
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Proof: Let R1, S2 and R′2, S
′
1 satisfy the conditions

from Theorem 1 (b). Let furthermore R2 and S1 be

the Lovasz extensions of R̂2 and Ŝ1. With Lemma 1
and Def. 1, we get ∀f ∈ Rn+,

R(f) = R1(f)−R′2(f) ≥ R1(f)−R2(f)

=

n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + f1R̂(V )

=

n−1∑
i=1

R̂(Ci+1)

Ŝ(Ci+1)
Ŝ(Ci+1) (fi+1− fi) +

R̂(V )

Ŝ(V )
Ŝ(V )f1

≥ min
j=1,...,n

R̂(Cj)

Ŝ(Cj)

(
n−1∑
i=1

Ŝ(Ci+1) (fi+1−fi)+f1Ŝ(V )

)

where we used the non-negativity of R̂ and Ŝ as well
as the fact that f ∈ Rn+. Again using Def. 1, the above
is equal to

min
j=1,...,n

R̂(Cj)

Ŝ(Ci)
(S1(f)− S2(f))

≥ min
j=1,...,n

R̂(Cj)

Ŝ(Ci)
(S′1(f)− S2(f)) .

By assumption, S′1−S2 is non-negative and thus divi-
sion gives the result. The second statement is shown
analogously. �

Now we are ready to prove Theorem 1 (b).

Proof of Theorem 1 (b): Lemma 2 implies that

inf
f∈RV

+

R(f)

S(f)
≥ inf
f∈RV

+

min
Ci def. by f
i=1,...,n

R̂(Ci)

Ŝ(Ci)
≥ inf
A⊂V

R̂(A)

Ŝ(A)
.

On the other hand we have

inf
A⊂V

R̂(A)

Ŝ(A)
= inf
A⊂V

R(1A)

S(1A)
≥ inf
f∈RV

+

R(f)

S(f)
,

which implies equality. The statement regarding op-
timal thresholding has been shown in Lemma 2. The
proof for the case where R̂(V ) = Ŝ(V ) = 0 works anal-
ogously. �

Note that no assumptions except non-negativity are
made on R̂ and Ŝ - every non-negative fractional set
program has a tight relaxation into a continuous frac-
tional program. The efficient minimization of the con-
tinuous objective will be the topic of Section 4.

Constrained fractional set programs. To solve
the constrained fractional set program (3) we make
use of the concept of exact penalization (Di Pillo,
1994), where the main idea is to transform a given

constrained optimization problem into an equivalent
unconstrained one by adding a penalty term. We use
the same idea for our constrained fractional set pro-
grams and define the penalty set function for a con-
straint M̂i(C) ≤ ki as

T̂i(C) =

{
max

{
0, M̂i(C)− ki

}
, C 6= ∅,

0, C = ∅.
(6)

The function T̂i(C) is zero if C is feasible for the i-
th constraint and otherwise increasing with increasing
infeasibility. The special treatment of the empty set
in the definition of T̂i is a technicality required for the
Lovasz extension. Defining T̂ (C) :=

∑K
i=1 T̂i(C), we

can now formulate a modified problem

min
C⊂V

R̂(C) + γ
∑K
i T̂i(C)

Ŝ(C)
=: Q̂γ(C). (7)

We will show that using a feasible set of (3) one can
compute a γ such that (7) is equivalent to the orig-
inal constrained problem. Once we have established
the equivalence, we can then apply Theorem 1, noting
that T̂ is a non-negative set function. This leads to the
main result of this paper showing a tight relaxation of
all problems of form (3) where R̂, Ŝ are non-negative
set functions. In the following, the constant θ quanti-
fies a “minimum value” of T̂i on the infeasible sets:

θ = min
i=1,...,K

[
min

M̂i(C)>ki

M̂i(C)− ki
]
.

For example, if M̂(C) = |C|, then θ is equal to 1. If

M̂(C) = volg(C) and all vertex weights gi are rational
numbers which are multiples of a fraction 1

ρ , ρ ∈ N,

then θ ≥ 1
ρ . Note that in practice, the constant θ and

the parameter γ introduced in the following are never
explicitly computed (see experimental section).

Theorem 2 Let R̂, Ŝ : 2V → R be non-negative set
functions and R, S their Lovasz extensions. Let C0 ⊂
V be feasible and Ŝ(C0) > 0. Denote by T the Lovasz

extension of T̂ . Then, for γ > R̂(C0)

θŜ(C0)
maxC⊂V Ŝ(C),

min
M̂i(C)≤ki,
i=1,...,K

R̂(C)

Ŝ(C)
= min
f∈Rn

+

R(f) + γ T (f)

S(f)
:= Qγ(f)

Moreover, for any f ∈ Rn+ with Qγ(f) < Q̂γ(C0) for

the given γ, we have Qγ(f) ≥ mini=1,...,n Q̂γ(Ci), and
the minimizing set on the right hand side is feasible.

Proof: We will first show the equivalence between the
constrained fractional set program (3) and the uncon-
strained problem (7) for the given choice of γ. Then



Constrained fractional set programs

the equivalence to the continuous problem will follow
by Theorem 1.

Define T̂ (C) :=
∑K
i=1 T̂i(C). Note that for any fea-

sible subset C, that is M̂i(C) ≤ ki, i = 1, . . . ,K, the
objective Qγ of problem (7) is equal to the objective Q
of problem (3). Thus, if we show that all minimizers
of the second problem satisfy the constraints then the
equivalence follows. Suppose that C∗ 6= ∅ is a mini-
mizer of the second problem and that C∗ is infeasible.
Then by definition we have T̂ (C∗) ≥ θ. This yields

Q̂γ(C∗) =
R̂(C∗) + γT̂ (C∗)

Ŝ(C∗)
(8)

≥ γT̂ (C∗)

Ŝ(C∗)
≥ γT̂ (C∗)

maxC⊂V Ŝ(C)
≥ γθ

maxC⊂V Ŝ(C)
,

where we used the non-negativity of R̂ and Ŝ. Hence

Q̂γ(C∗) ≥ γθ

maxC⊂V Ŝ(C)
>
R̂(C0)

Ŝ(C0)
= Q̂γ(C0),

which contradicts the fact that C∗ is optimal.

Noting that T̂ is a non-negative function with T̂ (∅) = 0
and γ > 0, we have a ratio of non-negative set func-
tions which attain the value zero on the empty set.
Thus application of Theorem 1 yields the equivalence
to the continuous problem.

The second statement can be seen as follows. Suppose
Qγ(f) < Q̂γ(C0). By Lemma 2 we obtain

Qγ(f) ≥ min
i=1,...,n

Q̂γ(Ci).

Now suppose that the minimizer C∗ of the right hand
side is not feasible, then again by the derivation in (8)
and the choice of γ,

Q̂γ(C∗) ≥ γθ

maxC⊂V Ŝ(C)
> Q̂γ(C0),

which leads to a contradiction. Thus C∗ is feasible. �

Note that Theorem 2 implies that the set found by
optimal thresholding of the solution of the continuous
program is guaranteed to satisfy all constraints. We
are not aware of any other method which can give the
same guarantee for the problems (1) and (2).

4. Minimization of the tight continuous
relaxation

The continuous optimization problems in Theorems 1
and 2 have the form

min
f∈Rn

+

R(f)

S(f)
:= Q(f), (9)

where R and S are non-negative. The fact that they
are the Lovasz extensions of set functions R̂, Ŝ also im-
plies that they are one-homogeneous, see Bach (2011).
We now apply a slightly modified version of a result
from Hein & Setzer (2011).

Proposition 3 Every set function Ŝ with Ŝ(∅) = 0

can be written as Ŝ = Ŝ1 − Ŝ2, where S1 and S2 are
submodular and Ŝ1(∅) = Ŝ2(∅) = 0. The Lovasz exten-
sion S can be written as difference of convex functions.

The above result implies that (9) can be written as
ratio of differences of convex functions (d.c.), i.e. R =
R1 − R2 with R1, R2 convex, and similarly for S. As
the proof of Proposition 3 is constructive, the explicit
form of this decomposition can be calculated. We can
now use a modification of the RatioDCA which has re-
cently been proposed as an algorithm for minimizing a
non-negative ratio of one-homogeneous d.c. functions
(Hein & Setzer, 2011). This modification is necessary
as the problems in Theorem 1 and 2 require optimiza-
tion over the positive orthant. We report the modified
version in order to make the paper self-contained.

RatioDCA Minimization of a non-negative ratio of
one-homogeneous d.c functions over Rn+
1: Initialization: f0 ∈ Rn+, λ0 = Q(f0)
2: repeat
3: f l+1 = arg min

u∈Rn
+, ‖u‖2≤1

{
R1(u)−

〈
u, r2(f l)

〉
+λl

(
S2(u)−

〈
u, s1(f l)

〉 )}
where r2(f l) ∈ ∂R2(f l), s1(f l) ∈ ∂S1(f l)

4: λl+1 = Q(f l+1)

5: until
|λl+1−λl|

λl < ε

We will refer to the convex optimization problem
solved at each step (line 3) as the inner problem.

Proposition 4 The sequence f l produced by Ra-
tioDCA satisfies Q(f l+1) < Q(f l) for all l ≥ 0 or
the sequence terminates.

Proof: Let Φf l(u) := R1(u)−
〈
u, r2(f l)

〉
+λl

(
S2(u)−〈

u, s1(f l)
〉 )

denote the objective of the inner problem.
The optimal value of the inner problem is non-positive
since

Φf l(f l) = R1(f l)−
〈
f l, r2(f l)

〉
+ λl

(
S2(f l)−

〈
f l, s1(f l)

〉 )
= R1(f l)−R2(f l) + λl

(
S2(f l)− S1(f l)

)
= 0,

where we used the fact that
〈
f l, r2(f l)

〉
= R2(f l) and〈

f l, s1(f l)
〉

= S1(f l). Since Φf l is one-homogeneous,
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the minimum of Φf l is always attained at the boundary
of the constraint set. If the optimal value is zero, then
f l is a possible minimizer and the sequence terminates.
Otherwise the optimal value is negative and at the
optimal point we get

0 > Φf l(f l+1)

= R1(f l+1)−
〈
f l+1, r2(f l)

〉
+ λl

(
S2(f l+1)−

〈
f l+1, s1(f l)

〉 )
≥ R1(f l+1)−R2(f l+1) + λl

(
S2(f l+1)− S1(f l+1)

)
,

where we used that for a positively one-homogeneous
convex function one has for all f, g ∈ Rn+,

S(f) ≥ S(g) + 〈f − g, s(g)〉 = 〈f, s(g)〉 .

Thus we obtain

Q(f l+1) =
R1(f l+1)−R2(f l+1)

S1(f l+1)− S2(f l+1)
< λl = Q(f l).

�

The norm constraint of the inner problem is neces-
sary as otherwise the problem would be unbounded
from below. However, the choice of the norm plays no
role in the proof and any norm can be chosen. More-
over, in the special case where the one-homogeneous
function R is convex and S is concave, the RatioDCA
reduces to Dinkelbach’s method from fractional pro-
gramming (Dinkelbach, 1967) and therefore computes
the global optimum. In the general case, convergence
to the global optimum cannot be guaranteed. How-
ever, we can provide a quality guarantee: RatioDCA
either improves a given feasible set or stops after one
iteration.

Theorem 3 Let A be a feasible set and γ >
R̂(A) maxC⊂V Ŝ(C)/(θ Ŝ(A)). Let f∗ denote the re-
sult of RatioDCA after initializing with the vector 1A,
and let Cf∗ denote the set found by optimal thresh-
olding of f∗. Either RatioDCA terminates after one

iteration, or Cf∗ is feasible and
R̂(Cf∗ )

Ŝ(Cf∗ )
< R̂(A)

Ŝ(A)
.

Proof: Proposition 4 implies that the RatioDCA ei-
ther directly terminates or produces a strictly mono-
tonically decreasing sequence. In the latter case, using
the strict monotonicity and the fact that thresholding
does not increase the objective (Lemma 2), we obtain

Q̂γ(A) = Qγ(1A)
Prop. 4
> Qγ(f∗)

Lemma 2
≥ Qγ(1Cf∗ ) = Q̂γ(Cf∗) .

Assume now that Cf∗ is infeasible. Then, one can
derive analogously to the proof of Theorem 2 that

Q̂γ(Cf∗) ≥ γθ

maxC⊂V Ŝ(C)
> Q̂(A) = Q̂γ(A), which is

a contradiction to Q̂γ(A) > Q̂γ(Cf∗). Hence, Cf∗

has to be feasible and it holds that Q̂(A) = Q̂γ(A) >

Q̂γ(Cf∗) = Q̂(Cf∗). �

The above theorem implies that all constraints of the
original constrained fractional set program are fulfilled
by the set Cf∗ returned by RatioDCA.

5. Tight relaxations of constrained
maximum density and constrained
balanced graph cut problems

The framework introduced in this paper allows us to
derive tight relaxations of all problems discussed in
Section 2. In the following, we will derive a tight re-
laxation of the local community detection problem

max
C⊂V

assoc(C)

volg(C)
(10)

subject to : volh(C) ≤ k, and J ⊂ C.

For the constrained balanced graph cut problem, the
tight relaxation can be found in a very similar way and
is thus omitted here.

First, we integrate the volume constraint via a penalty
term, see (7), which yields the equivalent problem

min
C⊂V

s.t.J⊂C

volg(C) + γT̂k(C)

assoc(C)
, (11)

where T̂k is given as T̂k(C) = max {0, volh(C)− k}
and γ >

volg(C0) vol(V )
θ assoc(C0)

for a feasible set C0 ⊂ V . Note

that the penalty term is equal to T̂k(C) = volh(C) −
min {k, volh(C)} , which is a difference of submodular
functions.

We could reformulate the seed constraint J ⊂ C as
inequality constraint |J∩C|−|J | ≥ 0 and add a similar
penalty function to the numerator of (11). However,
using the structure of the problem, a more direct way
to incorporate the seed constraint is possible. It holds
that (11) has the equivalent form

min
A⊂V \J

volg(A) + volg(J) + γT̂k′(A)

assoc(A) + assoc(J) + 2cut(J,A)
, (12)

where k′ = k − volh(J). Solutions C∗ of (11) and A∗

of (12) are related via C∗ = A∗∪J . In order to derive
the tight relaxation via Theorem 1, we need the Lovasz
extension of the set functions in (12). For technical
reasons, we replace the constant set functions volg(J)

and assoc(J) by volg(J)P̂ (A) and assoc(J)P̂ (A), re-

spectively, where P̂ is defined as P̂ (A) = 1 for A 6= ∅
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and P̂ (∅) = 0. This leads to the problem

min
A⊂V \J

volg(A) + volg(J)P̂ (A) + γT̂k′(A)

assoc(A) + assoc(J)P̂ (A) + 2cut(J,A)
. (13)

The only difference to (12) lies in the treatment of
the empty set. Note that with 0

0 := ∞ the empty
set can never be optimal for problem (13). Given an
optimal solution A∗ of (13), one then either considers
either A∗ ∪ J or J , depending on whichever has lower
objective, which then implies equivalence to (12).

The resulting tight relaxation will be a minimization
problem over Rm with m = |V \J | and we assume wlog
that the first m vertices of V are the ones in V \J .
Moreover, we use the notation fmax = maxi=1,...,m fi

for f ∈ Rm, and d
(A)
i =

∑
j∈A wij . The following Lo-

vasz extensions are useful:

Set function Lovasz extension

cut(A,A) 1
2

∑m
i,j wij |fi − fj |

volg(A) 〈f, (gi)mi=1〉
assoc(A)

〈
f, (d

(V \J)
i )mi=1

〉
− 1

2

∑m
i,j wij |fi − fj |

P̂ (A) fmax

T̂k′(A) 〈f, (hi)
m
i=1〉 − T

(2)

k′ (f)

For the sake of brevity, we do not specify the con-

vex function T
(2)
k′ . Recall from Section 4 that we need

only an element of the subdifferential for T
(2)
k′ which

by Prop. 2.2 in Bach (2011) is given by

(
t
(2)
k′ (f)

)
ji

=


0 volh(Ai+1) > k′

k′ − volh(Ai+1) volh(Ai) ≥ k′,
volh(Ai+1) ≤ k′

hji volh(Ai) < k′

,

where ji denotes the index of the i-th smallest com-
ponent of the vector f . The above Lovasz extensions
lead to the following tight relaxation of (13):

min
f∈Rm

+

R1(f)−R2(f)

S1(f)− S2(f)
, (14)

where R1(f) = 〈(gi)mi=1 + γ(hi)
m
i=1, f〉 + volg(J)fmax,

S1(f) = 〈(di)mi=1 + (d
(J)
i )mi=1, f〉 + assoc(J) fmax,

R2(f) = γT
(2)
k′ (f) and S2(f) = 1

2

∑m
i,j wij |fi − fj |.

Lower bound constraints. Constraints of the form
volh(C) ≥ k are rewritten as − volh(C) ≤ −k, which
leads to the penalty term, see (6),

T̂k(C) =

{
max {0, k − volh(C)} , C 6= ∅,

0, C = ∅.

The decomposition T̂k(C) = k P̂ (C)−min {k, volh(C)}
then again yields a difference of submodular functions
(noting k ≥ 0). The derivation then proceeds analo-
gously to the case of upper bound constraints.

Solution via RatioDCA. Observe that both nu-
merator and denominator of the tight relaxation (14)
are one-homogeneous d.c. functions and thus we can
apply the RatioDCA of Section 4. The crucial step in
the algorithm is solving the inner problem (line 3). For
both (14) and the tight relaxation of the constrained
balanced graph cut problem, it has the form

min
f∈Rm

+

‖f‖2≤1

{c1fmax + 〈f, c2〉+ λl
1

2

m∑
i,j

wij |fi − fj |}, (15)

for c1 ∈ R and c2 ∈ Rm. We solve this problem via
the following equivalent dual problem.

Lemma 3 The inner problem (15) is equivalent to

− min
‖α‖∞≤1
αij=−αji

min
v∈Sm

1

2

∥∥∥∥PRm
+

(
−c1v − c2 −

λl

2
Aα

)∥∥∥∥2
2

where (Aα)i :=
∑
j wij(αij − αji), PRm

+
denotes the

projection on the positive orthant and Sm is the sim-
plex Sm = {v ∈ Rm | vi ≥ 0,

∑m
i=1 vi = 1}.

Proof: First we replace the inner problem (15) by
the modified problem

min
f∈Rm

+

λl

2

m∑
i,j=1

wij |fi − fj |+ c1 max
i
fi + 〈f, c2〉+

1

2
‖f‖22 .

(16)

Given a solution f∗ of (16), a solution of (15) can be
obtained via f∗/ ‖f∗‖2, which can be shown using the
1-homogeneity of the objective (15). We then derive
the dual problem as follows:

min
f∈Rm

+

λl

2

m∑
i,j=1

wij |fi − fj |+ c1 max fi + 〈f, c2〉+
1

2
‖f‖22

= min
f∈Rm

+

{
max
‖α‖∞≤1
αij=−αji

λl

2

m∑
i,j=1

wij (fi − fj)αij

+ max
v∈Sm

c1 〈f, v〉+ 〈f, c2〉+
1

2
‖f‖22

}
= max
‖α‖∞≤1
αij=−αji

v∈Sm

min
f∈Rm

+

1

2
‖f‖22 +

〈
f, c1v + c2 +

λl

2
Aα

〉
,

where (Aα)i :=
∑
j wij(αij − αji). The optimization

over f has the solution

f = PRm
+

(
−c1v − c2 −

λl

2
Aα

)
.

Plugging f into the objective and using that〈
PRm

+
(x), x

〉
=
∥∥∥PRm

+
(x)
∥∥∥2
2
, we obtain the result. �
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This dual problem can be solved efficiently using
FISTA (Beck & Teboulle, 2009), a proximal gradi-
ent method with guaranteed convergence rate O( 1

k2 )
where k is the number of steps. The resulting explicit
steps in FISTA with B∞(1) = {x ∈ R | |x| ≤ 1} to
solve the inner problem are given below.

FISTA for the inner problem

Input: Lipschitz constant L of ∇Ψ,
Initialization: t1 = 1, α1 ∈ R|E|,
repeat

v = arg min
u∈Sm

∥∥∥PRm
+

(
−c1u− c2 − λl

2 Aα
)∥∥∥2

2

z = PRm
+

(
−c1v − c2 − λl

2 Aα
)

βk+1
rs = PB∞(1)

(
αkrs + 1

Lλ
lwrs

(
zr − zs

))
tk+1 =

1+
√

1+4t2k
2 ,

αk+1
rs = βk+1

rs + tk−1
tk+1

(
βk+1
rs − βkrs

)
.

until duality gap < ε

The most expensive part of each iteration of the algo-
rithm is a sparse matrix multiplication, which scales
linearly in the number of edges. To solve the first sub-
problem in FISTA, we make use of the following fact:

Lemma 4 Let x ∈ Rn and y := PRn
+

(x), then

arg min
v∈Sn

‖y − v‖22 ∈ arg min
v∈Sn

∥∥∥PRn
+

(x− v)
∥∥∥2
2
.

Proof: The proof is a straightforward but technical
transformation of the KKT optimality conditions of
the left problem into the ones of the right problem. �

Lemma 4 implies that the minimization problem can
be solved via a standard projection onto the simplex,
which can be computed in linear time (Kiwiel, 2007).

Unconstrained version. In the unconstrained case
of the maximum density problem, the tight relaxation
(14) reduces to a convex-concave ratio. As remarked
in Section 4 it can then be solved globally optimally
with our method, which in this case is equivalent to
Dinkelbach’s method (Dinkelbach, 1967). In every it-
eration, we have to solve

min
f∈Rn

+

‖f‖∞≤1

{〈g, f〉 − λ 〈d, f〉+
λ

2

n∑
i,j=1

wij |fi − fj |}. (17)

Note that here we used the fact that one can replace
the L2 norm constraint in the inner problem by a L∞
norm constraint, see the remark after Prop. 4. The
following lemma shows that (17) can be rewritten as a

s-t-min-cut-problem, which shows that the procedure
is similar to the method of Goldberg (1984).

Lemma 5 Problem (17) is equivalent to the problem

min
fV ∈H, fs=1, ft=0

1

2

∑
i,j∈V ′

w′ij |fi − fj |,

with V ′ = V ∪ {s, t}, H :=
{
u ∈ Rn+, ‖u‖∞ ≤ 1

}
and

some non-negative weights w′ij, i, j ∈ V ′.

Proof: Note that adding constant terms to the ob-
jective does not change the minimizer. We rewrite

n∑
i=1

gi(fi−0)+λ

n∑
i=1

di−λ
n∑
i=1

difi+
λ

2

n∑
i,j=1

wij |fi − fj |

=

n∑
i=1

gi|fi − 0|+ λ

n∑
i=1

di|1− fi|+
λ

2

n∑
i,j=1

wij |fi − fj |,

where we have used that f ∈ H, where H :={
u ∈ Rn+, ‖u‖∞ ≤ 1

}
. We define the graph as V ′ =

V ∪ {s, t} and the weight matrix W ′ with

w′ij =

 λwij if i, j ∈ V ,
2λdj if i = s and j ∈ V ,
2gi if i ∈ V and j = t,

and can rewrite the problem as

min
fV ∈H, fs=1, ft=0

1

2

∑
i,j∈V ′

w′ij |fi − fj |,

which is a s-t-mincut. �

The above problem can be efficiently solved, e.g., using
the pseudo-flow algorithm of Hochbaum (1998).

6. Experiments

We empirically evaluate the performance of our ap-
proach on local clustering and community detection
problems. Our goal is to address the following ques-
tions: (i) In terms of the original objective of the frac-
tional set program, how does the locally optimal so-
lution of our tight relaxation compare to the globally
optimal solution of a loose relaxation? (ii) How good
is our quality guarantee (Theorem 3), i.e. how often
does our method improve a given sub-optimal solution
obtained by another method?

In all experiments we start the RatioDCA with 10 dif-
ferent random initializations and report the result with
smallest objective value. Regarding the parameter γ
from Theorem 2, it turns out that best results are ob-
tained by first solving the unconstrained case (γ = 0)
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Table 1. Results for the constrained local normalized cut. Our solutions (CFSP) always satisfy all constraints and have
smaller cuts than the two competing methods LS and LRW.

Method ≤ 20% ≤ 40% ≤ 60% ≤ 80% ≤ 100% Runtime
CA-GrQc LRW 0.1311 (0.0686) 0.1005 (0.0542) 0.0984 (0.0543) 0.0920 (0.0439) 0.0773 (0.0341) 2

(4158,13422) LRW+CFSP 0.1048 (0.0486) 0.0695 (0.0318) 0.0614 (0.0268) 0.0614 (0.0268) 0.0457 (0.0217) 2 + 3
LS 0.2014 (0.0958) 0.1182 (0.0958) 0.0685 (0.1089) 0.0314 (0.0423) 0.0217 (0.0259) 6

LS+CFSP 0.1366 (0.0914) 0.0709 (0.0592) 0.0340 (0.0494) 0.0200 (0.0270) 0.0147 (0.0120) 6 + 3
CFSP 0.0315 (0.0292) 0.0157 (0.0131) 0.0138 (0.0115) 0.0083 (0.0055) 0.0069 (0.0044) 31

CA-HepTh LRW 0.2607 (0.0914) 0.2157 (0.0533) 0.2015 (0.0498) 0.1954 (0.0491) 0.1888 (0.0483) 9
(8638,24806) LRW+CFSP 0.2074 (0.1003) 0.1076 (0.0561) 0.0976 (0.0452) 0.0882 (0.0305) 0.0869 (0.0324) 9 + 8

LS 0.4125 (0.1079) 0.3439 (0.0631) 0.3089 (0.0839) 0.2926 (0.0913) 0.2778 (0.0923) 13
LS+CFSP 0.3258 (0.1236) 0.1894 (0.1126) 0.1274 (0.0986) 0.0651 (0.0315) 0.0618 (0.0324) 13 + 9

CFSP 0.0518 (0.0226) 0.0327 (0.0104) 0.0318 (0.0094) 0.0263 (0.0082) 0.0104 (0.0038) 58
Cit-HepTh LRW 0.5052 (0.2208) 0.4697 (0.2010) 0.4373 (0.1962) 0.4067 (0.1998) 0.3807 (0.2224) 15

(27400,352021) LRW+CFSP 0.3888 (0.2261) 0.3249 (0.2072) 0.2960 (0.1778) 0.2528 (0.1689) 0.2476 (0.1928) 15 + 368
LS 0.5430 (0.2617) 0.5099 (0.2524) 0.4737 (0.2586) 0.4290 (0.2773) 0.3997 (0.2834) 175

LS+CFSP 0.4496 (0.2848) 0.3585 (0.2185) 0.3122 (0.2138) 0.2074 (0.0814) 0.1772 (0.0782) 175 + 190
CFSP 0.4693 (0.2676) 0.3732 (0.2166) 0.2683 (0.1494) 0.1748 (0.0683) 0.0752 (0.0233) 3704

Cit-HepPh LRW 0.1784 (0.0541) 0.1466 (0.0503) 0.1234 (0.0256) 0.1079 (0.0120) 0.1048 (0.0062) 19
(34401,420784) LRW+CFSP 0.1365 (0.0305) 0.1132 (0.0201) 0.1070 (0.0181) 0.0966 (0.0135) 0.0948 (0.0052) 19 + 219

LS 0.1720 (0.0055) 0.1292 (0.0224) 0.1155 (0.0147) 0.1107 (0.0062) 0.1078 (0.0007) 103
LS+CFSP 0.1335 (0.0064) 0.1064 (0.0114) 0.0965 (0.0091) 0.0944 (0.0061) 0.0916 (0.0011) 103 + 102

CFSP 0.1181 (0.0143) 0.1127 (0.0101) 0.1109 (0.0089) 0.0928 (0.0039) 0.0913 (0.0015) 2666
amazon0302 LRW 0.1768 (0.0833) 0.1465 (0.0749) 0.1336 (0.0601) 0.1221 (0.0504) 0.1120 (0.0429) 336

(262111,899792) LRW+CFSP 0.1072 (0.0666) 0.0724 (0.0455) 0.0577 (0.0419) 0.0423 (0.0373) 0.0344 (0.0294) 336 + 608
LS 0.2662 (0.1204) 0.2496 (0.1155) 0.2247 (0.1021) 0.2066 (0.0892) 0.1946 (0.0840) 5765

LS+CFSP 0.1775 (0.0807) 0.1248 (0.0643) 0.0923 (0.0675) 0.0878 (0.0694) 0.0641 (0.0435) 5765 + 458
CFSP 0.0194 (0.0063) 0.0095 (0.0043) 0.0072 (0.0031) 0.0056 (0.0024) 0.0050 (0.0022) 3007

amazon0505 LRW 0.2472 (0.1112) 0.2369 (0.1124) 0.2249 (0.1132) 0.2200 (0.1152) 0.2163 (0.1183) 210
(410236,2439437) LRW+CFSP 0.1058 (0.0833) 0.0636 (0.0319) 0.0636 (0.0319) 0.0636 (0.0319) 0.0610 (0.0337) 210 + 2061

LS 0.4124 (0.1751) 0.3704 (0.1864) 0.3653 (0.1878) 0.3576 (0.1919) 0.3529 (0.1956) 20558
LS+CFSP 0.1300 (0.0935) 0.0903 (0.0545) 0.0782 (0.0587) 0.0782 (0.0587) 0.0782 (0.0587) 20558 + 2900

CFSP 0.0227 (0.0076) 0.0116 (0.0089) 0.0058 (0.0020) 0.0048 (0.0011) 0.0047 (0.0008) 13171

Figure 1. Different machine learning communities detected by our algorithm for the highlighted seeds. Left: Learning
Theory Middle: Sparsity Right: Kernels

and then increasing γ sequentially, until all constraints
are fulfilled. In principle, this strategy could also be
used to deal with soft or noisy constraints, however we
focus here on the case of hard constraints.

Local clustering. We first consider the local nor-
malized cut problem,

min
C⊂V

s∈C, vold(C)≤k

cut(C,C) vol (V )

vold(C) vold(C)
, (18)

where s ∈ V is a given seed vertex. We evaluate
our approach (denoted as CFSP) against the Local
Spectral (LS) method by Mahoney et al. (2012) and
the Lazy Random Walk (LRW) by Andersen & Lang
(2006) on large social networks of the Stanford Large
Network Dataset Collection (Leskovec).

In Mahoney et al. (2012), a spectral-type relaxation is
derived for (18) that can be solved globally optimally.

The resulting continuous solution is then transformed
into a set via optimal thresholding. However, con-
trary to our method this is not guaranteed to yield
a set that satisfies both the seed and volume con-
straints. Hence Mahoney et al. (2012) suggest, at the
cost of losing their approximation guarantees, to per-
form constrained optimal thresholding which consid-
ers only thresholds that yield feasible sets. In a re-
cent generalization of their work, Hansen & Mahoney
(2012) compute a sequence of locally-biased eigenvec-
tors, the first of which corresponds to the solution of
the spectral-type relaxation of Mahoney et al. (2012).
We use the code of Hansen & Mahoney (2012) to com-
pute the solution of LS in our experiments. The local
clustering technique of Andersen & Lang (2006) ex-
plores the graph locally by performing a lazy random
walk with the transition matrix M = 1

2

(
I +WD−1

)
,

where D is the degree matrix of the graph and the ini-
tial distribution is concentrated on the seed set. Under
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Table 2. Constrained local normalized Cheeger cuts of the solutions obtained by our method (note that we optimized the
normalized cut) as well as the solutions of Lazy Random Walk (LRW) where we threshold in each step according to the
normalized Cheeger cut objective

Method ≤ 20% ≤ 40% ≤ 60% ≤ 80% ≤ 100% Runtime (sec)
CA-GrQc LRW 0.1298 (0.0677) 0.0992 (0.0536) 0.0967 (0.0537) 0.0894 (0.0418) 0.0753 (0.0340) 1

CFSP 0.0312 (0.0289) 0.0153 (0.0128) 0.0133 (0.0110) 0.0079 (0.0051) 0.0064 (0.0040) 31
CA-HepTh LRW 0.2601 (0.0911) 0.2150 (0.0530) 0.2005 (0.0495) 0.1941 (0.0488) 0.1873 (0.0481) 1

CFSP 0.0517 (0.0225) 0.0326 (0.0104) 0.0317 (0.0093) 0.0261 (0.0082) 0.0103 (0.0037) 58
Cit-HepTh LRW 0.4967 (0.2300) 0.4565 (0.2150) 0.4179 (0.2174) 0.3890 (0.2174) 0.3705 (0.2307) 10

CFSP 0.4673 (0.2690) 0.3712 (0.2176) 0.2661 (0.1496) 0.1681 (0.0706) 0.0705 (0.0150) 3704
Cit-HepPh LRW 0.1574 (0.0497) 0.1104 (0.0364) 0.0769 (0.0151) 0.0573 (0.0064) 0.0566 (0.0062) 14

CFSP 0.1168 (0.0156) 0.1067 (0.0138) 0.0986 (0.0202) 0.0500 (0.0098) 0.0584 (0.0049) 2666
amazon0302 LRW 0.1768 (0.0833) 0.1464 (0.0749) 0.1335 (0.0600) 0.1220 (0.0503) 0.1118 (0.0428) 241

CFSP 0.0193 (0.0063) 0.0095 (0.0043) 0.0072 (0.0031) 0.0056 (0.0024) 0.0050 (0.0022) 3007
amazon0505 LRW 0.2472 (0.1111) 0.2369 (0.1124) 0.2248 (0.1132) 0.2200 (0.1152) 0.2162 (0.1183) 289

CFSP 0.0227 (0.0076) 0.0116 (0.0089) 0.0058 (0.0020) 0.0048 (0.0011) 0.0047 (0.0008) 13171

some conditions on the seed set, it is shown that af-
ter a specified number of steps optimal thresholding of
the random walk vector yields a set with “good” nor-
malized Cheeger cut. However, they cannot guarantee
that the resulting set contains the seed. For a fair com-
parison, we compute the full sequence of random walk
vectors until the stationary distribution is reached, and
in each step perform constrained optimal thresholding
according to the normalized cut objective.

For each dataset we generate 10 random seeds. In or-
der to ensure that meaningful intervals for the volume
constraint are explored, we first solve the local clus-
tering problem only with the seed constraint. Treat-
ing this as the “unconstrained” solution C0, we then
repeat the experiment with upper bounds of the form
vol(C) ≤ α vol(C0), where α ∈ {0.2, 0.4, 0.6, 0.8}.

Table 1 shows mean and standard deviation of the nor-
malized cut values averaged over the 10 different ran-
dom trials (seeds) and average runtime over the dif-
ferent runs and volume constraints. To demonstrate
the quality guarantee (Theorem 3) we also initialize
CFSP with the solution of LS and LRW. Our method
CFSP consistently outperforms the competing meth-
ods by large margins and always finds solutions that
satisfy all constraints. In some cases CFSP initialized
with LS or LRW outperforms CFSP with 10 random
initializations. While LRW is very fast, the obtained
normalized cuts are far from being competitive. Note
that CFSP still performs better if one uses for the
optimal thresholding the normalized Cheeger cut for
which LRW has been designed. This is shown in Table
2 where we compare the normalized Cheeger cut of our
solutions (note that we optimized the normalized cut)
to the solution obtained by the Lazy Random Walk
method where we threshold in each step according to
the normalized Cheeger cut objective.

Community detection. We evaluate our approach
for local community detection according to (10). The
task is to extract communities around given seed sets
in a co-author network constructed from the DBLP

publication database. Each node in the network rep-
resents a researcher and an edge between two nodes
indicates a common publication. The weights of the
graph are defined as wij =

∑
l∈Pi∩Pj

1
|Al| , where Pi, Pj

denotes the set of publications of authors i and j and
Al denote the sets of authors for publication l, i.e. the
weights represent the total contribution to shared pa-
pers. This normalization avoids the problem of giving
high weight to a researcher who has publications that
have a large number of authors, which usually does
not reflect close collaboration with all co-authors.

To avoid finding a trivial densely connected group of
researchers with few connections to the rest of the au-
thors, we further restrict the graph by considering only
authors with at least two publications and maximum
distance two from the seed set. As volume function in
(10), we use the volume of the original graph in order
to further enforce densely connected components.

We perform local community detection with the size
constraint |C| ≤ 20 and three different seed sets J1 =
{P. Bartlett , P. Long, G. Lugosi}, J2 = {E. Candes ,
J. Tropp} and J3 = {O. Bousquet}. J1 consists
of well-known researchers in learning theory, and all
members of the detected community work in this area.
To validate this, we counted the number of publica-
tions in the two main theory conferences COLT and
ALT. On average each author has 18.2 publications in
these two conferences (see Table 3 for more details).
The seeds J2 yield a community of key scientists in
the field of sparsity such as T. Tao, R. Baraniuk, J.
Romberg, M. Wakin, R. Vershynin etc. The third
community contains researchers who either are/were
members of the group of B. Schölkopf or have closely
collaborated with his group.
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Table 3. The number of publications in ALT and COLT of
each author in the “learning theory” community found

Author COLT ALT
Sandra Zilles 3 13

Peter L. Bartlett 24 2
Carl H. Smith 13 4
Philip M. Long 21 3

John Case 12 18
Sanjay Jain 21 40

Steffen Lange 14 5
Rolf Wiehagen 6 7

Thomas Zeugmann 6 20
Rusins Freivalds 6 5
Efim B. Kinber 11 9
Frank Stephan 13 28

Martin Kummer 5 0
Arun Sharma 10 13

Samuel E. Moelius 1 5
Gabor Lugosi 16 1
Matthias Ott 2 1
Jochen Nessel 1 2

Susanne Kaufmann 1 1
Ganesh Baliga 1 0
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