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Abstract

Background: The robust identification of isotope patterns originating from peptides being analyzed through mass
spectrometry (MS) is often significantly hampered by noise artifacts and the interference of overlapping patterns
arising e.g. from post-translational modifications. As the classification of the recorded data points into either ‘noise’ or
‘signal’ lies at the very root of essentially every proteomic application, the quality of the automated processing of mass
spectra can significantly influence the way the data might be interpreted within a given biological context.

Results: We propose non-negative least squares/non-negative least absolute deviation regression to fit a raw
spectrum by templates imitating isotope patterns. In a carefully designed validation scheme, we show that the
method exhibits excellent performance in pattern picking. It is demonstrated that the method is able to disentangle
complicated overlaps of patterns.

Conclusions: We find that regularization is not necessary to prevent overfitting and that thresholding is an effective
and user-friendly way to perform feature selection. The proposed method avoids problems inherent in
regularization-based approaches, comes with a set of well-interpretable parameters whose default configuration is
shown to generalize well without the need for fine-tuning, and is applicable to spectra of different platforms. The R
package IPPD implements the method and is available from the Bioconductor platform (http://bioconductor.fhcrc.
org/help/bioc-views/devel/bioc/html/IPPD.html).

Background
Mass spectrometry (MS), often in conjunction with high
performance liquid chromatography (HPLC), is the de-
facto standard analytical tool to derive important bio-
logical knowledge about the protein content of whole
cells, organelles, or biomedical samples like tumour or
blood plasma. Within a typical experimental setup, puri-
fied proteins of the sample under study are digested by
an enzyme. Before entering the mass spectrometer, pep-
tides are separated chromatographically according to their
physico-chemical properties in order to avoid a massive

*Correspondence: ms@cs.uni-saarland.de
1Department of Computer Science, Saarland University, Saarbrücken, Germany
Full list of author information is available at the end of the article

overlapping of peptide signals within a single scan. Nev-
ertheless, due to the sheer number of peptides present in
a sample, interfering patterns still occur frequently, not
least because of post-translational modifications such as
the deamidation of asparagines or glutamine residues. In
order to obtain an unambiguous assignment of the sig-
nals, and in particular their isotope patterns, which is a
prerequisite for a proper identification and quantification,
every data point in m/z dimension is classified either as
‘signal’ or as ‘noise’ during the so-called feature detection
phase. As this processing lies at the very root of every
proteomic application, the quality of feature detection can
have dramatic impact on the finally derived results and
conclusions. In view of the large amount of data even a
single MS experiment can produce, automated analysis is
indispensable. However, due to various artifacts arising
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from electric and chemical noise and baseline trends, the
identification of isotope patterns is error-prone and time
consuming. In addition, severe overlaps of peptide sig-
nals within the samemass spectrometric scan can hamper
a straightforward analysis furthermore. In recent years,
numerous procedures have been developed to process
this data (cf., e.g., [1-8]). Within this paper, we propose a
novel method that is demonstrated to perform especially
well in challenging situations, characterized e.g. by strong
local variations in noise and intensity levels or the pres-
ence of isotope patterns of different charges exhibiting
overlap, which in many cases may be difficult to resolve
even for a human expert by visual inspection. Existing
software typically depends on a large set of parameters
requiring careful fine-tuning, often being rather sensitive
to changes in the measurement process like the change
of the platform, which makes a proper parameter choice
a laboursome task. In contrast, the proposed method has
been designed to depend on a comparatively small set
of well-interpretable parameters whose default configura-
tion is shown to be robust, yieldingmostly excellent, but at
least competitive performance on spectra of different plat-
forms. In a nutshell, our method uses non-negative least
squares or non-negative least absolute deviation regres-
sion to fit a spectrum s by a large dictionary of templates
mimicking isotope patterns; since true positions and
charges of isotope patterns in the spectrum are unknown
in advance, regions where the signal exceeds a local mea-
sure of noise are identified and then a vast set of templates
is placed in those regions. In the spirit of sparse recov-
ery, a small subset of the templates, which reasonably
explains the observed signal, is selected by applying hard
thresholding with a locally adaptive choice of the thresh-
old to the regression coefficients obtained previously. Our
method is related to a formerly proposed template-based
approach (NITPICK, [3]). As opposed to the present
work, NITPICK uses �1-regularized non-negative least
squares. Without non-negativity constraints, this proce-
dure is known as the lasso [9]. Reference [10] contains
the first application of the lasso to the problem studied
in the present paper. Given a dramatic increase in occur-
rence of high-dimensional datasets in recent years and the
resulting need for feature selection, the lasso, due to com-
putationally and theoretically appealing properties, has
meanwhile become so popular that it can be regarded as a
standard tool of modern data analysis [11]. In this respect,
NITPICK follows the usual paradigm suggesting that �1-
regularization is the method of choice. In the present
paper, we argue for a deviation from that paradigmmainly
in view of the following two aspects. First, a major bene-
fit of our fitting+thresholding approach is that parameter
choice is more user-friendly, since the threshold can be
interpreted in terms of a signal-to-noise ratio. This is
unlike the regularization parameter of the lasso, which can

in general not be related directly to the signal. In the pres-
ence of heterogeneous noise and model misspecifications,
the ‘right amount’ of regularization is notoriously diffi-
cult to choose. Second, there is a substantial body of work
showing that non-negativity constraints alone may suffice
to recover a sparse target. Non-negative least squares +
thresholding is analyzed in [12], where it is shown that it
can significantly outperform the usual �1-approach with
respect to sparse recovery. See Section “Sparse recov-
ery with non-negativity constraints: non-negative least
squares + thresholding vs. the non-negative lasso” for a
detailed discussion.

Methods
A spectrum is understood as a sequence of pairs
{(xi, yi)}ni=1, where xi = mi/zi is a mass (mi, measured in
Dalton Da) to charge (zi), and yi is the intensity, i.e. the
abundance of a particular mass (modulo charge state),
observed at xi, i = 1, . . . , n, which are assumed to be
ordered increasingly.

Template model
The (yi)ni=1 = y are modeled as a positive combination of
templates designed on the basis of prior knowledge about
peak shape and composition of isotope patterns. If our
model were perfectly correct, we could write

y = �β∗ =
C∑
c=1

�cβ∗
c , �c =[ϕc,1 . . . ϕc,pc ] , c = 1, . . . ,C,

(1)

where � is a non-negative matrix of templates and β∗
is a non-negative coefficient vector. Both � and β∗ can
be arranged according to charge states c = 1, . . . ,C.
Each sub-matrix �c can in turn be divided into columns
ϕc,1, . . . ,ϕc,pc , where the entries of each column vector
store the evaluations of a template ϕc,j, j = 1, . . . , pc, at
the xi, i = 1, . . . , n. It is assumed that only a small fraction
of the templates in � are needed to represent the signal,
i.e. β∗ is highly sparse. The templates are of the form

ϕc,j =
∑
k∈Z

ac,j,k ψc,j,k,θ c,j , (2)

where the ψc,j,k are functions representing a single peak
within an isotope pattern, depending on a location mc,j
and a parameter vector θ c,j. In general, peaks can be
modeled by Gaussian, Lorentzian, and sech2 shapes, cf.
[13]. Due to their similarity, we restrict ourselves to the
Gaussian, but provide in addition the exponentially mod-
ified Gaussian (EMG, cf., e.g., [14]), a model for a possi-
bly skewed peak as occuring frequently in MALDI-TOF
recordings, where late ion formation in the gas phase
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leads to tailed peaks [15]. The EMG is parameterized by
θ c,j = (αc,j, σc,j,μc,j)� ∈ R

+ × R
+ × R (for αc,j ↓ 0, one

obtains a Gaussian)

ψc,j,k(x) = 1
αc,j

exp
(

σ 2
c,j

2α2
c,j

+ μc,j − (x − mc,j,k)

αc,j

)
(3)

×
(
1 − F

(
σc,j
αc,j

+ μc,j − (x − mc,j,k)

σc,j

))
,

F(t) =
∫ t

−∞
1√
2π

exp
(

−u2
2

)
du.

In (2), the nonnegative weights ac,j,k equal the height of
the isotopic peak k within the pattern j of charge state c.
These heights are computed according to the averagine
model [16]. The mc,j,k are calculated from mc,j as mc,j,k =
mc,j+κ k

c , where κ usually ranges between 1.002 and 1.008
Dalton, see e.g. [17]. Note that in Eq. (2) the location of the
most intense peak (ac,j,0 = maxk ac,j,k) is taken as charac-
teristic location of the template instead of using the finally
reported monoisotopic position: we set mc,j,0 = mc,j so
that the remaining mc,j,k , k �= 0, are computed by shift-
ing mc,j in both directions along the m/z axis. With the
normalization maxx ϕc,j(x) = 1 for all c,j, the entries of β∗
can be interpreted as intensities of the most intense peaks
of the templates. The construction scheme is illustrated in
Figure 1.

Parameter estimation
The parameters θc,j = (αc,j, σc,j,μc,j)� of the peaks (3)
are unknown in practice. Following a central paradigm of
our framework, which is to relieve the user of performing
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Figure 1 Template model. Illustration of the template construction
(charge state c = 2) for an EMG peak shape with a moderately strong
right tailing.

laboursome fine-tuning of parameters, we have developed
a systematic procedure automatically providing estimates
of these parameters, which is considerably more efficient
and flexible than a grid search. For instance, the param-
eters may additionally depend on the m/z-position. Our
framework for parameter estimation extends a conceptu-
ally similar approach in [18] designed for a Gaussian peak
shape.
In a first step, we apply a simple peak detection algo-

rithm to the spectrum to identify disjoint regions Rr ⊂
{1, . . . , n}, r = 1, . . . ,R, of well-resolved peaks. For
each region, we fit the chosen peak shape to the data
{(xi, yi)}i∈Rr using nonlinear least squares:

min
θ

∑
i∈Rr

(yi − ψθ (xi))2, (4)

yielding an estimate θ̂ r (̂xr), where x̂r denotes an estima-
tion for the mode of the peak in region Rr . This concept
is sketched in Figure 2. The nonlinear least squares prob-
lem (4) is solved by using a general purpose nonlinear
least squares routine available in most scientific comput-
ing environments, e.g. nls in R. Once the sequence of
estimators {̂θ r (̂xr)} has been obtained, they are subject
to a suitable aggregation procedure. In the simplest case,
one could simply take averages. For spectra where peak
shape characteristics, in particular peak width, are known
to vary systematically with m/z position, we use the pairs
{(̂xr , θ̂ r (̂xr))} as input into a linear regression procedure
to infer the parameters of pre-specified trend functions.
Formally, we model each component θl of θ as a linear
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Figure 2 Parameter estimation. Illustration of peak parameter
estimation. The figure displays a well-resolved peak in the region
R = {i : 941.3 Th ≤ xi ≤ 941.9 Th}. In this example, the size ofR
equals 33, i.e. there are 33 pairs {(xi , yi)} that enter a nonlinear least
squares problem of the form (4). Under the assumption of an EMG
model, the resulting fit is indicated by a solid line.
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combination of known functions gl,m of x = m/z and an
error component εl, i.e.

θl(x) =
Ml∑
m=1

νl,mgl,m(x) + εl(x), (5)

for which a linear trend i.e. θl(x) = νl,1+νl,2x, is one of the
most common special cases. In [19], a set of instrument-
specificmodels for the peak width is provided, all of which
can be fitted by our approach.
We refrain from using least squares regression to deter-

mine the parameters in (5) due to its sensitivity to possible
outliers, which arise from poorly resolved, wiggly or over-
lapping isotope patterns, which may affect the quality
of the estimates θ̂ r . Therefore, the linear model is fit-
ted in a robust way by using least absolute deviation
regression. Given the resulting estimates of the parame-
ters {νl,m},m/z-specific estimates for the parameters in (3)
are obtained by evaluating (5).

Template fitting
The computation of the design matrix � requires a set
of m/z positions at which templates are placed. In gen-
eral, one has to choose positions from the interval [ x1, xn].
We instead restrict ourselves to a suitable subset of the
set {xi}ni=1. The deviations from the positions of the
true underlying isotope patterns is then at least in the
order of the sampling rate, but this can be improved
by means of a postprocessing step described in Section
“Postprocessing and thresholding”. Using the whole set
{xi}ni=1 may be computationally infeasible if n is large
and is in fact not necessary since isotope patterns occur
very sparsely in the spectrum. Therefore, we apply a pre-
selection step on the basis of what we term ‘local noise
level’ (LNL). The LNL is defined as the median of the
intensities yi falling into a sliding window of fixed width
around a specific position. For x ∈[ x1, xn], we define the
local noise level based on sliding window width h as

LNL(x) = median({yi : i ∈ Ix}), (6)
Ix = {i : xi ∈[ x − h, x + h] }.

Given the LNL, we place templates at position xi (one
for each charge state) if the corresponding yi exceeds
LNL(xi) by a factor factor.place. Section “Finding a
set of default parameters” describes how we determined
defaults for the two parameters h and factor.place.
In fact, the LNL is a central quantity in our framework,
because it does not only influence the placement, but also
the selection of templates (see Section “Postprocessing
and thresholding” below). Choosing h too small typically
has the effect that the LNL is overestimated such that true
peaks might be incorrectly classified as noise. Conversely,
choosing h too large leads to an underestimation, thereby

increasing the computational burden as well as the num-
ber of spurious patterns included in the final list. The
advantages of working with the median are obvious: easy
computation, robustness and equivariance with respect to
monotone transformations. Similar notions of local noise
can be found in the literature, see e.g. [8] where a trun-
cated mean is used. Given the positions of the templates,
we generate the matrix � according to Eqs. (1) and (2). In
the fitting step, we compute a non-negative least squares
(q = 2) or alternatively non-negative least absolute devi-
ation (q = 1) fit by determining a minimizer β̂ of the
criterion

min
β≥0

∥∥y − �β
∥∥q
q , q = 1 or q = 2, (7)

The optimization problem (7) is a quadratic (q = 2) or
linear (q = 1) program and is solved using interior point
methods (e.g. [20]). The details are relegated to Appendix
“Fitting with non-negativity constraints” section. As far as
the choice of q is concerned, we point out that q = 1
yields a robust fit that can deal better with deviations from
model assumptions, i.e. deviations from the averagine
model or from the peak model. However, in general, we
are unable to provide any recommendation about how to
choose q. Therefore, in our validation, both are evaluated.

Comparisonwith pepex
In prior work [21], subsequently referred to as ‘pepex’,
non-negative least squares fitting is used as well. An
important difference to our approach is that the matrix
� is not constructed from the convolution of isotope
distributions and peak shapes as described in Section
“Template model”. Instead, peak detection is applied first
to reduce the raw intensity data to peak clusters, a step
that is usually referred to as centroiding. At the second
stage, called de-isotoping, peak clusters are fitted by a
design matrix containing isotope distributions them-
selves, not convolved versions. While the approach is
computationally more attractive and avoids estimation of
peak shape parameters (cf. Section “Parameter estima-
tion”), the division into centroiding and de-isotoping may
lead to poor performance for low resolution and noisy
data, or in the presence of overlapping patterns. In these
cases, peak detection is little reliable. In our template-
based approach, there is no separation of centroiding and
de-isotoping. It performs much better in the aforemen-
tioned cases, since it operates directly on the data and is
hence less affected if single peaks of a pattern are difficult
to detect. This reasoning is supported by our evaluation in
Section “Results and discussion” as well as that in [3]. At
the same time, our approach can in principle be applied to
centroided spectra as well. In this case, the columns of the
matrix � directly represent isotope distributions instead
of isotopic patterns.
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Postprocessing and thresholding
While indeed a considerable fraction of the entries of
β̂ are precisely equal to zero, treating all positions for
which the corresponding entry differs from zero as loca-
tions of isotope patterns would yield a huge number of
false positives, at least because of regions, in which noise
fitting reduces the objective in (7). Therefore, the fitting
step of the previous section is accompanied by a thresh-
olding step, with the aim to separate signal from noise.
However, fitting followed by thresholding alone does not
lead to a proper output. The strategy could be successful
if our template model were free of any kind of misspec-
ification. Even when neglecting possible misfits of the
averagine model, we still have to cope with two sources
of systematic errors − a limited sampling rate and mis-
matches in the peak model. These are the main reasons
for what we term ‘peak splitting’, referring to the phe-
nomenon that several templates are used to fit precisely
one pattern. Figure 3 illustrates the effect of sampling in a
noiseless setting. In the top panel, the signal is sampled in
such a way that the top of the peak is lost. When placing
two templates at the two sampling points xl, xu of maxi-
mum signal, non-negative least squares fitting attributes
weights β̂l, β̂u of roughly equal size to the templates. The
postprocessing procedure outlined below yields a suitable
correction. Onemight object that ‘peak splitting’ is a prob-
lem inherent in our entirely fitting-oriented approach (7)
not incorporating any form of regularization. The bottom
panel of Figure 3 shows the solution path of the non-
negative lasso [22] given by {β̂(λ), λ ≥ 0}, β̂(λ) =
argminβ≥0

∥∥y − �β
∥∥2
2 + λ1�β . One obtains two nearly

parallel trajectories, demonstrating that only a heavily
biased fit, which would undesirably lead to the exclu-
sion of additional smaller signals, could accomplish the
selection of only one template.
To a large extent, ‘peak splitting’ can be corrected by

means of the following merging procedure, which we
regard as postprocessing of the fitting step (7) and which
we apply prior to thresholding. Given an estimate β̂ , we
define M̂c = {mc,j : β̂c,j > 0} ⊂ {xi}ni=1, c = 1, . . . ,C, as
the set of all template locations where the corresponding
coefficient exceeds 0.

1. Separately for each c, divide the sets M̂c into groups
Gc,1, . . . ,Gc,Gc of ‘adjacent’ positions. Positions are
said to be adjacent if their distance on them/z scale
is below a certain tolerance ppm specified in
parts-per-million, cf. Section “Finding a set of default
parameters”. In the context of ‘peak splitting’, the
templates at locations sharing the same group are
assumed to fit precisely one true underlying peak.

2. With the notation of Eq. (2), for each c = 1, . . . ,C,
and for g = 1, . . . ,Gc, we solve the following
optimization problem.
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Figure 3 Peak splitting. Lower panel: Non-negative least squares fit
of the sampled signal with and without postprocessing. Upper panel:
Solution path of the non-negative lasso for the same data.

(m̃c,g , β̃c,g) = argmin
mc,g
βc,g

∞∫
−∞

⎛⎝ ∑
mc,j∈Gc,ĝ

βc,jψmc,j (x) − βc,gψmc,g (x)

⎞⎠2

dx,

(8)

with the aim to find a location m̃c,g and a weight β̃c,g
of the most intense peak ψm̃c,g within an isotope
pattern ϕc,g approximating the fit of the most intense
peaks {ψmc,j : mc,j ∈ Gc,g} within the isotope patterns
{ϕc,j : mc,j ∈ Gc,g} best in a least squares sense.

3. One ends up with sets M̃c = {m̃c,g}Gc
g=1 and

coefficients {β̃c,g}Gc
g=1, c = 1, . . . ,C.

The additional benefit of solving (8) in step two as com-
pared to the selection of the template with the largest
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coefficient within each group as proposed in [3] is that
we are able to determine the location of the pattern even
more accurately as predetermined by a limited sampling
rate, since in (8) we optimize the location over a con-
tinuum. The optimization problem (8) can be solved fast
and accurately by sampling the integrand on a fine grid of
points and then solving a nonlinear least squares problem
with optimization variablesmc,g and βc,g .
All candidate positions (m̃c,g , β̃c,g) are assigned a signal-

to-noise ratio

ratioc,g = GOF+(m̃c,g) · β̃c,g
LNL+(m̃c,g)

, (9)

where LNL+(m̃c,g) = max
{
LNL(m̃c,g), 14median

({LNL(xi)}ni=1)
}
is a truncated version of the local noise

level, with a lower bound included to avoid that the deno-
minator in (9) takes on tiny values in low-intensity regions.
The factor GOF+(m̃c,g) represents a goodness-of-fit
adjustment, a correction which aims at downweighting
spurious peaks in low-intensity noise regions. These are
not hard to distinguish from signal regions, which, in view
of the presence of peak patterns, tend to be considerably
regular. In order to spot noise regions, we fit the spectrum
by single peaks (3) placed at each datum xi, i = 1, . . . , n,
where the peak shape model, the associated peak
shape parameters and the parameter q are chosen
according to the choice made for template generation
(Sections “Template model”) and template fitting (Section
“Template fitting”), respectively. Denote the residuals
of the resulting fit by {ri}ni=1. A local measure of
goodness-of-fit is defined by

GOF+(x) = min
{
1 −

∑
i∈Ix |ri|q∑
i∈Ix |yi|q , 0.5

}
,

The idea underlying this procedure is that in noise
regions, the fit to the data will be poor, and consequently,
the size of the residuals is expected to be large relative to
the signal, hence leading to a low goodness-of-fit statistic.
The truncation at 0.5 limits the influence of this correc-
tion. A final list is generated by checking whether the
signal-to-noise ratios (9) exceed a ‘significance threshold’
t specified by the user. We do not give a general guideline
for choosing t, because a reasonable choice is very specific
to experimental conditions, e.g. the platform used and the
composition of the spectrum. It is important to note that
while t itself is constant, we take into account that the
noise level is heterogeneous, since thresholding is based
on the ratios (9), where the local noise level enters.

Finding a set of default parameters
Apart from the signal-to-noise threshold t, we have
introduced the parameters window, i.e. the width h of
the sliding window required for the computation of the

local noise level (6), the template placement parame-
ter factor.place and the parts-per-million tolerance
ppm within which peaks are considered to be merged
by the postprocessing procedure. With the exception of
the threshold t, we have fixed all parameters to a default
setting which we expect to give reasonable (albeit poten-
tially suboptimal) results on spectra different from the
ones analyzed here, without the need of manual tuning.
In order to find such a default setting, we performed a
grid search using only one selected spectrum of those
described in Section “Datasets” below. While our default
setting, which can be found in the HTMLmanual of the R
package IPPD, already performs well, we recommend to
do such a calibration to optimize the performance of our
method.

Sparse recovery with non-negativity constraints:
non-negative least squares + thresholding vs. the
non-negative lasso
We believe that our preference for the first alternative is
a major methodological contribution that has potential to
impact related problems where non-negativity problems
come into play. In the present section, we provide, at a
high level, a series of arguments rooting in the statistics
and signal processing literature that clarify our contribu-
tion and support our preference.

Linearmodels and usual paradigms in statistics
The fact that we favour non-negative least squares +
thresholding may seem implausible since it questions
or partially even contradicts paradigms about high-
dimensional statistical inference. Consider the linear
model

y ≈ �β∗, y ∈ R
n, � ∈ R

n×p, (10)

which corresponds to model (1), where ‘≈’ is used instead
of ‘=’ to account for stochastic noise or model misspec-
ifications. Linear models of the form (10) have been and
continue to be objects of central interest in statistical
modelling.

• Classical work in statistics shows that under mild
conditions if the number of sample n grows at a
faster rate than the number of features p, the
ordinary least squares estimator β̂

ols → β∗ (in
probability) as n → ∞.

• Since many contemporary datasets, like the MS
datasets of the present paper, are characterized by a
large p, which is of the same order as n or even larger,
the first bullet has considerably lost relevance.
Translated to MS datasets, it provides a statement
about the case where the resolution tends to infinity.
Therefore, modern statistical theory studies regimes
in which p is allowed to grow at a faster rate than n,
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with a focus on results that hold for finite sample
sizes. These results hinge on some sort of sparsity
assumption on β∗, the simplest being that β∗ is zero
except for some index set (support) of small
cardinality. In this context, a multitude of results has
been proved (see e.g. [23] for an overview) indicating
that the lasso estimate β̂

lasso is a statistically optimal
procedure in the sense that if the regularization
parameter is chosen in the right way, the squared
Euclidean distance ‖β̂ lasso − β∗‖22 is nearly of the
same order as that of an estimator one could
construct if the non-zeroes of β∗ were known.

The second bullet provides quite some justification
for NITPICK, which is based on the lasso. However, as
detailed below, the italicized part can be critical. On the
other hand, there are several results that support our
approach.

The power of non-negativity constraints
• It turns out that the non-negativity constraint β ≥ 0

imposed in non-negative least squares (NNLS) may
lead to a drastically better performance than that of
the ordinary least squares estimator in ‘large p’
situations provided � satisfies additional conditions.
Roughly speaking, it is shown in [12] that if � has
non-negative entries, which is fulfilled for the
template matching problem of Section “Template
Model”, the NNLS estimator β̂ does not overfit and is
unique even in the singular case (p > n). These
results indicate that NNLS may behave surprisingly
well in a high-dimensional setup, without using
�1-regularization, which is often propagated in the
literature as basically the only option ([24], Section
16.2.2).

• There are several recent papers [25-27] in the sparse
recovery literature in which it is shown that a sparse,
non-negative vector can be recovered from few linear
measurements n � p. In [12], these results are
extended to a noisy setup. More specifically, it is
shown that NNLS + thresholding can consistently
recover β∗ and its support. Very recently, using
similar conditions as in [12], Meinshausen [28] has
established several guarantees of NNLS in a
high-dimensional setup.

One should bear in mind that the non-negativity con-
straints are essential for our approach. Thresholding the
unconstrained ordinary least squares estimator β̂

ols in
general leads to poor results in the ‘large p’ situation.

Shortcomings of �1-regularization in theory
In [12], it is not only shown that NNLS + thresh-
olding is a sound strategy to perform sparse recovery

of a non-negative target, but also examples are given
where the non-negative lasso is outperformed even if
its regularization parameter is set to match theoretical
results and regardless of whether subsequent threshold-
ing as advocated in [29,30] is used or not. In partic-
ular, inferiority of the lasso arises in the presence of
small, yet significantly non-zero entries in β∗. These
are specifically affected by the non-negligible bias of
�1-regularization [31]. It is important to note that the
comparison in [12] does not contradict prior compar-
isons of the lasso (aka soft thresholding) and (hard)
thresholding for orthonormal designs (��� = I) in
[32,33], where both approaches perform similarly well and
non-negativity constraints are not particularly important.
Orthonormal designs, which lead to greatly simplified
estimation problem are not of interest in the context of
the paper, since the template matrix � is far from being
orthonormal.

Shortcomings of �1-regularization in practice
The study in [12] is of more theoretical nature, since
all constants of the problem, in particular the noise
level, are known, so that the regularization parame-
ter can be set in an optimal fashion. This can realis-
tically not be accomplished in practice. Likewise, the
information-theoretic criterion employed in [3] as well
as the data-splitting approach of [34] rely on knowl-
edge of the noise level, or a consistent estimate thereof,
which is hard to obtain in the ‘large p’ situation [35]. In
any case, the regularization parameter remains a quan-
tity that is hard to grasp and hence hard to set for a
practitioner, since it cannot be related directly to the sig-
nal. In contrast, the threshold t admits a straightforward
interpretation.
Moreover, when using �1-regularization, data fitting and

model selection are coupled. While this is often regarded
as advantage, sincemodel selection is performed automat-
ically, we think that it is preferable to have a clear sepa-
ration between data fitting and model selection, which is
a feature of our approach. Prior to thresholding, the out-
put of our fitting approach gives rise to a ranking which
we obtain without the necessity to specify any parameter.
Selection is completely based on a single fit simply by let-
ting the the threshold vary. On the contrary, if one wants
to reduce the number of features selected by the lasso,
one resets the regularization parameter and solves a new
optimization problem. Note that it is in general not pos-
sible to compute the entire solution path of the lasso [22]
for the MS datasets used for the present paper, where the
dimension of � is in the ten thousands so that the active
set algorithm of [22] is prohibitively slow. In this regard,
model selection by thresholding is computationally
more attractive.
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Results and discussion
For the assessment of the pattern picking performance,
in total eight spectra generated by two different ioniza-
tion methods, matrix assisted laser desorption/ionization
(MALDI) and electrospray ionization (ESI), respectively,
form the basis of the evaluation. While MALDI has been
coupled to a time-of-flight (TOF) mass analyzer, ESI MS
spectra have been recorded on both a linear ion trap
(LTQ) and an Orbitrap mass analyzer. In addition, a series
of spectra were prepared with the aim of investigating
in detail the method’s performance in the presence of
overlapping peptides.

Datasets
For MALDI mass spectra (Additional file 1), time of flight
mass analysis was performed; spectra were recorded on
anABIMALDI-TOF/TOF 4800 instrument in positive ion
mode using α-cyano-4-hydroxy-cinnamic acid (CHCA)
as matrix. Nanospray ESI spectra (Additional file 2) were
measured in positive ion mode on a Thermo LTQ Orbi-
trap Velos MS; both high resolution measurements using
the Orbitrap mass analyzer (referred to as ‘Orbitrap’) and,
alternatively, low resolution linear ion trap (IT) measure-
ments were performed with this setup. This experiment
has been chosen in order to demonstrate the utility of
our method at different concentration levels, that it is
robust with respect to changes in the data-generating pro-
cess and that the method is capable of handling singly
charged ions, the main form generated by MALDI MS,
as well as higher charged ions formed in ESI MS. Tryp-
tic digests (performed in 40 mM ammonium bicarbonate)
of model proteins were used as analytes: bovine myo-
globin and chicken egg lysozyme (10 and 500 fmol each)
for MALDI-TOF experiments, and lysozyme (250 and
1000 fmol) for ESI experiments. Disulfide bonds were
reduced with dithiothreitol (DTT) prior to alkylation, free
cysteine residues were alkylated by iodacetamide. No fur-
ther sample pretreatment was performed prior to MS
analysis. When referring to these spectra, we omit that
tryptic digests are given: e.g., the term ‘MALDI-TOFmyo-
globin spectrum (500 fmol)’ means the respective tryptic
digest.
To demonstrate explicitly the method’s ability to sepa-

rate strongly overlapping patterns even in the case of badly
resolved signals, 22 additional spectra have been gener-
ated in positive ion mode on a Bruker Daltonics HCT
Ultra Ion Trap MS with an electrospray ion source. Three
synthetic peptides (cf. Section “Unmixing of overlaps”
for details) with sequences corresponding to tryptic pep-
tides from bovine serum albumin (BSA) were used as
analytes. In each measurement two out of three peptides
were mixed in different ratios to get overlapping pep-
tide signals, also with different charge states. Two differ-
ent concentrations (500 fmol/μl and 1000 fmol/μl) were

injected into the mass spectrometer via a Cole-Parmer
syringe pump.

Validation strategy
Validation of pattern picking is notoriously difficult,
because a gold standard which is satisfactory from both
statistical and biological points of view is missing. In this
context, a major problem one has to account for is that
spectra frequently contain patterns whose shape is not
distinguishable from those of peptides, but which are in
fact various artifacts resulting e.g. from impurities during
sample preparation and measurement. These artifacts do
not constitute biologically relevant information and are,
in this sense, ‘false positives’. An important instance are
signals derived from the matrix (or from matrix-clusters)
frequently observed in MALDI MS. The pattern of these
signals is similar to that of peptides; nevertheless, due to
their molecular composition, which differs significantly
from that of an average peptide, the exact masses can be
used to exclude these signals from the data analysis. On
the other hand, from a statistical perspective which judges
a method according to how well it is able to detect specific
patterns in a given dataset, a qualification as ‘true positive’
is justified. With the aim to unify these aspects, we have
worked out a dual validation scheme. In order to reduce
the number of artifacts, all automatically generated lists
of candidates for peptide masses as well as the lists of a
human expert (see below) are postprocessed by a peptide
mass filter [36]: only peptides whose monoisotopic mass
deviated less than 200 ppm from the closest peptide mass
centera are used for subsequent evaluation.

Comparisonwithmanual annotation
The first part investigates how well a method is able to
support a human expert who annotates the spectra manu-
ally. More specifically, the automatically generated lists are
matched to the manual annotation such that an entry of
the list (potential peptide mass) is declared ‘true positive’
whenever there is a corresponding mass in the manual
annotation deviating by no more than � ppm. Otherwise,
it is declared ‘false positive’. In order to adapt� ppm to the
resolution of the different mass lines, we used the follow-
ing strategy: assuming that most of the peptides will have
a mass larger than 700 Da, we determined the spacing
�m/z between neighboring data points in m/z direction
for each mass spectrum in the lower mass range. If we
further assume that a simple manual annotation by visual
inspection can result in a mass deviation from the ‘correct’
mass position of at most�m/z, we can derive the following
tolerance values: � = 100 ppm for ion trap recordings,
� = 50 ppm in the case of MALDI-TOF recordingsb and
� = 20 ppm for Orbitrap data.
As the performance of our as well as those of all com-

peting methods depends on a threshold-like parameter
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governing, crudely speaking, the trade-off between preci-
sion and recall, we explore the performance for a range
of reasonable parameter values, instead of fixing an (arbi-
trary) value, which we believe to be little meaningful. The
results are then visualized as ROC curve, in which each
point in the (Recall, Precision)-plane corresponds to a
specific choice of the parameter. Formally, we introduce
binary variables {Bi(t)} for each mass i contained in the
list of cardinality L̂(t) when setting the threshold equal
to t, where Bi(t) equals 1 if the mass is matched and 0
otherwise, and denote by L the number of masses of the
manual annotation. The true positive rate (recall, R), and
the positive predictive value (precision, P) associated with
threshold t are then defined by R(t) =

∑
i Bi(t)
L , P(t) =∑

i Bi(t)
L̂(t) . An ROC curve results from a sequence of pairs

{R(t),P(t)} for varying t.

Database query
The second part evaluates the lists in terms of a query to
the Mascot search engine [37], version 2.2.04. In particu-
lar, we account for a major problem of a manual annota-
tion, namely that peptides yielding weakMS signals might
easily be overlooked, but might be detected by methods
designed to extract those weak signals. Since we are espe-
cially interested in demonstrating the method’s ability to
separate overlapping patterns, we adapted the standard
search parameters of Mascot’s peptide mass fingerprint
routine to allow two missed cleavage sites and to incorpo-
rate the following (variable) post-translational modifica-
tions: ‘Oxidation (M)’, ‘Carbamidomethyl (C)’, ‘Amidated
(Protein C-term)’, ‘Deamidated (NQ)’. In particular, the lat-
ter two modifications will frequently trigger MS signals
interleaving with the pattern of their unmodified coun-
terpart: in the case of a deamidation the modified ion
shows a mass of approx. 0.98 Da more compared to the
amidated peptide. The same mass tolerances as for the
manual annotation are used. As for the comparison with
the manual annotation, we evaluate several lists corre-
sponding to different choices of the threshold. Instead of
an ROC curve, which turned out to be visually unpleas-
ant, we display the statistics (score, coverage and fraction
of hits) of two lists per method, namely of those achiev-
ing the best score and the best coverage, respectively. The
complete set of results as well as further details of our
evaluation like the manual annotation are contained in
Additional file 3.

Competing methods
We compare our method in its two variants depending on
the choice of the fitting criterion (cf. Eq. (7)), labelled l1
(q = 1) and l2 (q = 2), respectively, with the following
competing methods.

Lasso
The ‘lasso’ method in this paper serves as surrogate for
NITPICK. Since the ‘lasso’ is embedded into our frame-
work while implementing a methodology that closely
resembles NITPICK, we use the ‘lasso’ for the sake
of convenience, to avoid an involved parameter opti-
mization for NITPICK. Our lasso implementation ben-
efits from the improved merging procedure of Section
“Postprocessing and thresholding”. To accomodate a het-
erogeneous noise level, NITPICK divides spectra into
bins. This can be avoided by determining a minimizer
β̂(λ;W ) of the weighted non-negative lasso problem

min
β≥0

‖y − �β‖22 + λ1�Wβ , λ > 0, (11)

where W is a diagonal matrix with entries wc,j =
LNL+(mc,j), j = 1, . . . , pc, c = 1, . . . ,C, whose purpose
is to re-scale the amount of �1-regularization according to
the local noise level. The columns of the template matrix
� in (11) are normalized to unit Euclidean norm as it is
standard in the literature on the lasso. A grid search over
50 values for λ is performed, where the construction of the
grid follows [38]. Different lasso lists are obtained for each
active set A(λk) = {c, j : β̂c,j(λk ;W ) > 0}, k = 1, . . . , 50,
which are subsequently merged (see Eq. (8)). The param-
eter λ here plays the role of the threshold t, cf. Section
“Validation strategy”.

Pepex
As discussed in Section “Template fitting”, pepex performs
centroiding and de-isotoping separately. De-isotoping is
based on non-negative least squares. Since pepex is lim-
ited to detect patterns of charge state one, its performance
is only assessed for MALDI-TOF spectra. Accordingly,
when comparing the ouptput of pepex with the man-
ual annotation, the few patterns of charge state two are
excluded. The parameters nm, pft, mincd, maxcd and
nsam were set to optimize performance with respect to
manual annotation. The ROC curves are based on peak-
lists resulting from ten different choices of the signal-to-
noise parameter snr.

Isotope wavelet
As opposed to our method, this approach is not able to
handle overlaps. On the other hand, it typically shows
strong performance in noisy and low intensity regions or
on datasets with extremely low concentrations [39,40].
While the isotope wavelet is not limited to charge one, it is
run in charge one only mode for theMALDI-TOF spectra,
to achieve more competitive performance. For the sake of
fair of comparison, the result of the isotope wavelet on
the MALDI-TOF spectra are evaluated in the same way as
those of pepex.
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Vendor
The parameter setting for the ABI MALDI-TOF/TOFMS
software was as follows: Local Noise Width (m/z) 250,
Min Peak Width at FWHM 2.9. The Cluster Area Opti-
mization S/N threshold has been dynamically adapted to
about three times the S/N threshold as suggested by the
ABI documentation. Since the vendor software is limited
to charge one, its outputs are evaluated in the same way
as those of pepex. Given the disproportionally high effort
needed to find an optimal parameter setting of the vendor
software for ESI spectra, its performance is not assessed.

Results
Manual annotation vs. database query
When inspecting Figures 4 and 5 on the one hand and
Table 1 on the other hand, one notices that results of the
evaluation based on the manual annotation are not in full
accordance with the results of the database query. The dif-
ference is most striking for the MALDI-TOF spectra at
500 fmol, where our methods (l1 and l2) yield a significant

improvement, which does not become apparent from the
database query. This is because only a fraction of the
manual annotation is actually confirmed by the database
query. The part which is not matched likely consists of
artifacts due to contamination or chemical noise as well
as of specific modifications not captured by the database
query. In light of this, our dual validation scheme indeed
makes sense.

Comparison
Figure 4 and Table 1 reveal an excellent performance of
our methods (l1 and l2) throughout all MALDI-TOF spec-
tra under consideration. For the myoglobin spectra high
sequence coverages are attained that clearly stand above
those of competing methods. For the spectra at 10 fmol,
only the performance of lasso is competetive with that
of our methods in terms of the Mascot score; all other
competitors, including the vendor software which has
been tailored to process these spectra, are significantly
weaker. In particular, the strikingly high proportion of

Figure 4 Results for pattern picking, MALDI-TOF. Pattern picking performance for the MALDI-TOF spectra as described in Section “Datasets”. The
points in the (Recall,Precision)-plane correspond to different choices of a method-specific threshold(-like) parameter.
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Figure 5 Results for pattern picking, ESI. Pattern picking performance for the ESI spectra as described in Section “Datasets”. The points in the
(Recall,Precision)-plane correspond to different choices of a method-specific threshold(-like) parameter.

‘hits’ (≥ 94%) indicates that even at moderate concen-
tration levels, our methods still distinguish well between
signal and noise. This observation is strongly supported
by the ROC curves in Figure 4, where the precision drops
comparatively slowly with increasing recall. In this regard,
our methodology clearly contrasts with approaches like
the isotope wavelet that aim at achieving high protein
sequence coverage. The latter often requires the selec-
tion of extremely lowly abundant peptide signals hidden
in noise at the expense of reduced specificity.
For MALDI-TOF spectra at high concentration lev-

els, pepex achieves the best scores and is competitive
with respect to sequence coverage. However, the perfor-
mance of pepex degrades dramatically at lower concen-
tration levels, as it is unambiguously shown by both parts
of the evaluation. In particular, the database scores are
the worst among all methods compared. This provides
some support for our reasoning at the end of Section
“Template fitting”.

For the ESI spectra, our methods in total fall a bit
short of the lasso (particularly for the ion trap spec-
tra), but perform convincingly as well, thereby demon-
strating that they can deal well with multiple charge
states. This is an important finding, since the presence
of multiple charges makes the sparse recovery prob-
lem as formulated in model (1) much more challenging,
because the number of parameters to be estimated as
well as the correlations across templates are increased.
In spite of these difficulties, Figure 5 and Table 1 sug-
gest that the performance of our pure fitting approach
(7) does not appear to be affected. Using a more dif-
ficult set of spectra, the capability to process ESI data
with impressive success is additionally shown in the next
section.

Additional remarks
• In Figure 4, the area under the curve (AUC) of our

methods attained for myoglobin is higher for lower
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Table 1 Mascot results

MALDI Myo 500 fmol Score cvrg Hits Score cvrg Hits

l1 211.0 0.85 0.94 96.8 0.96 0.04

l2 211.0 0.85 0.94 49.6 0.96 0.04

lasso 207.0 0.85 1.00 142.0 0.91 0.37

pepex 223.0 0.85 1.00 142.0 0.90 0.17

vendor 223.0 0.85 0.94 174.0 0.90 0.29

wavelet 207.0 0.85 1.00 156.0 0.90 0.14

MALDI Lys 500 fmol Score cvrg Hits Score cvrg Hits

l1 167.0 0.81 0.57 133.0 0.83 0.37

l2 168.0 0.80 0.64 144.0 0.83 0.34

lasso 151.0 0.64 0.77 112.0 0.83 0.37

pepex 172.0 0.80 0.63 135.0 0.83 0.25

vendor 146.0 0.64 0.75 91.4 0.83 0.20

wavelet 127.0 0.58 0.75 113.0 0.81 0.20

MALDI Myo 10 fmol Score cvrg Hits Score cvrg Hits

l1 211.0 0.85 0.94 82.2 0.95 0.04

l2 207.0 0.74 1.00 109.0 0.90 0.14

lasso 195.0 0.77 0.87 146.0 0.85 0.46

pepex 97.8 0.80 0.22 97.8 0.80 0.22

vendor 123.0 0.62 0.62 123.0 0.62 0.62

wavelet 131.0 0.85 0.13 131.0 0.85 0.13

MALDI Lys 10 fmol Score cvrg Hits Score cvrg Hits

l1 89.0 0.35 1.00 73.7 0.54 0.23

l2 89.0 0.35 1.00 35.4 0.72 0.09

lasso 81.9 0.46 0.70 46.0 0.74 0.10

pepex 47.1 0.17 1.00 31.2 0.53 0.12

vendor 62.7 0.23 1.00 43.2 0.34 0.16

wavelet 55.4 0.23 0.45 43.8 0.82 0.10

Orbi Lys 1000 fmol Score cvrg Hits Score cvrg Hits

l1 149.0 0.70 0.78 138.0 0.80 0.53

l2 139.0 0.80 0.50 139.0 0.80 0.50

lasso 159.0 0.63 0.87 120.0 0.81 0.29

wavelet 105.0 0.69 0.44 95.1 0.80 0.23

IT Lys 1000 fmol Score cvrg Hits Score cvrg Hits

l1 78.7 0.63 0.28 70.9 0.74 0.17

l2 82.1 0.72 0.36 35.4 0.85 0.13

lasso 103.0 0.84 0.33 76.8 0.99 0.21

wavelet 107.0 0.79 0.63 69.8 0.99 0.11

Orbi Lys 250 fmol Score cvrg Hits Score cvrg Hits

l1 107.0 0.63 0.50 100.0 0.80 0.31

l2 103.0 0.63 0.52 66.9 0.81 0.14

lasso 108.0 0.63 0.77 107.0 0.80 0.27

wavelet 80.6 0.70 0.22 80.6 0.70 0.22
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Table 1 Mascot results (Continued)

IT Lys 250 fmol Score cvrg Hits Score cvrg Hits

l1 59.4 0.46 0.16 59.4 0.46 0.16

l2 37.0 0.59 0.14 37.0 0.59 0.14

lasso 66.3 0.84 0.20 66.3 0.84 0.20

wavelet 56.3 0.59 0.36 21.3 0.75 0.12

Corresponding Mascot results for the data shown in Figures 4 and 5. The left halves of the tables report the statistics when choosing the threshold(-like) parameter to
optimize the score, the right halves when optimizing the coverage (cvrg, given as fraction). The column ‘hits’ contains the fraction of masses that could be matched to
peptide masses in the database.

concentration. At first glance, this may seem
contradictory since an increase in concentration
should lead to a simplified problem. However, a
direct comparison of the AUCs is problematic, since
the number of true positives (17 at 10 fmol, 106 at
500 fmol) is rather different. For instance, there are
choices of the threshold that yield 18 true positives
and not a single false positive for both of our methods
at 500 fmol, yet the AUC is lower.

• The fact that some of the ROCs start in the lower left
corner results from outputs containing only false
positives.

Unmixing of overlaps
Motivation
One of the main advantages of our method over more
simplistic pattern picking methods is the ability to dis-
entangle isotope patterns of overlapping peptide signals,
whose presence may lead to a significantly more challen-
ing pattern picking problem as e.g. discussed in [41] in
the slightly different context of intact protein mass spec-
tra. Therefore, a potential application for our approach
will be the analysis of a certain class of posttranslational
modifications, the deamidation of amino acid residues
containing a carboxamide side chain functionality. The
deamidation of asparagine (Asn) or glutamine (Gln)
residues, yielding aspartic acid (Asp) or glutamic acid
(Glu) residues, respectively, is an important posttransla-
tional modification, which can have immense effects on
the structure of peptides [42] and is of great relevance
in a number of pathophysiological events [43]. During
the deamidation, the side chain carboxamide is hydrol-
ysed, which is accompanied by a mass increase of 0.98
Da. Thus, in a spectrum of a mixture of the amidated and
deamidated form, a direct overlap of both signals can be
observed. It has to be noted that additionally to the ami-
dated/deamidated forms, in case of Asn deamidation, a
second product containing an iso-peptide bond is formed,
too, which has the same molecular behaviour; these
two forms can be identified solely by their differential
MS/MS behavior.

Results
The peptides analyzed here in order to assess the per-
formance of our approach were synthesized by means
of Fmoc-solid phase peptide synthesis; sequences corre-
sponding to tryptic peptides from bovine serum albumin
(BSA) with the sequences listed in Table 2 were selected.
In each measurement two out of the three listed pep-

tides were mixed together in different ratios (Additional
file 4). Given such a spectrum, we study the question
whether our method returns the true underlying compo-
sition. We classify the output of our method as correct
interpretation of the spectrum if the templates corre-
sponding to the true underlying peptides achieve signal-
to-noise-ratios of at least one and these ratios are the
two largest among all templates used for fitting. This pro-
cedure corresponds to a selection-optimal choice of the
threshold based on the knowledge of the true composition
of the spectrum. This simplification may be justified in
view of the extreme difficulty of the problem as illustrated
in Figure 6, in particular in view of lowly resolved spectra
with an averagem/z-spacing of 0.06 Da. For the remaining
parameters, we compare a grid search (performed sepa-
rately for each spectrum) and the default parameter set
(Section “Finding a set of default parameters”). Table 3
and Figure 6 indicate that already the default parameter
setting is able to solve successfully a wide range of prob-
lem instances. As one would expect, Table 3 and Figure 6
suggest that the higher the concentration and the more
balanced the amplitudes of the overlapping peptides, the
more likely it is that the overlap can be resolved. On the
other hand, the higher the degree of overlap of the pep-
tides, which depends on both their charges and the dis-
tance of their positions, the more difficult the problem is.

Table 2 Peptides mixed together

Sequence Sequence residue
no. in BSA

Monoisotopic mass
(protonated) / charge

GACLLPK 198-204 351.20437 / +2

CCTKPESER 460-468 351.48816 / +3

VLASSAR 212-218 352.20850 / +2



Slawski et al. BMC Bioinformatics 2012, 13:291 Page 14 of 18
http://www.biomedcentral.com/1471-2105/13/291

x x

1st pattern 
 (correct) 

2nd pattern 
 (correct)

351.2[z = 2]/352.2[z = 2] − ratio: 1:5 − conc:1000

x x

1st pattern 
 (correct) 

2nd pattern 
 (correct)

351.2[z = 2]/352.2[z = 2] − ratio: 5:1 − conc:1000

x x

1st pattern 
 (correct) 

2nd pattern 
 (incorrect)

351.4[z = 3]/352.2[z = 2] − ratio: 1:1 − conc:1000

x x

1st pattern 
 (correct) 

2nd pattern 
 (correct)

x x

1st pattern 
 (correct) 

2nd pattern 
 (correct)

x x

1st pattern 
 (correct) 

2nd pattern 
 (correct)

x x

1st pattern 
 (correct) 

2nd pattern 
 (correct)

x x

1st pattern 
 (correct) 

2nd pattern 
 (incorrect)

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

m/z

in
te

ns
ity

x x

1st pattern 
 (correct) 

2nd pattern 
 (correct)

x x

1st pattern 
 (incorrect) 

2nd pattern 
 (correct)

0e
+

00
1e

+
06

2e
+

06
3e

+
06

1e
+

06
2e

+
06

3e
+

06

351.2[z = 2]/352.2[z = 2] − ratio: 1:1 − conc:1000

m/z

in
te

ns
ity

4e
+

06

m/z
in

te
ns

ity
350 351 352 353 354 355350 351 352 353 354 355350 351 352 353 354 355

350 351 352 353 354 355 350 351 352 353 354 355 350 351 352 353 354 355

350 351 352 353 354 355350 351 352 353 354 355350 351 352 353 354 355

350 351 352 353 354 355 350 351 352 353 354 355

0
10

00
00

0
20

00
00

0
30

00
00

0

m/z

in
te

ns
ity

0e
+

00
1e

+
06

2e
+

06
3e

+
06

m/z

in
te

ns
ity

0
50

00
00

15
00

00
0

25
00

00
0

351.4[z = 3]/352.2[z = 2] − ratio: 1:5 − conc:500

m/z

in
te

ns
ity

0
20

00
00

60
00

00
10

00
00

0

351.4[z = 3]/352.2[z = 2] − ratio: 5:1 − conc:1000

m/z
in

te
ns

ity

0e
+

00
2e

+
05

4e
+

05
6e

+
05

351.4[z = 3]/352.2[z = 2] − ratio: 10:1 − conc:1000

m/z

in
te

ns
ity

0e
+

00
1e

+
06

2e
+

06
3e

+
06

351.2[z = 2]/351.4[z = 3] − ratio: 1:1 − conc:1000

m/z

in
te

ns
ity

351.2[z = 2]/351.4[z = 3] − ratio: 1:5 − conc:1000

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

351.2[z = 2]/351.4[z = 3] − ratio: 1:10 − conc:1000

m/z

in
te

ns
ity

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

351.2[z = 2]/351.4[z = 3] − ratio: 5:1 − conc:1000

m/z

in
te

ns
ity

x

1st pattern 
 (correct); 
 no 2nd pattern 
 detected

Figure 6 Unmixing of overlap. Graphical representation of selected overlap problems as tabulated in Table 3. The experimental setups are given
in the title of the plots. The dots represent the signal, while solid and dashed lines represent the templates used by our method to match the signal,
using the default parameter setting and the choice for the threshold as explained in the text. The grey area represents the overall fit when using the
selected templates.
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Table 3 Unmixing of overlaps

Peptides 351.2(2)/352.2(2) 351.4(3)/352.2(2) 351.2(2)/351.4(3)

Proportion 1:1 1:5 5:1 1:1 1:5 5:1 10:1 1:1 1:5 5:1 1:10

fmol

500 x x − − x − x − − − x

all 1000 x x x x x x x x x − −
500 − x − − x − − − − − −

default 1000 x x − x − x x − x − −
Results of the analyses of the series of spectra containing two overlapping target peptides. The first column contains them/z positions and the charges (in brackets) of
the two peptides. The two middle columns indicate whether the corresponding problem is successfully solved (‘x’) or not (‘−’) when optimizing over a grid of
parameter combinations (column ‘all’) and when using the default parameter set (column ‘default’).

This becomes obvious when considering the overlap of the
two peptides located at 351.2 and 351.4 Da, respectively.

Conclusion
We have proposed a template matching approach for
feature extraction in proteomic mass spectra. The main
methodological innovation is a framework for sparse
recovery in which sparsity is not promoted explicitly by
a regularization term, as it is usually done and was done
in previous work. We fully exploit the strength of non-
negativity constraints, which permits us to circumvent
the delicate choice of a ‘proper’ amount of regulariza-
tion, an ever-lasting problem in statistics, and to work
with thresholding instead. The latter is not only com-
putationally attractive, because one does not have to
repeatedly solve the same optimization problem for dif-
ferent choices of the regularization parameter, but also
increases user-friendliness, since the threshold is directly
related to the signal-to-noise ratio, the quantity domain
experts are interested in. The replacement of a regu-
larization parameter by a threshold is a cornerstone in
our conceptual design guided by the principle to relieve
the user from laboursome fine tuning of parameters. We
believe that a small set of well-interpretable parameters
with suitable defaults additionally improves robustness
and reproducibility of results. In this context, we would
like to emphasize again that apart from the threshold,
the user does not have to specify any parameters before
running our software.
In a comprehensive experimental study involving ins-

truments of varying resolution and spectra of varying
concentration levels, where we comparatively assess the
performance of our approach on the basis of an elaborate
dual validation scheme, it is demonstrated that the per-
formance for pattern picking is excellent for MALDI-TOF
spectra and outstands due to its specificity in selecting sig-
nal and only little noise. A major strength of the method is
its ability to unmix overlapping peptide signals as shown
for a series of ESI spectra. In total, we demonstrate that
our approach is broadly applicable to a variety of spectra.
While our approach is guided by a concrete application

in proteomics, the framework is general enough to be of
much of use for related deconvolution problems emerging
in other fields − only the templates have to be adjusted
according to the specific application.
While in this paper, we have focused on single spec-

tra, the approach can be extended to process whole LC-
MS runs, as it has already been implemented in our R
package IPPD. More precisely, the sweep line scheme
of [44] is used to agglomerate the results from sin-
gle spectra. To apply our methods on a routine basis,
an improved implementation, notably parallelization, is
required, since e.g. processing a single spectrum of the
Maxquant datasets [2] takes 10s on average on a Unix
system equipped with an Intel(R) Core(TM)2 Duo CPU
T9400 (2.53GHz) and 4 GB main memory. There is much
room for an improvement, since our implementation is
based on interpreted R code.
Concerning future directions of research, a question we

have not yet answered in a satisfactory way is the choice of
the fitting criterion. While both criteria (least squares and
least absolute deviation) employed in this paper perform
well, their implicit assumption of additive noise might
be questionable [45]. It is worth investigating whether a
multiplicative noise model could even yield better results.
Second, one might ask whether the performance could
be further improved when it is used jointly with the iso-
tope wavelet, which is affected by overlaps, but has the
potential to achieve higher protein sequence coverage.

Endnotes
aMonoisotopic peptide mass centers are modelled by:
1.000485·mn+0.029, wheremn denotes the nominal mass.
bFor the MALDI-TOF lysozyme datasets an extended
search tolerance of 100ppm was applied due to experi-
mental miscalibration of the MS.

Appendix
Fitting with non-negativity constraints
In the following, we provide the details concerning opti-
mization problem (7). In view of the special structure of�,
(7) is computationally tractable even if n and the number
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of templates are in the ten thousands. We exploit the
sparsity of the problem arising from templates which are
highly localized, i.e. the domain on which they are numer-
ically different from zero covers only a small part of the
wholem/z range of the spectrum. As a consequence both
� and the Grammatrix���, which is crucial in the com-
putation, can conveniently be handled by using software
for sparse matrices. For R, such software is available in the
Matrix package [46].

Non-negative least squares
Consider the quadratic program

min
β

1
2
‖y − �β‖22 (12)

subject to β ≥ 0. (13)

In order to solve (12), we use the so-called log-barrier
method which amounts to solving a sequence of an
unconstrained nonlinear convex problems in which the
constraints I(βj ≥ 0), j = 1, . . . , p, are taken into
account by incorporating log-barrier terms − log(βj)/γ
in the objective. As γ → ∞, the log-barrier acts like a
function which equals +∞ if βj < 0 and zero otherwise.
Beginning with a moderately sized starting value for γ , we
solve the convex problem

min
β

1
2
‖y − �β‖22 − 1

γ

p∑
j=1

log(βj) (14)

using Newton’s method. The gradient and Hessian with
respect to β , respectively, are given by

∇β = −��(y − �β) − 1
γ
[ 1/β1 . . . 1/βp]� .

∇2
β = ��� + 1

γ
diag(1/β2

1 , . . . , 1/β2
p).

The Newton descent direction dβ is obtained from the
linear system

∇2
βdβ = −∇β .

Solution of linear systems of this structure constitutes
the main computational effort to be made. Fast solutions
are obtained by using CHOLMOD [47], which offers an
efficient implementation for computing the Cholesky fac-
torization of sparse symmetric, positive definite matrices.
Since the diagonal of ∇2

β changes from one Newton iter-
ation to the next, one Cholesky factorization has to be
performed per Newton step. Once we have solved (14) for
a specific γ , we solve a new problem of the type (14) for
γ · M, M > 1. This is repeated until γ exceeds a pre-
defined maximum value. For a thorough account on the
log-barrier method, we refer to [20].

Complexity analysis of non-negative least squares
We here provide the order of magnitude of floating points
operations (flops) required per update (i.e. per Newton
step) for the specific non-negative least squares prob-
lems considered for this paper. In our implementation, we
exploit that the templates contained in the matrix � are
highly localized. As a result, after a suitable column per-
mutation, the matrix ��� is roughly a band matrix with
bandwidth k no larger than only few hundreds. The dom-
inant operation is solving the linear system ∇2

βdβ = −∇β

with the help of the Cholesky factorization, which can be
done in O(pk2) flops (e.g. [20], p.670). Our algorithm ter-
minates after usually no more than one hundred Newton
steps.

Non-negative least absolute deviation
Consider the optimization problem

min
β

‖y − �β‖1 (15)

subject to β ≥ 0. (16)

Problem (15) can be recast as the following linear pro-
gram.

minr r�1 (17)

subject to
�β − y + r ≥ 0,
y − �β + r ≥ 0,
r ≥ 0,
β ≥ 0.

For its solution, we use the log-barrier method sketched
in the previous paragraph. After incorporating log-barrier
terms for all constraints, the objectives of the uncon-
strained convex problems are of the form

r�1 − 1
γ

⎛⎝ n∑
i=1

(log(ξ+
i ) + log(ξ−

i ) + log(ri)) +
p∑

j=1
log(βj)

⎞⎠ ,

where we have used the notational shortcuts

ξ+
i = (�β)i − yi + ri,

ξ−
i = yi − (�β)i + ri, i = 1, . . . , n.

The gradients w.r.t. r and β , respectively, are given by

∇r = 1 − 1
γ

[
1

(ξ+
1 + ξ−

1 + r1)
. . .

1
(ξ+

n + ξ−
n + rn)

]�
,

∇β = − 1
γ

(��([�+]−1 −[�−]−1 )1+[ 1/β1 . . . 1/βp]� ),

�± = diag(ξ±
1 , . . . , ξ±

n ).
Introducing R = diag(r1, . . . , rn) and B =
diag(β1, . . . ,βp), the Hessian is given by the block matrix
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[ ∇2
r ∇r β

∇�
r β ∇2

β

]
=

⎡⎢⎣
1
γ
([�+]−2 +[�−]−2 +R−2) 1

γ
([�+]−2 �−[�−]−2 �)

1
γ
(��[�+]−2 −��[�−]−2 ) 1

γ
(��([�+]−2 +[�−]−2 )�) + B−2)

⎤⎥⎦ .

The linear system for the Newton descent directions
reads[ ∇2

r ∇r β

∇�
r β ∇2

β

] [ dr
dβ

]
= −

[ ∇r
∇β

]
.

Note that ∇2
r is diagonal, so it is a cheap operation to

resolve for dr once dβ is known:

dr = −(∇2
r )

−1(∇r β dβ + ∇r).

Plugging this into the second block of the linear system,
one obtains

−∇�
r β(∇2

r )
−1(∇r β dβ + ∇r) + ∇2

βdβ = −∇β

which is equivalent to

(∇2
β − ∇�

r β(∇2
r )

−1∇r β)dβ = −∇β + ∇�
r β(∇2

r )
−1∇r .

In order to solve the linear system, we proceed as for
non-negative least squares. The computational cost of this
operation is roughly the same, since the sparse struc-
ture of ��� can still be exploited. For non-negative least
squares, re-computation of the Hessian ∇2

β only involves
a diagonal update, an operation of negligible compu-
tational cost. However, for non-negative least absolute
deviation, computation∇2

β involves the matrix multiplica-
tion (��([�+]−2 +[�−]−2 )�), i.e. essentially a repeated
computation of a scaled Gram matrix. In spite of the spe-
cial structure of ���, the computational cost is of the
same order as the solution of the linear system even when
using a self-written routine for matrix multiplication tai-
lored to the specific structure.
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