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Abstract
Adaptive gradient methods have become recently
very popular, in particular as they have been
shown to be useful in the training of deep neu-
ral networks. In this paper we have analyzed
RMSProp, originally proposed for the training
of deep neural networks, in the context of on-
line convex optimization and show

√
T -type re-

gret bounds. Moreover, we propose two vari-
ants SC-Adagrad and SC-RMSProp for which
we show logarithmic regret bounds for strongly
convex functions. Finally, we demonstrate in the
experiments that these new variants outperform
other adaptive gradient techniques or stochastic
gradient descent in the optimization of strongly
convex functions as well as in training of deep
neural networks.

1. Introduction
There has recently been a lot of work on adaptive gradient
algorithms such as Adagrad (Duchi et al., 2011), RMSProp
(Hinton et al., 2012), ADADELTA (Zeiler, 2012), and
Adam (Kingma & Bai, 2015). The original idea of Ada-
grad to have a parameter specific learning rate by analyz-
ing the gradients observed during the optimization turned
out to be useful not only in online convex optimization
but also for training deep neural networks. The original
analysis of Adagrad (Duchi et al., 2011) was limited to the
case of all convex functions for which it obtained a data-
dependent regret bound of order O(

√
T ) which is known

to be optimal (Hazan, 2016) for this class. However, a lot
of learning problems have more structure in the sense that
one optimizes over the restricted class of strongly convex
functions. It has been shown in (Hazan et al., 2007) that
one can achieve much better logarithmic regret bounds for
the class of strongly convex functions.
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The goal of this paper is twofold. First, we propose SC-
Adagrad which is a variant of Adagrad adapted to the
strongly convex case. We show that SC-Adagrad achieves
a logarithmic regret bound for the case of strongly convex
functions, which is data-dependent. It is known that such
bounds can be much better in practice than data indepen-
dent bounds (Hazan et al., 2007),(McMahan, 2014). Sec-
ond, we analyze RMSProp which has become one of the
standard methods to train neural networks beyond stochas-
tic gradient descent. We show that under some condi-
tions on the weighting scheme of RMSProp, this algorithm
achieves a data-dependent O(

√
T ) regret bound. In fact, it

turns out that RMSProp contains Adagrad as a special case
for a particular choice of the weighting scheme. Up to our
knowledge this is the first theoretical result justifying the
usage of RMSProp in online convex optimization and thus
can at least be seen as theoretical support for its usage in
deep learning. Similarly, we then propose the variant SC-
RMSProp for which we also show a data-dependent loga-
rithmic regret bound similar to SC-Adagrad for the class of
strongly convex functions. Interestingly, SC-Adagrad has
been discussed in (Ruder, 2016), where it is said that “it
does not to work”. The reason for this is that SC-Adagrad
comes along with a damping factor which prevents poten-
tially large steps in the beginning of the iterations. How-
ever, as our analysis shows this damping factor has to be
rather large initially to prevent large steps and should be
then monotonically decreasing as a function of the itera-
tions in order to stay adaptive. Finally, we show in experi-
ments on three datasets that the new methods are compet-
itive or outperform other adaptive gradient techniques as
well as stochastic gradient descent for strongly convex op-
timization problem in terms of regret and training objective
but also perform very well in the training of deep neural
networks, where we show results for different networks and
datasets.

2. Problem Statement
We first need some technical statements and notation and
then introduce the online convex optimization problem.
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2.1. Notation and Technical Statements

We denote by [T ] the set {1, . . . , T}. Let A ∈ Rd×d be a
symmetric, positive definite matrix. We denote as

〈x, y〉A = 〈x,Ay〉 =
d∑

i,j=1

Aijxiyj , ‖x‖A =
√
〈x, x〉A

Note that the standard Euclidean inner product becomes
〈x, y〉 =

∑
i xiyi = 〈x, y〉I While we use here the gen-

eral notation for matrices for comparison to the literature.
All positive definite matrices A in this paper will be diago-
nal matrices, so that the computational effort for computing
inner products and norms is still linear in d. The Cauchy-
Schwarz inequality becomes, 〈x, y〉A ≤ ‖x‖A ‖y‖A . We
further introduce the element-wise product a�b of two vec-
tors. Let a, b ∈ Rd, then (a� b)i = aibi for i = 1, . . . , d.

Let A ∈ Rd×d be a symmetric, positive definite matrix,
z ∈ Rd and C ⊂ Rd a convex set. Then we define the
weighted projection PAC (z) of z onto the set C as

PAC (z) = argmin
x∈C

‖x− z‖2A . (1)

It is well-known that the weighted projection is unique and
non-expansive.

Lemma 2.1 Let A ∈ Rd×d be a symmetric, positive defi-
nite matrix and C ⊂ Rd be a convex set. Then∥∥PAC (z)− PAC (y)

∥∥
A
≤ ‖z − y‖A .

Proof: The first order optimality condition for the
weighted projection in (1) is given as

A(x− z) ∈ NC(x),

where NC(x) denotes the normal cone of C at x. This can
be rewritten as

〈z − x, y − x〉A ≤ 0 ∀y ∈ C.

This yields〈
z − PAC (z), PAC (y)− PAC (z)

〉
A
≤ 0,〈

y − PAC (y), PAC (z)− PAC (y)
〉
A
≤ 0.

Adding these two inequalities yields〈
z − PAC (z)− y + PAC (y), PAC (y)− PAC (z)

〉
A
≤ 0

=⇒
∥∥PAC (y)− PAC (z)

∥∥2
A
≤
〈
z − y, PAC (y)− PAC (z)

〉
A
.

The result follows from the application of the weighted
Cauchy-Schwarz inequality. �

Lemma 2.2 For any symmetric, positive semi-definite ma-
trix A ∈ Rd×d we have

〈x,Ax〉 ≤ λmax(A) 〈x, x〉 ≤ tr(A) 〈x, x〉 (2)

where λmax(A) is the maximum eigenvalue of matrix A
and tr(A) denotes the trace of matrix A .

2.2. Problem Statement

In this paper we analyze the online convex optimization
setting, that is we have a convex setC and at each round we
get access to a (sub)-gradient of some continuous convex
function ft : C → R. At the t-th iterate we predict θt ∈ C
and suffer a loss ft(θt). The goal is to perform well with
respect to the optimal decision in hindsight defined as

θ∗ = argmin
θ∈C

T∑
t=1

ft(θ).

The adversarial regret at time T ∈ N is then given as

R(T ) =
T∑
t=1

(ft(θt)− ft(θ∗)).

We assume that the adversarial can choose from the class
of convex functions on C, for some parts we will specialize
this to the set of strongly convex functions.

Definition 2.1 Let C be a convex set. We say that a func-
tion f : C → R is µ-strongly convex, if there exists µ ∈ Rd
with µi > 0 for i = 1, . . . , d such that for all x, y ∈ C,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ ‖y − x‖2diag(µ)

= f(x) + 〈∇f(x), y − x〉+
d∑
i=1

µi(yi − xi)2.

Let ζ = mini=1,...,d µi, then this function is ζ-strongly con-
vex (in the usual sense), that is

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ ζ ‖x− y‖2 .

Note that the difference between our notion of component-
wise strong convexity and the usual definition of strong
convexity is indicated by the bold font versus normal font.
We have two assumptions:

• A1: It holds supt≥1 ‖gt‖2 ≤ G which implies the
existence of a constantG∞ such that supt≥1 ‖gt‖∞ ≤
G∞.

• A2: It holds supt≥1 ‖θt − θ∗‖2 ≤ D which im-
plies the existence of a constant D∞ such that
supt≥1 ‖θt − θ∗‖∞ ≤ D∞.
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Algorithm 1 Adagrad
Input: θ1 ∈ C , δ > 0, v0 = 0 ∈ Rd
for t = 1 to T do
gt ∈ ∂ft(θt)
vt = vt−1 + (gt � gt)
At = diag(

√
vt) + δI

θt+1 = PAt

C

(
θt − αA−1t gt

)
end for

One of the first methods which achieves the optimal regret
bound of O(

√
T ) for convex problems is online projected

gradient descent (Zinkevich, 2003), defined as

θt+1 = PC(θt − αtgt) (3)

where αt = α√
t

is the step-size scheme and gt is a (sub)-
gradient of ft at θt. With αt = α

t , online projected gradi-
ent descent method achieves the optimal O(log(T )) regret
bound for strongly-convex problems (Hazan et al., 2007).
We consider Adagrad in the next subsection which is one of
the popular adaptive alternative to online projected gradient
descent.

2.3. Adagrad for convex problems

In this section we briefly recall the main result for the Ada-
grad. The algorithm for Adagrad is given in Algorithm 1. If
the adversarial is allowed to choose from the set of all pos-
sible convex functions on C ⊂ Rd, then Adagrad achieves
the regret bound of orderO(

√
T ) as shown in (Duchi et al.,

2011). This regret bound is known to be optimal for this
class, see e.g. (Hazan, 2016). For better comparison to
our results for RMSProp, we recall the result from (Duchi
et al., 2011) in our notation. For this purpose, we introduce
the notation, g1:T,i = (g1,i, g2,i, .., gT,i)

T , where gt,i is the
i-th component of the gradient gt ∈ Rd of the function ft
evaluated at θt.

Theorem 2.1 (Duchi et al., 2011) Let Assumptions A1, A2
hold and let θt be the sequence generated by Adagrad in
Algorithm 1, where gt ∈ ∂ft(θt) and ft : C → R is an
arbitrary convex function, then for stepsize α > 0 the regret
is upper bounded as

R(T ) ≤ D2
∞

2α

d∑
i=1

‖g1:T,i‖2 + α
d∑
i=1

‖g1:T,i‖2 .

The effective step-length of Adagrad is on the order of α√
t
.

This can be seen as follows; first note that vT,i =
∑T
t=1 g

2
t,i

and thus (At)−1 is a diagonal matrix with entries 1√
vt,i+δ

.
Then one has

α(A−1T )ii =
α√∑T

t=1 g
2
t,i + δ

=
α√
T

1√
1
T

∑T
t=1 g

2
t,i +

δ√
T

(4)

Thus an alternative point of view of Adagrad, is that it has a
decaying stepsize α√

t
but now the correction term becomes

the running average of the squared derivatives plus a van-
ishing damping term. However, the effective stepsize has
to decay faster to get a logarithmic regret bound for the
strongly convex case. This is what we analyze in the next
section, where we propose SC-Adagrad for strongly convex
functions.

3. Strongly convex Adagrad (SC-Adagrad)
The modification SC-Adagrad of Adagrad which we pro-
pose in the following can be motivated by the observation
that the online projected gradient descent (Hazan et al.,
2007) uses stepsizes of order α = O( 1

T ) in order to achieve
the logarithmic regret bound for strongly convex functions.
In analogy with the derivation in the previous section, we
still have vT,i =

∑T
t=1 g

2
t,i. But now we modify (At)

−1

and set it as a diagonal matrix with entries 1
vt,i+δt

. Then
one has

α(A−1T )ii =
α∑T

t=1 g
2
t,i + δt

=
α

T

1
1
T

∑T
t=1 g

2
t,i +

δT
T

.

(5)

Again, we have in the denominator a running average of
the observed gradients and a decaying damping factor. In
this way, we get an effective stepsize of order O( 1

T ) in SC-
Adagrad. The formal method is presented in Algorithm
2. As just derived the only difference of Adagrad and SC-
Adagrad is the definition of the diagonal matrix At. Note

Algorithm 2 SC-Adagrad
Input: θ1 ∈ C , δ0 > 0, v0 = 0 ∈ Rd
for t = 1 to T do
gt ∈ ∂ft(θt)
vt = vt−1 + (gt � gt)
Choose 0 < δt ≤ δt−1 element wise
At = diag(vt) + diag(δt)
θt+1 = PAt

C

(
θt − αA−1t gt

)
end for

also that we have defined the damping factor δt as a func-
tion of t which is also different from standard Adagrad.
The constant δ in Adagrad is mainly introduced due to nu-
merical reasons in order to avoid problems when gt,i is
very small for some components in the first iterations and
is typically chosen quite small e.g. δ = 10−8. For SC-
Adagrad the situation is different. If the first components
g1,i, g2,i, . . . are very small, say of order ε, then the update
is ε

ε2+δt
which can become extremely large if δt is chosen
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to be small. This would make the method very unstable
and would lead to huge constants in the bounds. This is
probably why in (Ruder, 2016), the modification of Ada-
grad where one “drops the square-root” did not work. A
good choice of δt should be initially roughly on the order
of 1 and it should decay as vt,i =

∑T
t=1 g

2
t,i starts to grow.

This is why we propose to use

δt,i = ξ2e
−ξ1vt,i , i = 1, . . . , d,

for ξ1 > 0, ξ2 > 0 as a potential decay scheme as it satis-
fies both properties for sufficiently large ξ1 and ξ2 chosen
on the order of 1. Also, one can achieve a constant de-
cay scheme for ξ1 = 0 , ξ2 > 0. We will come back to
this choice after the proof. In the following we provide the
regret analysis of SC-Adagrad and show that the optimal
logarithmic regret bound can be achieved. However, as it is
data-dependent it is typically significantly better in practice
than data-independent bounds.

3.1. Analysis

For any two matrices A,B ∈ Rd×d, we use the notation
• to denote the inner product i.e A • B =

∑
i

∑
j AijBij .

Note that A •B = tr(ATB).

Lemma 3.1 [Lemma 12 (Hazan et al., 2007)] Let A,B be
positive definite matrices, let A � B � 0 then

A−1 • (A−B) ≤ log
( |A|
|B|

)
(6)

where |A| denotes the determinant of the matrix A

Lemma 3.2 Let Assumptions A1, A2 hold, then for T ≥
1 and At, δt as defined in the SC-Adagrad algorithm we
have,

T∑
t=1

〈
gt, A

−1
t gt

〉
≤

d∑
i=1

log

(
‖g1:T,i‖2 + δT,i

δ1,i

)

−
d∑
i=1

T∑
t=2

δt,i − δt−1,i
‖g1:t,i‖2 + δt,i

Proof: Consider the following summation,

T∑
t=1

〈
gt, A

−1
t gt

〉
≤

T∑
t=1

A−1t • diag(gtgTt )

= A−11 • (A1 − diag(δ1))

+
T∑
t=2

A−1t • (At −At−1 − diag(δt) + diag(δt−1))

≤ log
( |A1|
|diag(δ1)|

)
+

T∑
t=2

log
( |At|
|At−1|

)

−
T∑
t=2

A−1t • (diag(δt)− diag(δt−1))

= log
( |AT |
|diag(δ1)|

)
−

T∑
t=2

A−1t • (diag(δt)− diag(δt−1))

≤
d∑
i=1

log

(
‖g1:T,i‖2 + δT,i

δ1,i

)

−
T∑
t=2

A−1t • (diag(δt)− diag(δt−1))

≤
d∑
i=1

log

(
‖g1:T,i‖2 + δT,i

δ1,i

)
−

d∑
i=1

T∑
t=2

δt,i − δt−1,i
‖g1:t,i‖2 + δt,i

In the first step we use 〈x,Ax〉 = A • diag(xxT ) where
A is a diagonal matrix and subsequently we use∀t > 1 ,
diag(gtg

T
t ) = At − At−1 − diag(δt) + diag(δt−1), and

for t = 1 we have diag(g1gT1 ) = A1 − diag(δ1). In the
first inequality we use Lemma 3.1 also see for Lemma 12
of (Hazan et al., 2007). Note that for T = 1, the upper
bound results in 0. �

Theorem 3.1 Let Assumptions A1, A2 hold and let θt be
the sequence generated by the SC-Adagrad in Algorithm
2, where gt ∈ ∂ft(θt) and ft : C → R is an arbitrary
µ-strongly convex function (µ ∈ Rd+) where the stepsize

fulfills α ≥ maxi=1,...,d
G2
∞

2µi
. Furthermore, let δt > 0 and

δt,i ≤ δt−1,i∀t ∈ [T ],∀i ∈ [d], then the regret of SC-
Adagrad can be upper bounded for T ≥ 1 as

R(T ) ≤ D2
∞ tr(diag(δ1))

2α
+
α

2

d∑
i=1

log
(‖g1:T,i‖2 + δT,i

δ1,i

)
+

1

2

d∑
i=1

inf
t∈[T ]

( (θt,i − θ∗i )2
α

− α

‖g1:t,i‖2 + δt,i

)
(δT,i − δ1,i)

For constant δt i.e δt,i = δ > 0∀t ∈ [T ] and∀i ∈ [d] then
the regret of SC-Adagrad is upper bounded as

R(T ) ≤ D2
∞dδ

2α
+
α

2

d∑
i=1

log
(‖g1:T,i‖2 + δ

δ

)
(7)

For ζ-strongly convex function choosing α ≥ G2
∞
2ζ we ob-

tain the above mentioned regret bounds.

Proof: We rewrite the regret bound with the definition of
µ-strongly convex functions as

R(T ) =
T∑
t=1

(ft(θt)− ft(θ∗))
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≤
T∑
t=1

〈gt, θt − θ∗〉 −
T∑
t=1

‖θt − θ∗‖2diag(µ)

Using the non-expansiveness we have

‖θt+1 − θ∗‖2At

=
∥∥∥PAt

C

(
θt − αA−1t gt

)
− θ∗

∥∥∥2
At

≤
∥∥θt − αA−1t gt − θ∗

∥∥2
At

≤ ‖θt − θ∗‖2At
− 2α 〈gt, θt − θ∗〉+ α2

〈
gt, A

−1
t gt

〉
This yields

〈gt, θt − θ∗〉

≤
‖θt − θ∗‖2At

− ‖θt+1 − θ∗‖2At

2α
+
α

2

〈
gt, A

−1
t gt

〉
Hence we can upper bound the regret as follows

R(T )

≤
T∑
t=1

‖θt − θ∗‖2At
− ‖θt+1 − θ∗‖2At

2α

+
α

2

T∑
t=1

〈
gt, A

−1
t gt

〉
−

T∑
t=1

‖θt − θ∗‖2diag(µ)

≤
‖θ1 − θ∗‖2A1

2α
+

T∑
t=2

(‖θt − θ∗‖2At
− ‖θt − θ∗‖2At−1

2α

)
−
‖θT+1 − θ∗‖2AT

2α
+
α

2

T∑
t=1

〈
gt, A

−1
t gt

〉
−

T∑
t=1

‖θt − θ∗‖2diag(µ)

≤
‖θ1 − θ∗‖2A1−2αdiag(µ)

2α

+

T∑
t=2

‖θt − θ∗‖2At−At−1−2α diag(µ)

2α
+
α

2

T∑
t=1

〈
gt, A

−1
t gt

〉
In the last step we use the equality ∀x ∈ Rn ‖x‖2A −
‖x‖2B = ‖x‖2A−B where A,B ∈ Rn xn and both are
diagonal matrices. Now, we choose α such that At −
At−1 − 2α diag(µ) 4 diag(δt) − diag(δt−1) ∀t ≥ 2
and A1 − 2α diag(µ) 4 diag(δ1) Since At − At−1 4
G2
∞I +diag(δt)− diag(δt−1) and A1 4 G2

∞I +diag(δ1)
because at any round the difference between subsequent
squares of sub-gradients is bounded by G2

∞. Also by
Algorithm 2, δt,i ≤ δt−1,i∀t > 1,∀i ∈ [d] hence
diag(δt) − diag(δt−1) � 0. Hence by choosing α ≥
maxi=1,...,d

G2
∞

2µi
we have At − At−1 − 2α diag(µ) 4

diag(δt) − diag(δt−1)∀t ≥ 2 and A1 − 2αdiag(µ) 4
diag(δ1) which yields

R(T )

≤
‖θ1 − θ∗‖2diag(δ1)

2α
+

T∑
t=2

‖θt − θ∗‖diag(δt)−diag(δt−1)

2α

+
α

2

T∑
t=1

〈
gt, A

−1
t gt

〉
=
‖θ1 − θ∗‖2diag(δ1)

2α
+

T∑
t=2

d∑
i=1

(θt,i − θ∗i )2(δt,i − δt−1,i)
2α

+
α

2

T∑
t=1

〈
gt, A

−1
t gt

〉
≤ D2

∞ tr(diag(δ1))

2α
+
α

2

T∑
t=1

〈
gt, A

−1
t gt

〉
+

T∑
t=2

d∑
i=1

(θt,i − θ∗i )2(δt,i − δt−1,i)
2α

≤ D2
∞ tr(diag(δ1))

2α
+
α

2

d∑
i=1

log
(‖g1:T,i‖2 + δT,i

δ1,i

)
+

1

2

T∑
t=2

d∑
i=1

(
(θt,i − θ∗i )2(δt,i − δt−1,i)

α
− α(δt,i − δt−1,i)
‖g1:t,i‖2 + δt,i

)

≤ D2
∞ tr(diag(δ1))

2α
+
α

2

d∑
i=1

log
(‖g1:T,i‖2 + δT,i

δ1,i

)
+

1

2

d∑
i=1

inf
t∈[T ]

( (θt,i − θ∗i )2
α

− α

‖g1:t,i‖2 + δt,i

)
(δT,i − δ1,i)

In the second inequality we bounded ‖θ1 − θ∗‖2diag(δ1) ≤
D2
∞ tr(diag(δ1)). In the second last step we use the

Lemma 3.2. So under a constant δt i.e δt,i = δ > 0, ∀t ∈
[T ],∀i ∈ [d] we have tr(diag(δ1)) = dδ hence proving the
result (7). For ζ-strongly convex functions choosing α ≥
G2
∞,i

2ζ we obtain the the same results as µ-strongly convex
functions. This can be seen by setting µi = ζ, ∀i ∈ [d]. �

Note that the first and the last term in the regret bound
can be upper bounded by constants. Only the second term
depends on T . Note that ‖g1:T,i‖2 ≤ TG2 and as δt is
monotonically decreasing, the second term is on the order
of O(log(T )) and thus we have a logarithmic regret bound.
As the bound is data-dependent, in the sense that it depends
on the observed sequence of gradients, it is much tighter
than a data-independent bound.

The bound includes also the case of a non-decaying damp-
ing factor δt = δ = ξ2 (ξ1 = 0). While a rather large
constant damping factor can work well, we have noticed
that the best results are obtained with the decay scheme

δt,i = ξ2e
−ξ1vt,i , i = 1, . . . , d.

where ξ1 > 0 , ξ2 > 0 , which is what we use in the ex-
periments. Note that this decay scheme for ξ1, ξ2 > 0 is
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adaptive to the specific dimension and thus increases the
adaptivity of the overall algorithm. For completeness we
also give the bound specialized for this decay scheme.

Corollary 3.1 In the setting of Theorem 3.1 choose δt,i =
ξ2e
−ξ1vt,i for i = 1, . . . , d for some ξ1 > 0, ξ2 > 0 . Then

the regret of SC-Adagrad can be upper bounded for T ≥ 1
as

R(T ) ≤ dD2
∞ξ2
2α

− α

2
log(ξ2e

−ξ1G2
∞)

+
α

2

d∑
i=1

log
(
‖g1:T,i‖2 + ξ2 e

−ξ1‖g1:T,i‖2
)

+
αξ1ξ2

2
(
log(ξ2 ξ1) + 1

) d∑
i=1

(
1− e−ξ1‖g1:T,i‖2

)

Proof: Note that δT,i = ξ2e
−ξ1vT,i = ξ2e

−ξ1‖g1:T,i‖2 .
Plugging this into Theorem 3.1 for ξ1, ξ2 > 0 yields the
results for the first three terms. Using (θt,i − θ∗i )2 ≥ 0 we
have

inf
t∈[T ]

( (θt,i − θ∗i )2
α

− α

‖g1:t,i‖2 + δt,i

)
≥ −α

infj∈[1:T ] ‖g1:j,i‖2 + δj,i

Note that ‖g1:j,i‖2 + δj,i = vj,i + ξ2e
−ξ1vj,i , in order to

find the minimum of this term we thus analyze the func-
tion f : R+ → R, f(x) = x + ξ2e

−ξ1x. and a straight-
forward calculation shows that the minimum is attained at
x∗ = 1

ξ1
log(ξ1ξ2) and f(x∗) = 1

ξ1
(log(ξ1ξ2) + 1). This

yields the fourth term. �

Unfortunately, it is not obvious that the regret bound for our
decaying damping factor is better than the one of a constant
damping factor. Note, however that the third term in the re-
gret bound of Theorem 3.1 can be negative. It thus remains
an interesting question for future work, if there exists an
optimal decay scheme which provably works better than
any constant one.

4. RMSProp and SC-RMSProp
RMSProp is one of the most popular adaptive gradient
algorithms used for the training of deep neural networks
(Schaul et al., 2014; Dauphin et al., 2015; Daniel et al.,
2016; Schmidhuber, 2015). It has been used frequently in
computer vision (Karpathy & Fei-Fei, 2016) e.g. to train
the latest InceptionV4 network (Szegedy et al., 2016a;b).
Note that RMSProp outperformed other adaptive methods
like Adagrad order Adadelta as well as SGD with momen-
tum in a large number of tests in (Schaul et al., 2014). It
has been argued that if the changes in the parameter update

are approximately Gaussian distributed, then the matrix At
can be seen as a preconditioner which approximates the di-
agonal of the Hessian (Daniel et al., 2016). However, it is
fair to say that despite its huge empirical success in prac-
tice and some first analysis in the literature, there is so far
no rigorous theoretical analysis of RMSProp. We will an-
alyze RMSProp given in Algorithm 3 in the framework of
of online convex optimization.

Algorithm 3 RMSProp
Input: θ1 ∈ C , δ > 0, α > 0, v0 = 0 ∈ Rd
for t = 1 to T do
gt ∈ ∂ft(θt)
vt = βtvt−1 + (1− βt)(gt � gt)
Set εt = δ√

t
and αt = α√

t

At = diag(
√
vt) + εtI

θt+1 = PAt

C

(
θt − αtA−1t gt

)
end for

First, we will show that RMSProp reduces to Adagrad for
a certain choice of its parameters. Second, we will prove
for the general convex case a regret bound of O(

√
T ) sim-

ilar to the bound given in Theorem 2.1. It turns out that
the convergence analysis requires that in the update of the
weighted cumulative squared gradients (vt) , it has to hold

1− 1

t
≤ βt ≤ 1− γ

t
,

for some 0 < γ ≤ 1. This is in contrast to the original
suggestion of (Hinton et al., 2012) to choose βt = 0.9.
It will turn out later in the experiments that the constant
choice of βt leads sometimes to divergence of the sequence,
whereas the choice derived from our theoretical analysis
always leads to a convergent scheme even when applied to
deep neural networks. Thus we think that the analysis in
the following is not only interesting for the convex case but
can give valuable hints how the parameters of RMSProp
should be chosen in deep learning.

Before we start the regret analysis we want to discuss the
sequence vt in more detail. Using the recursive definition
of vt, we get the closed form expression

vt,i =
t∑

j=1

(1− βj)
t∏

k=j+1

βkg
2
j,i.

With βt = 1− 1
t one gets, vt,i =

∑t
j=1

1
j

∏t
k=j+1

k−1
k g2j,i,

and using the telescoping product ones gets∏t
k=j+1

k−1
k = j

t and thus

vt,i =
1
t

∑t
j=1 g

2
j,i.

If one uses additionally the stepsize scheme αt = α√
t

and

εt =
δ√
T

, then we recover the update scheme of Adagrad,
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see (4), as a particular case of RMSProp. We are not aware
of that this correspondence of Adagrad and RMSProp has
been observed before.

The proof of the regret bound for RMSProp relies on the
following lemma.

Lemma 4.1 Let Assumptions A1 and A2 and suppose that
1− 1

t ≤ βt ≤ 1− γ
t for some 0 < γ ≤ 1, and t ≥ 1. Also

for t > 1 suppose
√
(t− 1)εt−1 ≤

√
tεt, then

T∑
t=1

g2t,i√
t vt,i +

√
tεt
≤ 2(2− γ)

γ

(√
T vT,i +

√
TεT

)
.

Proof: The lemma is proven via induction. For T = 1 we
have v0 = 0 and thus v1,i = (1− β1)g21,i and thus

g21,i
(
√
v1,i + ε1)

=
(1− β1)g2t,i

(1− β1)
(√

(1− β1)g21,i + ε1

)
≤

√
(1− β1)g21,i + ε1

1− β1
≤

(
√
v1,i + ε1)

γ
.

Note that 1
γ ≤

2(2−γ)
γ since 2(2− γ) > 1 for γ ≤ 1 hence

the bound holds for T = 1. For T > 1 we suppose that the
bound is true for T − 1 and get

T−1∑
t=1

g2t,i√
t vt,i +

√
tεt

≤ 2(2− γ)
γ

(√
(T − 1) vT−1,i +

√
(T − 1)εT−1

)
.

We rewrite vT,i = βT vT−1,i + (1 − βT )g2T,i as vT−1,i =
1
βT
vT,i− 1−βT

βT
g2T,i and with

√
(t− 1)εt−1 ≤

√
tεt we get√

(T − 1)vT−1,i +
√
(T − 1)εT−1

≤

√
T − 1

βT
vT,i −

(T − 1)(1− βT )
βT

g2T,i +
√
TεT

=

√
T − 1

TβT
TvT,i −

(T − 1)(1− βT )
βT

g2T,i +
√
TεT

≤

√
TvT,i −

(T − 1)(1− βT )
βT

g2T,i +
√
TεT

Note that in the last step we have used that T−1TβT
≤ 1 and

the fact that
√
x is concave and thus

√
x− c ≤

√
x− c

2
√
x

given that x − c ≥ 0, along with −1√
TvT,i

≤ −1√
TvT,i+

√
Tεt

for vt,i 6= 0 we have√
(T − 1)vT−1,i +

√
(T − 1)εT−1

≤
√
TvT,i +

√
TεT −

(T − 1)(1− βT )
2βT

(√
TvT,i +

√
TεT

)g2T,i (8)

Using the above bound we have the following

T∑
t=1

g2t,i√
t vt,i +

√
tεt

=
T−1∑
t=1

g2t,i√
t vt,i +

√
tεt

+
g2T,i√

TvT,i +
√
TεT

≤ 2(2− γ)
γ

(√
(T − 1) vT−1,i +

√
(T − 1)εT−1

)
+

g2T,i√
T vT,i +

√
Tεt

≤ 2(2− γ)
γ

(√
TvT,i +

√
TεT

)
+
(
1− 2(2− γ)

γ

(T − 1)(1− βT )
2βT

) g2T,i√
TvT,i +

√
TεT

In the last step we use (8) and since for T > 1 the term(
1− 2(2−γ)

γ
(T−1)(1−βT )

2βT

)
≤ 0 for 1− 1

t ≤ βt ≤ 1− γ
t �

Corollary 4.1 Let Assumptions A1, A2 hold and suppose
that 1 − 1

t ≤ βt ≤ 1 − γ
t for some 0 < γ ≤ 1, and

t ≥ 1. Also for t > 1 suppose
√
(t− 1)εt−1 ≤

√
tεt, and

set αt = α√
t
, then

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
≤ α(2− γ)

γ

d∑
i=1

(√
T vT,i +

√
TεT

)

Proof: Using the definition of At = diag(
√
vt) + εtI ,

αt =
α√
t

along with Lemma 4.1 we get

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
=

T∑
t=1

αt
2

d∑
i=1

g2t,i√
vt,i + εt

=
α

2

T∑
t=1

d∑
i=1

g2t,i√
t vt,i +

√
tεt

≤ α

2

d∑
i=1

2(2− γ)
γ

(√
T vT,i +

√
TεT

)
�

With the help of Lemma 4.1 and Corollary 4.1 we can now
state the regret bound for RMSProp.

Theorem 4.1 Let Assumptions A1, A2 hold and let θt be
the sequence generated by RMSProp in Algorithm 3, where
gt ∈ ∂ft(θt) and ft : C → R is an arbitrary convex func-
tion and αt = α√

t
for some α > 0 and 1− 1

t ≤ βt ≤ 1− γ
t
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for some 0 < γ ≤ 1. Also for t > 1 let
√
(t− 1)εt−1 ≤√

tεt, then the regret of RMSProp can be upper bounded
for T ≥ 1 as

R(T ) ≤
(D2
∞

2α
+
α(2− γ)

γ

) d∑
i=1

(√
TvT,i +

√
TεT

)
Proof: Note that for every convex function ft : C → R it
holds for all x, y ∈ C and gt ∈ ∂ft(x),

ft(y) ≥ ft(x) + 〈gt, y − x〉 .

We use this to upper bound the regret as

R(T ) =
T∑
t=1

(ft(θt)− ft(θ∗)) ≤
T∑
t=1

〈gt, θt − θ∗〉

Using the non-expansiveness of the weighted projection,
we have

‖θt+1 − θ∗‖2At

=
∥∥∥PAt

C

(
θt − αtA−1t gt

)
− θ∗

∥∥∥2
At

≤
∥∥θt − αtA−1t gt − θ∗

∥∥2
At

≤ ‖θt − θ∗‖2At
− 2αt 〈gt, θt − θ∗〉+ α2

t

〈
gt, A

−1
t gt

〉
This yields

〈gt, θt − θ∗〉

≤
‖θt − θ∗‖2At

− ‖θt+1 − θ∗‖2At

2αt
+
αt
2

〈
gt, A

−1
t gt

〉
Hence we can upper bound the regret as follows

R(T )

≤
T∑
t=1

‖θt − θ∗‖2At
− ‖θt+1 − θ∗‖2At

2αt

+
T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
≤
‖θ1 − θ∗‖2A1

2α1
+

T∑
t=2

(‖θt − θ∗‖2At

2αt
−
‖θt − θ∗‖2At−1

2αt−1

)
−
‖θT+1 − θ∗‖2AT

2αt
+

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
≤
‖θ1 − θ∗‖2A1

2α

+
T∑
t=2

‖θt − θ∗‖2√tAt−
√
t−1At−1

2α
+

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
In the last step we used αt = α√

t
. We show that

√
tAt −

√
t− 1At−1 � 0∀t ∈ [T ] (9)

Note that At are diagonal matrices for all t ≥ 1. We note
that

(At)ii =
√
vt,i + εt,

and vt,i = βtvt−1,i + (1 − βt)g2t,i as well as βt ≥ 1 − 1
t

which implies tβt ≥ t− 1. We get
√
t(At)ii =

√
tvt,i +

√
tεt

=
√
tβtvt−1,i + t(1− βt)g2t,i +

√
tεt

≥
√
(t− 1)vt−1,i +

√
t− 1εt−1,

where we used in the last inequality that
√
tεt ≥√

t− 1εt−1. Note that

T∑
t=2

‖θt − θ∗‖2√tAt−
√
t−1At−1

=
T∑
t=2

d∑
i=1

(θt,i − θ∗i )2(√
tvt,i +

√
tεt −

√
(t− 1)vt−1,i +

√
t− 1εt−1

)
≤

d∑
i=1

D2
∞

T∑
t=2

(√
tvt,i +

√
tεt −

√
(t− 1)vt−1,i −

√
t− 1εt−1

)
=

d∑
i=1

D2
∞

(√
TvT,i +

√
TεT −

√
v1,i − ε1

)
where the inequality could be done as we showed before
that the difference of the terms in vt,i is non-negative for
all i ∈ [d] and t ≥ 1. As (A1)ii =

√
v1,i + ε1 we get

‖θ1 − θ∗‖2A1

2α
≤ D2

∞
2α

d∑
i=1

(√
v1,i + ε1

)
.

Thus in total we have

R(T ) ≤
D2
∞
∑d
i=1

(√
TvT,i +

√
TεT

)
2α

+
T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
.

Finally, with Corollary 4.1 we get the result. �

Note that for βt = 1− 1
t , that is γ = 1, and εt = δ

T where
RMSProp corresponds to Adagrad we recover the regret
bound of Adagrad in the convex case, see Theorem 2.1, up
to the damping factor. Note that in this case

√
TvT,i =

√√√√ T∑
j=1

g2j,i = ‖g1:T,i‖2 .



Variants of RMSProp and Adagrad with Logarithmic Regret Bounds

Algorithm 4 SC-RMSProp
Input: θ1 ∈ C , δ0 = 1 , v0 = 0 ∈ Rd
for t = 1 to T do
gt ∈ ∂ft(θt)
vt = βtvt−1 + (1− βt)(gt � gt)
Set εt = δt

t where δt,i ≤ δt−1,i for i ∈ [d] and αt = α
t

At = diag(vt + εt)
θt+1 = PAt

C

(
θt − αtA−1t gt

)
end for

4.1. SC-RMSProp

Similar to the extension of Adagrad to SC-Adagrad, we
present in this section SC-RMSProp which achieves a log-
arithmic regret bound.

Note that again there exist choices for the parameters of
SC-RMSProp such that it reduces to SC-Adagrad. The cor-
respondence is given by the choice

βt = 1− 1

t
, αt =

α

t
, εt =

δt
t
,

for which again it follows vt,i = 1
t

∑t
j=1 g

2
j,i with the same

argument as for RMSProp. Please see Equation (5) for the
correspondence. Moreover, with the same argument as for
SC-Adagrad we use a decay scheme for the damping factor

εt,i = ξ2
e−ξ1 t vt,i

t
, i = 1, . . . , d. for ξ1 ≥ 0 , ξ2 > 0

The analysis of SC-RMSProp is along the lines of SC-
Adagrad with some overhead due to the structure of vt.

Lemma 4.2 Let αt = α
t , 1 − 1

t ≤ βt ≤ 1 − γ
t and At as

defined in SC-RMSProp, then it holds for all T ≥ 1,

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
≤ α

2γ

d∑
i=1

log
(T (vT,i + εT,i

)
ε1,i

)
+

α

2γ

T∑
t=2

d∑
i=1

−tεt,i + (t− 1)εt−1,i
tvt,i + tεt,i

+
α

2γ

d∑
i=1

(1− γ)(1 + log T )

infj∈[1,T ] jvj,i + jεj,i

Proof: Using 〈x,Ax〉 = A • diag(xxT ) and with g2t,i =
vt,i−βtvt−1,i

1−βt
and using that At is diagonal with (At)ii =

vt,i + εt,i, we get

T∑
t=1

α

2
((tAt)

−1 • diag(gtgTt ))

=
α

2(1− β1)
((A1)

−1 • (A1 − diag(ε1)))

+
T∑
t=2

α

2

(
(tAt)

−1 •
(At − diag(εt)

(1− βt)

))
−

T∑
t=2

α

2

(
(tAt)

−1 •
(βtAt−1 − βtdiag(εt−1)

(1− βt)

))
≤ α

2γ
((A1)

−1 • (A1 − diag(ε1)))

+
T∑
t=2

α

2

(
(tAt)

−1 •
( tAt − tβtAt−1

γ

))
+

T∑
t=2

α

2

(
(tAt)

−1 •
(−diag(εt) + βtdiag(εt−1)

(1− βt)

))
≤ α

2γ
log
( |A1|
|diag(ε1)|

)
+

α

2γ

T∑
t=2

log
( |tAt|
|tβtAt−1|

)
+

T∑
t=2

α

2

(
(tAt)

−1 •
(−diag(εt) + βtdiag(εt−1)

(1− βt)

))
≤ α

2γ
log
( |A1|
|diag(ε1)|

)
+

α

2γ

T∑
t=2

log
( |tAt|
|(t− 1)At−1|

)
+

T∑
t=2

α

2

(
(tAt)

−1 •
(−diag(εt) + βtdiag(εt−1)

(1− βt)

))
In the first inequality we use 1

1−βt
≤ t

γ . In the last step we
use, that ∀t > 1, 1

tβt
≤ 1

t−1 . Finally, by upper bounding
the last term with Lemma 4.3

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
≤ α

2γ
log
( |TAT |
|diag(ε1)|

)
+

α

2γ

T∑
t=2

d∑
i=1

−tεt,i + (t− 1)εt−1,i
tvt,i + tεt,i

+
α

2γ

d∑
i=1

(1− γ)(1 + log T )

infj∈[1,T ] jvj,i + jεj,i

We note that

log(|TAT |) = log
( d∏
i=1

(T (vT,i + εT,i))
)

=
d∑
i=1

log(T (vT,i + εT,i)),

and similar, log(|diag(ε1)|) =
∑d
i=1 log(ε1,i). �

Note that for γ = 1 and the choice εt = δt
t this reduces to

the result of Lemma 3.2.

Lemma 4.3 Let εt ≤ 1
t and 1− 1

t ≤ βt ≤ 1− γ
t for some

1 ≥ γ > 0. Then it holds,
T∑
t=2

α

2

(
(tAt)

−1 •
(−diag(εt) + βtdiag(εt−1)

(1− βt)

))
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≤ α

2γ

T∑
t=2

d∑
i=1

−tεt,i + (t− 1)εt−1,i
tvt,i + tεt,i

+
α

2γ

d∑
i=1

(1− γ)(1 + log T )

infj∈[1,T ] jvj,i + jεj,i

Proof: Using γ
t ≤ 1− βt ≤ 1

t , we get

T∑
t=2

α

2

(
(tAt)

−1 •
(−diag(εt) + βtdiag(εt−1)

(1− βt)

))
≤ α

2

T∑
t=2

(
(tAt)

−1 •
(−tdiag(εt) + tβtdiag(εt−1)

γ

))
=

α

2γ

T∑
t=2

d∑
i=1

−tεt,i + tβtεt−1,i
tvt,i + tεt,i

=
α

2γ

T∑
t=2

d∑
i=1

−tεt,i + (t− 1)εt−1,i + (tβt − (t− 1))εt−1,i
tvt,i + tεt,i

≤ α

2γ

T∑
t=2

d∑
i=1

−tεt,i + (t− 1)εt−1,i
tvt,i + tεt,i

+
α

2γ

T∑
t=2

d∑
i=1

(1− γ)εt−1,i
tvt,i + tεt,i

≤ α

2γ

T∑
t=2

d∑
i=1

−tεt,i + (t− 1)εt−1,i
tvt,i + tεt,i

+
α

2γ

d∑
i=1

1− γ
infj∈[2,T ] jvj,i + jεj,i

T∑
t=2

1

t

≤ α

2γ

T∑
t=2

d∑
i=1

−tεt,i + (t− 1)εt−1,i
tvt,i + tεt,i

+
α

2γ

d∑
i=1

1− γ
infj∈[2,T ] jvj,i + jεj,i

(1 + log T )

�

Theorem 4.2 Let Assumptions A1, A2 hold and let θt be
the sequence generated by SC-RMSProp in Algorithm 4,
where gt ∈ ∂ft(θt) and ft : C → R is an arbitrary µ-
strongly convex function (µ ∈ Rd+) with αt = α

t for some

α ≥ (2−γ)G2
∞

2mini µi
and 1 − 1

t ≤ βt ≤ 1 − γ
t for some 0 <

γ ≤ 1. Furthermore, set εt = δt
t and assume 1 ≥ δt,i > 0

and δt,i ≤ δt−1,i∀t ∈ [T ],∀i ∈ [d], then the regret of SC-
RMSProp can be upper bounded for T ≥ 1 as

R(T ) ≤ D2
∞ tr(diag(δ1))

2α
+

α

2γ

d∑
i=1

log
(TvT,i + δT,i

δ1,i

)

+
1

2

d∑
i=1

inf
t∈[T ]

( (θt,i − θ∗i )2
α

− α

γ(tvt,i + tεt,i)

)
(δT,i − δ1,i)

+
α

2γ

d∑
i=1

(1− γ)(1 + log T )

infj∈[1,T ] jvj,i + jεj,i

Proof: We rewrite the regret bound with the definition of
µ-strongly convex functions as

R(T ) =
T∑
t=1

(ft(θt)− ft(θ∗))

≤
T∑
t=1

〈gt, θt − θ∗〉 −
T∑
t=1

‖θt − θ∗‖2diag(µ)

Using the non-expansiveness of the weighted projection,
we get

‖θt+1 − θ∗‖2At

=
∥∥∥PAt

C

(
θt − αtA−1t gt

)
− θ∗

∥∥∥2
At

≤
∥∥θt − αtA−1t gt − θ∗

∥∥2
At

≤ ‖θt − θ∗‖2At
− 2αt 〈gt, θt − θ∗〉+ α2

t

〈
gt, A

−1
t gt

〉
This yields

〈gt, θt − θ∗〉

≤
‖θt − θ∗‖2At

− ‖θt+1 − θ∗‖2At

2αt
+
αt
2

〈
gt, A

−1
t gt

〉
Hence we can upper bound the regret as follows

R(T )

≤
T∑
t=1

‖θt − θ∗‖2At
− ‖θt+1 − θ∗‖2At

2αt

+

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
−

T∑
t=1

‖θt − θ∗‖2diag(µ)

≤
‖θ1 − θ∗‖2A1

2α1
+

T∑
t=2

(‖θt − θ∗‖2At

2αt
−
‖θt − θ∗‖2At−1

2αt−1

)
−
‖θT+1 − θ∗‖2AT

2αt
+

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
−

T∑
t=1

‖θt − θ∗‖2diag(µ)

≤
‖θ1 − θ∗‖2A1

2α1
+

T∑
t=2

‖θt − θ∗‖2tAt−(t−1)At−1

2α

+
T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
−

T∑
t=1

‖θt − θ∗‖2diag(µ)
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Now on imposing the following condition

tAt − (t− 1)At−1 − 2α diag(µ)

� diag(δt)− diag(δt−1)∀t ≥ 2
(10)

A1 − 2αdiag(µ) � diag(δ1) (11)

Note that with εt,i =
δt,i
t and δt,i ≤ δt−1,i for all t ≥ 1 and

i ∈ [d], it holds tεt,i ≤ (t − 1)εt−1,i. We show regarding
the inequality in (10)

tvt,i + tεt,i − (t− 1)vt−1,i − (t− 1)εt−1,i − 2αµi

= tβt,ivt−1,i + tεt,i + t(1− βt)g2t,i − (t− 1)εt−1,i

− (t− 1)vt−1,i − 2αµi

= (tβt,i − (t− 1))vt−1,i + t(1− βt)g2t,i − 2αµi

+ tεt,i − (t− 1)εt−1,i

≤ (1− γ)vt−1,i + g2t,i − 2αµi + tεt,i − (t− 1)εt−1,i

≤ (1− γ)G2
∞ +G2

∞ − 2αµi + tεt,i − (t− 1)εt−1,i

= (2− γ)G2
∞ − 2αµi + tεt,i − (t− 1)εt−1,i

≤ tεt,i − (t− 1)εt−1,i,

where the last inequality follows by choosing α ≥
G2
∞

2min
i
µi
(2− γ) and we have used that

vt,i =

t∑
j=1

(1− βj)
t∏

k=j+1

βkg
2
j,i

≤ G2
∞

t∑
j=1

( t∏
k=j+1

βk −
t∏

k=j

βk

)

≤ G2
∞

(
1−

t∏
k=1

βk

)
≤ G2

∞

The second inequality (11) holds easily with the given
choice of α. Choosing some βt = 1− γ

t

tvt,i = tβt,ivt−1,i + t(1− βt)g2t,i
≥ (t− 1)vt−1,i + t(1− βt)g2t,i ≥ (t− 1)vt−1,i

Hence δt,i ≤ δt−1,i where δt,i = e−ε t vt,i for ε > 0. With
εt,i =

δt,i
t we have tεt ≤ (t− 1)εt−1.

R(T )

≤
‖θ1 − θ∗‖2diag(δ1)

2α
+

T∑
t=2

‖θt − θ∗‖diag(δt)−diag(δt−1)

2α

+
T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
=
‖θ1 − θ∗‖2diag(δ1)

2α
+

T∑
t=2

d∑
i=1

(θt,i − θ∗i )2(δt,i − δt−1,i)
2α

+
T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
≤ D2

∞ tr(diag(δ1))

2α
+

T∑
t=1

αt
2

〈
gt, A

−1
t gt

〉
+

T∑
t=2

d∑
i=1

(θt,i − θ∗i )2(δt,i − δt−1,i)
2α

≤ D2
∞ tr(diag(δ1))

2α
+

α

2γ

d∑
i=1

log
(TvT,i + δT,i

δ1,i

)
+

1

2

T∑
t=2

d∑
i=1

(
(θt,i − θ∗i )2(δt,i − δt−1,i)

α
− α(δt,i − δt−1,i)

γ(tvt,i + tεt,i)

)

+
α

2γ

d∑
i=1

(1− γ)(1 + log T )

infj∈[1,T ] jvj,i + jεj,i

≤ D2
∞ tr(diag(δ1))

2α
+

α

2γ

d∑
i=1

log
(TvT,i + δT,i

δ1,i

)
+

1

2

d∑
i=1

inf
t∈[T ]

( (θt,i − θ∗i )2
α

− α

γ(tvt,i + tεt,i)

)
(δT,i − δ1,i)

+
α

2γ

d∑
i=1

(1− γ)(1 + log T )

infj∈[1,T ] jvj,i + jεj,i

where we have used Lemma 4.2 in the last inequality and
εt,i =

δt,i
t for i ∈ [d] and t ≥ 1. �

Note that the regret bound reduces for γ = 1 to that of SC-
Adagrad. For 0 < γ < 1 a comparison between the bounds
is not straightforward as the vt,i terms cannot be compared.
It is an interesting future research question whether it is
possible to show that one scheme is better than the other
one potentially dependent on the problem characteristics.

5. Experiments
The idea of the experiments is to show that the proposed
algorithms are useful for standard learning problems in
both online and batch settings. We are aware of the fact
that in the strongly convex case online to batch conver-
sion is not tight (Hazan & Kale, 2014), however that does
not necessarily imply that the algorithms behave gener-
ally suboptimal. We compare all algorithms for a strongly
convex problem and present relative suboptimality plots,
log10

(
f(xt)−p∗

p∗

)
, where p∗ is the global optimum, as well

as separate regret plots, where we compare to the best op-
timal parameter in hindsight for the fraction of training
points seen so far. On the other hand RMSProp was origi-
nally developed by (Hinton et al., 2012) for usage in deep
learning. As discussed before the fixed choice of βt is
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Figure 1. Relative Suboptimality vs Number of Epoch for L2-Regularized Softmax Regression
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Figure 2. Regret (log scale) vs Dataset Proportion for Online L2-Regularized Softmax Regression

not allowed if one wants to get the optimal O(
√
T ) regret

bound in the convex case. Thus we think it is of interest to
the deep learning community, if the insights from the con-
vex optimization case transfer to deep learning. Moreover,
Adagrad and RMSProp are heavily used in deep learning
and thus it is interesting to compare their counterparts SC-
Adagrad and SC-RMSProp developed for the strongly con-
vex case also in deep learning. For the deep learning ex-
periments we optimize the learning rate once for smallest
training objective as well as for best test performance after
a fixed number of epochs (typically 200 epochs).

Datasets: We use three datasets where it is easy, diffi-
cult and very difficult to achieve good test performance,
just in order to see if this influences the performance. For
this purpose we use MNIST (60000 training samples, 10
classes), CIFAR10 (50000 training samples, 10 classes)
and CIFAR100 (50000 training samples, 100 classes). We
refer to (Krizhevsky, 2009) for more details on the CIFAR
datasets.

Algorithms: We compare 1) Stochastic Gradient Descent
(SGD) (Bottou, 2010) with O(1/t) decaying step-size for
the strongly convex problems and for non-convex problems
we use a constant learning rate, 2) Adam (Kingma & Bai,
2015) , is used with step size decay of αt =

α√
t

for strongly

convex problems and for non-convex problems we use a
constant step-size. 3) Adagrad, see Algorithm 1, remains
the same for strongly convex problems and non-convex
problems. 4) RMSProp as proposed in (Hinton et al., 2012)
is used for both strongly convex problems and non-convex
problems with βt = 0.9 ∀t ≥ 1. 5) RMSProp (Ours) is
used with step-size decay of αt = α√

t
and βt = 1 − γ

t .
In order that the parameter range is similar to the original
RMSProp ((Hinton et al., 2012)) we fix as γ = 0.9 for all
experiment (note that for γ = 1 RMSProp (Ours) is equiv-
alent to Adagrad), 6) SC-RMSProp is used with stepsize
αt = α

t and γ = 0.9 as RMSProp (Ours) 7) SC-Adagrad
is used with a constant stepsize α. The decaying damp-
ing factor for both SC-Adagrad and SC-RMSProp is used
with ξ1 = 0.1, ξ2 = 1 for convex problems and we use
ξ1 = 0.1, ξ2 = 0.1 for non-convex deep learning prob-
lems. Finally, the numerical stability parameter δ used in
Adagrad, Adam, RMSProp is set to 10−8 as it is typically
recommended for these algorithms.

Setup: Note that all methods have only one varying pa-
rameter: the stepsize α which we choose from the set of
{1, 0.1, 0.01, 0.001, 0.0001} for all experiments. By this
setup no method has an advantage just because it has more
hyperparameters over which it can optimize. The optimal
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Figure 3. Test Accuracy vs Number of Epochs for 4-layer CNN
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Figure 4. Plots of ResNet-18 on CIFAR10 dataset

rate is always chosen for each algorithm separately so that
one achieves either best training objective or best test per-
formance after a fixed number of epochs.

Strongly Convex Case - Softmax Regression: Given the
training data (xi, yi)i∈[m] and let yi ∈ [K]. we fit a lin-
ear model with cross entropy loss and use as regularization
the squared Euclidean norm of the weight parameters. The
objective is then given as

J(θ) = − 1

m

m∑
i=1

log

(
eθ

T
yi

xi+byi

∑K
j=1 e

θT
j xi+bj

)
+ λ

K∑
k=1

‖θk‖2

All methods are initialized with zero weights. The regu-
larization parameter was chosen so that one achieves the
best prediction performance on the test set. The results are
shown in Figure 1. We also conduct experiments in an on-
line setting, where we restrict the number of iterations to
the number of training samples. Here for all the algorithms,
we choose the stepsize resulting in best regret value at the
end. We plot the Regret ( in log scale ) vs dataset propor-
tion seen, and as expected SC-Adagrad and SC-RMSProp
outperform all the other methods across all the considered
datasets. Also, RMSProp (Ours) has a lower regret values
than the original RMSProp as shown in Figure 2.

Convolutional Neural Networks: Here we test a 4-layer
CNN with two convolutional (32 filters of size 3 × 3) and
one fully connected layer (128 hidden units followed by 0.5
dropout). The activation function is ReLU and after the last
convolutional layer we use max-pooling over a 2 × 2 win-
dow and 0.25 dropout. The final layer is a softmax layer
and the final objective is cross-entropy loss. This is a pretty
simple standard architecture and we use it for all datasets.
The results are shown in Figures 3, 6. SC-RMSProp is
competitive in terms of training objective on all datasets
though SGD achieves the best performance. SC-Adagrad is
not very competitive and the reason seems to be that the nu-
merical stability parameter is too small. RMSProp diverges
on CIFAR10 dataset whereas RMSProp (Ours) converges
on all datasets and has similar performance as Adagrad in
terms of training objective. Both RMSProp (Ours) and SC-
Adagrad perform better than all the other methods in terms
of test accuracy for CIFAR10 dataset. On both CIFAR100
and MNIST datasets SC-RMSProp is very competitive.

Multi-Layer Perceptron: We also conduct experiments
for a 3-layer Multi-Layer perceptron with 2 fully connected
hidden layers and a softmax layer according to the number
of classes in each dataset. For the first two hidden layers we



Variants of RMSProp and Adagrad with Logarithmic Regret Bounds

1 50 100 150 200
Epoch

0.35

0.36

0.37

0.38

0.39

0.40

0.41

 T
es

t A
cc

ur
ac

y

SGD
Adam
Adagrad
RMSProp
RMSProp (Ours)
SC-RMSProp
SC-Adagrad

(a) CIFAR10

1 50 100 150 200
Epoch

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

 T
es

t A
cc

ur
ac

y

SGD
Adam
Adagrad
RMSProp
RMSProp (Ours)
SC-RMSProp
SC-Adagrad

(b) CIFAR100

1 50 100 150 200
Epoch

0.916

0.918

0.920

0.922

0.924

0.926

 T
es

t A
cc

ur
ac

y

SGD
Adam
Adagrad
RMSProp
RMSProp (Ours)
SC-RMSProp
SC-Adagrad

(c) MNIST

Figure 5. Test Accuracy vs Number of Epochs for L2-Regularized Softmax Regression
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Figure 6. Training Objective vs Number of Epoch for 4-layer CNN

have 512 units in each layer with ReLU activation function
and 0.2 dropout. The final layer is a softmax layer. We
report the results in Figures 7, 8. On all the datasets, SC-
Adagrad and SC-RMSProp perform better in terms of Test
accuracy and also have the best training objective perfor-
mance on CIFAR10 dataset. On MNIST dataset, Adagrad
and RMSProp(Ours) achieves best training objective per-
formance however SC-Adagrad and SC-RMSProp eventu-
ally performs as good as Adagrad. Here, the performance is
not as competitive as Adagrad, because the numerical sta-
bility decay parameter of SC-Adagrad and SC-RMSProp
are too prohibitive.

Residual Network: We also conduct experiments for
ResNet-18 network proposed in (He et al., 2016a) where
the residual blocks are used with modifications proposed
in (He et al., 2016b) on CIFAR10 dataset. We report the
results in Figures 4. SC-Adagrad, SC-RMSProp and RM-
SProp (Ours) have the best performance in terms of test
Accuracy and RMSProp (Ours) has the best performance
in terms of training objective along with Adagrad.

Given these experiments, we think that SC-Adagrad, SC-
RMSProp and RMSProp (Ours) are valuable new adaptive
gradient techniques for deep learning.

6. Conclusion
We have analyzed RMSProp originally proposed in the
deep learning community in the framework of online con-
vex optimization. We show that the conditions for conver-
gence of RMSProp for the convex case are different than
what is used by (Hinton et al., 2012) and that this leads
to better performance in practice. We also propose vari-
ants SC-Adagrad and SC-RMSProp which achieve loga-
rithmic regret bounds for the strongly convex case. More-
over, they perform very well for different network models
and datasets and thus they are an interesting alternative to
existing adaptive gradient schemes. In the future we want
to explore why these algorithms perform so well in deep
learning tasks even though they have been designed for the
strongly convex case.
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Figure 7. Training Objective vs Number of Epoch for 3-layer MLP
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Figure 8. Test Accuracy vs Number of Epochs for 3-layer MLP
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