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Abstract. It is well known that Principal Component Analysis (PCA)
is strongly affected by outliers and a lot of effort has been put into
robustification of PCA. In this paper we present a new algorithm for
robust PCA minimizing the trimmed reconstruction error. By directly
minimizing over the Stiefel manifold, we avoid deflation as often used by
projection pursuit methods. In distinction to other methods for robust
PCA, our method has no free parameter and is computationally very
efficient. We illustrate the performance on various datasets including
an application to background modeling and subtraction. Our method
performs better or similar to current state-of-the-art methods while being
faster.

1 Introduction

PCA is probably the most common tool for exploratory data analysis, dimension-
ality reduction and clustering, e.g., [9]. It can either be seen as finding the best
low-dimensional subspace approximating the data or as finding the subspace of
highest variance. However, due to the fact that the variance is not robust, PCA
can be strongly influenced by outliers. Indeed, even one outlier can change the
principal components (PCs) drastically. This phenomenon motivates the devel-
opment of robust PCA methods which recover the PCs of the uncontaminated
data. This problem received a lot of attention in the statistical community and
recently became a problem of high interest in machine learning.

In the statistical community, two main approaches to robust PCA have been
proposed. The first one is based on the robust estimation of the covariance ma-
trix, e.g., [4], [8]. Indeed, having found a robust covariance matrix one can de-
termine robust PCs by performing the eigenvalue decomposition of this matrix.
However, it has been shown that robust covariance matrix estimators with de-
sirable properties, such as positive semidefiniteness and affine equivariance, have
a breakdown point1 upper bounded by the inverse of the dimensionality [4]. The
second approach is the so called projection-pursuit [7], [11], where one maximizes
a robust scale measure, instead of the standard deviation, over all possible direc-
tions. Although, these methods have the best possible breakdown point of 0.5,

1 The breakdown point [8] of a statistical estimator is informally speaking the fraction
of points which can be arbitrarily changed and the estimator is still well defined.
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they lead to non-convex, typically, non-smooth problems and current state-of-
the-art are greedy search algorithms [3], which show poor performance in high
dimensions. Another disadvantage is that robust PCs are computed one by one
using deflation techniques [12], which often leads to poor results for higher PCs.

In the machine learning and computer vision communities, matrix factor-
ization approaches to robust PCA were mostly considered, where one looks
for a decomposition of a data matrix into a low-rank part and a sparse part,
e.g., [2], [13], [14], [20]. The sparse part is either assumed to be scattered uni-
formly [2] or it is assumed to be row-wise sparse corresponding to the model
where an entire observation is corrupted and discarded. While some of these
methods have strong theoretical guarantees, in practice, they depend on a regu-
larization parameter which is non-trivial to choose as robust PCA is an unsuper-
vised problem and default choices, e.g., [2], [14], often do not perform well as we
discuss in Section 4. Furthermore, most of these methods are slow as they have
to compute the SVD of a matrix of the size of the data matrix at each iteration.

As we discuss in Section 2, our formulation of robust PCA is based on the
minimization of a robust version of the reconstruction error over the Stiefel man-
ifold, which induces orthogonality of robust PCs. This formulation has multiple
advantages. First, it has the maximal possible breakdown point of 0.5 and the
interpretation of the objective is very simple and requires no parameter tuning
in the default setting. In Section 3, we propose a new fast TRPCA algorithm for
this optimization problem. Our algorithm computes both orthogonal PCs and
a robust center, hence, avoiding the deflation procedure and preliminary robust
centering of data. While our motivation is similar to the one of [13], our opti-
mization scheme is completely different. In particular, our formulation requires
no additional parameter.

2 Robust PCA

Notation. All vectors are column vectors and Ip ∈ Rp×p denotes the identity
matrix. We are given data X ∈ Rn×p with n observations in Rp (rows correspond
to data points). We assume that the data contains t true observations T ∈ Rt×p

and n − t outliers O ∈ Rn−t×p such that X = T ∪ O and T ∩ O 6= ∅. To be
able to distinguish true data from outliers, we require the standard in robust
statistics assumption, that is t ≥

⌈
n
2

⌉
. The Stiefel manifold is denoted as Sk ={

U ∈ Rp×k | U>U = I
}

(the set of orthonormal k-frames in Rp).

PCA. Standard PCA [9] has two main interpretations. One can either see it
as finding the k-dimensional subspace of maximum variance in the data or the k-
dimensional affine subspace with minimal reconstruction error. In this paper we
are focusing on the second interpretation. Given data X ∈ Rn×p, the goal is to
find the offset m ∈ Rp and k principal components (u1, . . . , uk) = U ∈ Sk, which

describe A(m,U) =
{
z ∈ Rp

∣∣ z = m+
∑k

j=1 sjuj , sj ∈ R
}

, the k-dimensional
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affine subspace, so that they minimize the reconstruction error{
m̂, Û

}
= arg min

m∈Rp, U∈Sk, zi∈A(m,U)

1

n

n∑
i=1

‖zi − xi‖22 . (1)

It is well known that m̂ = 1
n

∑n
i=1 xi, and the optimal matrix Û ∈ Sk is generated

by the top k eigenvectors of the empirical covariance matrix. As U ∈ Sk is an
orthogonal projection, an equivalent formulation of (1) is given by{

m̂, Û
}

= arg min
m∈Rp, U∈Sk

1

n

n∑
i=1

∥∥(UU> − I) (xi −m)
∥∥2
2
. (2)

Robust PCA. When the data X does not contain outliers (X = T ), we refer
to the outcome of standard PCA, e.g., (2), computed for the true data T as
{m̂T , ÛT }. When there are some outliers in the data X, i.e. X = T ∪ O, the
result {m̂, Û} of PCA can be significantly different from {m̂T , ÛT } computed
for the true data T . The reason is the non-robust squared `2-norm involved in
the formulation, e.g., [4], [8]. It is well known that PCA has a breakdown point
of zero, that is a single outlier can already distort the components arbitrarily. As
outliers are frequently present in applications, robust versions of PCA are crucial
for data analysis with the goal of recovering the true PCA solution {m̂T , ÛT }
from the contaminated data X.

As opposed to standard PCA, robust formulations of PCA based on the max-
imization of the variance (the projection-pursuit approach as extension of (1)),
eigenvectors of the empirical covariance matrix (construction of a robust co-
variance matrix), or the minimization of the reconstruction error (as extension
of (2)) are not equivalent. Hence, there is no universal approach to robust PCA
and the choice can depend on applications and assumptions on outliers. More-
over, due to the inherited non-convexity of standard PCA, they lead to NP-hard
problems. The known approaches for robust PCA either follow to some extent
greedy/locally optimal optimization techniques, e.g., [3], [11], [17], [19], or com-
pute convex relaxations, e.g., [2], [13], [14], [20].

In this paper we aim at a method for robust PCA based on the minimiza-
tion of a robust version of the reconstruction error and adopt the classical out-
lier model where entire observations (corresponding to rows in the data ma-
trix X) correspond to outliers. In order to introduce the trimmed reconstruc-
tion error estimator for robust PCA, we employ the analogy with the least
trimmed squares estimator [15] for robust regression. We denote by ri(m,U) =∥∥(UU> − I) (xi −m)

∥∥2
2

the reconstruction error of observation xi for the given
affine subspace parameterized by (m,U). Then the trimmed reconstruction error
is defined to be the sum of the t-smallest reconstruction errors ri(m,U),

R(m,U) =
1

t

t∑
i=1

r(i)(m,U), (3)

where r(1)(m,U) ≤ · · · ≤ r(n)(m,U) are in nondecreasing order and t, with⌈
n
2

⌉
≤ t ≤ n, should be a lower bound on the number of true examples T . If
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such an estimate is not available as it is common in unsupervised learning, one
can set by default t =

⌈
n
2

⌉
. With the latter choice it is straightforward to see

that the corresponding PCA estimator has the maximum possible breakdown
point of 0.5, that is up to 50% of the data points can be arbitrarily corrupted.
With the default choice our method has no free parameter except the rank k.

The minimization of the trimmed reconstruction error (3) leads then to a
simple and intuitive formulation of robust PCA

{m∗, U∗} = arg min
m∈Rp, U∈Sk

R(m,U) = arg min
m∈Rp, U∈Sk

1

t

t∑
i=1

r(i)(m,U). (4)

Note that the estimation of the subspace U and the center m is done jointly. This
is in contrast to [2], [3], [11], [14], [19], [20], where the data has to be centered by
a separate robust method which can lead to quite large errors in the estimation
of the true PCA components. The same criterion (4) has been proposed by [13],
see also [21] for a slightly different version. While both papers state that the
direct minimization of (4) would be desirable, [13] solve a relaxation of (4)
into a convex problem while [21] smooth the problem and employ deterministic
annealing. Both approaches introduce an additional regularization parameter
controlling the number of outliers. It is non-trivial to choose this parameter.

3 TRPCA: Minimizing Trimmed Reconstruction Error
on the Stiefel Manifold

In this section, we introduce TRPCA, our algorithm for the minimization of the
trimmed reconstruction error (4). We first reformulate the objective of (4) as it is
neither convex, nor concave, nor smooth, even if m is fixed. While the resulting
optimization problem is still non-convex, we propose an efficient optimization
scheme on the Stiefel manifold with monotonically decreasing objective. Note
that all proofs of this section can be found in the supplementary material [16].

3.1 Reformulation and First Properties

The reformulation of (4) is based on the following simple identity. Let x̃i = xi−m
and U ∈ Sk, then

ri(m,U) =
∥∥(UU> − I) (xi −m)

∥∥2
2

= −
∥∥U>x̃i∥∥22 + ‖x̃i‖22 := r̃i(m,U). (5)

The equality holds only on the Stiefel manifold. Let r̃(1)(m,U) ≤ . . . ≤ r̃(n)(m,U),
then we get the alternative formulation of (4),

{m∗, U∗} = arg min
m∈Rp, U∈S

R̃(m,U) =
1

t

t∑
i=1

r̃i(m,U). (6)

While (6) is still non-convex, we show in the next proposition that for fixed m

the function R̃(m,U) is concave on Rp×k. This will allow us to employ a simple
optimization technique based on linearization of this concave function.
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Proposition 1. For fixed m ∈ Rp the function R̃(m,U) : Rp×k → R defined
in (6) is concave in U .

The iterative scheme uses a linearization of R̃(m,U) in U . For that we need

to characterize the superdifferential of the concave function R̃(m,U).

Proposition 2. Let m be fixed. The superdifferential ∂R̃(m,U) of R̃(m,U) :
Rp×k → R is given as

∂R̃(m,U) =
{∑

i∈I
αi(xi −m)(xi −m)>U

∣∣∣ n∑
i=1

αi = t, 0 ≤ αi ≤ 1
}
, (7)

where I = {i | r̃i(m,U) ≤ r̃(t)(m,U)} with r̃(1)(m,U) ≤ . . . ≤ r̃(n)(m,U).

3.2 Minimization Algorithm

Algorithm 1 for the minimization of (6) is based on block-coordinate descent in

m and U . For the minimization in U we use that R̃(m,U) is concave for fixed

m. Let G ∈ ∂R̃(m,Uk), then by definition of the supergradient of a concave
function,

R̃
(
m,Uk+1

)
≤ R̃

(
m,Uk

)
+
〈
G,Uk+1 − Uk

〉
. (8)

The minimization of the linear upper bound on the Stiefel manifold can be done
in closed form, see Lemma 1 below. For that we use a modified version of a
result of [10]. Before giving the proof, we introduce the polar decomposition of a
matrix G ∈ Rp×k which is defined to be G = QP , where Q ∈ S is an orthonormal
matrix of size p × k and P is a symmetric positive semidefinite matrix of size
k× k. We denote the factor Q of G by Polar(G). The polar can be computed in
O(pk2) for p ≥ k [10] as Polar(G) = UV > (see Theorem 7.3.2. in [6]) using the
SVD of G, G = UΣV >. However, faster methods have been proposed, see [5],
which do not even require the computation of the SVD.

Lemma 1. Let G ∈ Rp×k, with k ≤ p, and denote by σi(G), i = 1, . . . , k, the

singular values of G. Then minU∈Sk 〈G,U〉 = −
∑k

i=1 σi(G), with minimizer
U∗ = −Polar(G). If G is of full rank, then Polar(G) = G(G>G)−1/2.

Given that U is fixed, the center m can be updated simply as the mean of
the points realizing the current objective of (6), that is the points realizing the
t-smallest reconstruction error. Finally, although the objective of (6) is neither
convex nor concave in m, we prove monotonic descent of Algorithm 1.

Theorem 1. The following holds for Algorithm 1. At every iteration, either
R̃(mk+1, Uk+1) < R̃(mk, Uk) or the algorithm terminates.

The objective is non-smooth and neither convex nor concave. The Stiefel mani-
fold is a non-convex constraint set. These facts make the formulation of critical
points conditions challenging. Thus, while potentially stronger convergence re-
sults like convergence to a critical point are appealing, they are currently out of
reach. However, as we will see in Section 4, Algorithm 1 yields good empirical
results, even beating state-of-the-art methods based on convex relaxations or
other non-convex formulations.
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Algorithm 1 TRPCA

Input: X, t, d, U0 ∈ S, and m0 median of X, tolerance ε
Output: robust center mk and robust PCs Uk

repeat for k = 1, 2, . . .
Center data X̃k =

{
x̃ki = xi −mk, i = 1, . . . , n

}
Compute supergradient G(Uk) of R̃(mk, Uk) for fixed mk

Update Uk+1 = −Polar
(
G(Uk)

)
Update mk+1 = 1

t

∑
i∈Ik′ xi, where Ik

′
are the indices of the t smallest

r̃i(m
k, Uk+1), i = 1, . . . , n

until relative descent below ε

3.3 Complexity and Discussion

The computational cost of each iteration of Algorithm 1 is dominated by O(pk2)

for computing the polar and O(pkn) for a supergradient of R̃(m,U) and, thus,
has total cost O(pk(k+n)). We compare this to the cost of the proximal method
in [2], [18] for minimizing minX=A+E ‖A‖∗+λ ‖E‖1. In each iteration, the dom-
inating cost is O(min{pn2, np2}) for the SVD of a matrix of size p × n. If the
natural condition k � min{p, n} holds, we observe that the computational cost
of TRPCA is significantly better. Thus even though we do 10 random restarts
with different starting vectors, our TRPCA is still faster than all competing
methods, which can also be seen from the runtimes in Table 1.

In [13], a relaxed version of the trimmed reconstruction error is minimized:

min
m∈Rp, U∈Sk ,s∈Rk

∥∥X − 1nm
> − Us−O

∥∥2
F

+ λ ‖O‖2,1 , (9)

where ‖O‖2,1 is added in order to enforce row-wise sparsity of O. The opti-
mization is done via an alternating scheme. However, the disadvantage of this
formulation is that it is difficult to adjust the number of outliers via the choice
of λ and thus requires multiple runs of the algorithm to find a suitable range,
whereas in our formulation the number of outliers n−t can be directly controlled
by the user or t can be set to the default value

⌈
n
2

⌉
.

4 Experiments

We compare our TRPCA (the code is available for download at [16]) algorithm
with the following robust PCA methods: ORPCA [13], LLD2 [14], HRPCA [19],
standard PCA, and true PCA on the true data T (ground truth). For background
subtraction, we also compare our algorithm with PCP [2] and RPCA [17], al-
though the latter two algorithms are developed for a different outlier model.

To get the best performance of LLD and ORPCA, we run both algorithms
with different values of the regularization parameters to set the number of zero

2 Note, that the LLD algorithm [14] and the OPRPCA algorithm [20] are equivalent.
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rows (observations) in the outlier matrix equal to t̃ (which increases runtime
significantly). The HRPCA algorithm has the same parameter t as our method.

We write (0.5) in front of an algorithm name if the default value t̃ =
⌈
n
2

⌉
is

used, otherwise, we use the ground truth information t̃ = |T |. As performance
measure we use the reconstruction error relative to the reconstruction error of
the true data (which is achieved by PCA on the true data only):

tre(U,m) =
1

t

∑
{i | xi∈T}

ri(m,U)− ri(m̂T , ÛT ), (10)

where {m̂T , ÛT } is the true PCA of T and it holds that tre(U,m) ≥ 0. The
smaller tre(U,m), i.e., the closer the estimates {m,U} to {m̂T , ÛT }, the better.
We choose datasets which are computationally feasible for all methods.
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Fig. 1. First row left to right: 1) Data1, p = 100, σo = 2; 2) Data1, p = 20, σo = 2; 3)
Data2, p = 100, σo = 0.35 ; Second row left to right: 1) Data2, p = 20, σo = 0.35; 2)
USPS10, k = 1; 3) USPS10, k = 10.

4.1 Synthetic Data Sets

We sample uniformly at random a subspace of dimension k spanned by U ∈ Sk

and generate the true data T ∈ Rt×p as T = AU> + E where the entries of
A ∈ Rt×k are sampled uniformly on [−1, 1] and the noise E ∈ Rt×p has Gaussian
entries distributed as N (0, σT ). We consider two types of outliers: (Data1) the
outliers O ∈ Ro×p are uniform samples from [0, σo]p, (Data2) the outliers are
samples from a random half-space, let w be sampled uniformly at random from
the unit sphere and let x ∼ N (0, σ01) then an outlier oi ∈ Rp is generated as
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oi = x−max{〈x,w〉 , 0}w. For Data2, we also downscale true data by 0.5 factor.
We always set n = t + o = 200, k = 5, and σT = 0.05 and construct data sets
for different fractions of outliers λ = o

t+o ∈ {0.1, 0.2, 0.3, 0.4, 0.45}. For every λ
we sample 5 data sets and report mean and standard deviation of the relative
true reconstruction error tre(U,m).

4.2 Partially Synthetic Data Set

We use USPS, a dataset of 16× 16 images of handwritten digits. We use digits
1 as true observations T and digits 0 as outliers O and mix them in different
proportions. We refer to this data set as USPS10 and the results can be found
in Fig. 1. We notice that TRPCA algorithm with the parameter value t̃ = t
(ground truth information) performs almost perfectly and outperforms all other
methods, while the default version of TRPCA with parameter t̃ =

⌈
n
2

⌉
shows

slightly worse performance. The fact that TRPCA estimates simultaneously the
robust center m influences positively the overall performance of the algorithm,
see, e.g., the experiments for background subtraction and modeling in Section 4.3
and additional ones in the supplementary material.
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Fig. 2. Reconstruction errors, i.e., ||(xi −m∗)− U∗ (U∗)> (xi −m∗)||22, on the y-axis,
for each frame on the x-axes for k = 10. Note that the person is visible in the scene
from frame 481 until the end. We consider the background images as true data and,
thus, the reconstruction error should be high after frame 481 (when the person enters).

4.3 Background Modeling and Subtraction

In [17] and [2] robust PCA has been proposed as a method for background
modeling and subtraction. While we are not claiming that robust PCA is the
best method to do this, it is an interesting test for robust PCA. The data X
are the image frames of a video sequence. The idea is that slight change in the
background leads to a low-rank variation of the data whereas the foreground
changes cannot be modeled by this and can be considered as outliers. Thus
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with the estimates m∗ and U∗ of the robust PCA methods, the solution of the
background subtraction and modeling problem is given as

xbi = m∗ + U∗(U∗)>(xi −m∗) (11)

where xbi is the background of frame i and its foreground is simply xfi = xi−xbi .
We experimentally compare the performance of all robust PCA methods on

the water surface data set [1], which has moving water in its background. We
choose this dataset of n = 633 frames each of size p = 128× 160 = 20480 as it is
computationally feasible for all the methods. In Fig. 3, we show the background
subtraction results of several robust PCA algorithms. We optimized the value
λ for PCP of [2], [18] by hand to obtain a good decomposition, see the bottom
right pictures of Fig. 3. How crucial the choice of λ is for this method can be
seen from the bottom right pictures. Note that the reconstruction error of both
the default version of TRPCA and TRPCA(0.5) with ground truth information
provide almost perfect reconstruction errors with respect to the true data, cf.,
Fig. 2. Hence, TRPCA is the only method which recovers the foreground and
background without mistakes. We refer to the supplementary material for more
explanations regarding this experiment as well as results for another background
subtraction data set. The runtimes of all methods for the water surface data set
are presented in Table 1, which shows that TRPCA is the fastest of all methods.

Table 1. Runtimes for the water surface data set for the algorithms described in
Section 4. For TRPCA/TRPCA(0.5) we report the average time of one initialization
(in practice, 5− 10 random restarts are sufficient). For PCP we report the runtime for
the employed parameter λ = 0.001. For all others methods, it is the time of one full
run of the algorithm including the search for regularization parameters.

trpca trpca(.5) orpca orpca(.5) hrpca hrpca(.5) lld rpca pcp(λ = 0.001)

k = 1 7 13 3659 3450 45990 48603 − 1078 −
k = 3 99 61 8151 13852 50491 56090 − 730 −
k = 5 64 78 2797 3726 72009 77344 232667 3615 875

k = 7 114 62 4138 3153 67174 90931 − 4230 −
k = 9 119 92 6371 8508 96954 106782 − 4113 −

5 Conclusion

We have presented a new method for robust PCA based on the trimmed recon-
struction error. Our efficient algorithm, using fast descent on the Stiefel mani-
fold, works in the default setting (t =

⌈
n
2

⌉
) without any free parameters and is

significantly faster than other competing methods. In all experiments TRPCA
performs better or at least similar to other robust PCA methods, in particular,
TRPCA solves challenging background subtraction tasks.
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Fig. 3. Backgrounds and foreground for frame i = 560 of the water surface data set.
The last row corresponds to the PCP algorithm with values of λ set by hand
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