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Abstract

Label noise can have severe negative effects on the performance of a classifier.

Such noise can either arise by adversarial manipulation of the training data

or from unskilled annotators frequently encountered in crowd sourcing (e.g.

Amazon mechanical turk). Based on the assumption that an expert has provided

some fraction of the training data, where labels can be assumed to be true, we

propose a new pre-processing method to identify and correct noisy labels via a

mutual consistency check using a Parzen window classifier. While the resulting

optimization problem turns out to be a combinatorial problem, we design an

efficient algorithm for which we provide approximation guarantees. Extensive

experimental evaluation shows that our method performs similar and often much

better than existing methods for the detection of noisy labels, thus leading to a

boost in performance of the resulting classifiers.

Keywords: Noisy Annotation, Label Correction, Mutual Consistency, Parzen

Window Estimation, Non-Convex Optimization and Spannogram Framework

1. Introduction1

Labeled training data is essential for supervised classification. As annotating2

large datasets can be time consuming, nowadays often crowd sourcing [1] (e.g.3
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Amazon mechanical turk) is used as a quick and cost effective solution. However,4

annotations acquired by crowd sourcing are generally contaminated with noise.5

Often it happens that some annotators do not understand the task correctly6

and thus provide wrong labels. Even more severe is adversarial manipulation7

of the training data to change the classifier in a “maximal” way. It is obvious8

that these different types of label noise can have a significant adverse effect on9

the classification performance. In the literature many negative results [2, 3, 4]10

have been shown regarding hardness of learning under adversarial or malicious11

noise.12

Being able to cope with such label noise is therefore an important practical13

problem which has recently attracted a lot of attention. One can identify two14

major directions among prior work. The first one attempts to correct mislabeled15

examples during model building [5, 6, 7, 8, 9], while the second one applies16

noise filtering as a pre-processing step prior to the model building [10, 11, 12].17

Typically, pre-processing techniques tend to be less prone to over-fitting as they18

are independent of the final classifier.19

Our approach follows the second direction for label correction and involves20

maximization of a global consistency criterion which predicts the label of a21

training data point based on its neighbors using a Parzen window type approach.22

This, in spirit is close to the work of [10]. However, unlike their approach,23

we enforce hard decisions, that is either a label is wrong or right. For model24

selection we assume that a small fraction of the training annotations has been25

provided by an expert for which we assume that all the labels are correct.26

Similar to other approaches for label noise correction [10, 5, 6, 7], the re-27

sulting optimization approach is non-convex. In our case, it is an NP-hard28

combinatorial problem. However, it turns out that in the particular setting we29

are working, we can develop an algorithm based on the Spannogram technique30

[13, 14], for which we can provide quite tight approximation guarantees. More-31

over, we show in the experiments that our optimization technique outperforms32

standard methods based on sequential linearization, which are often employed33

in machine learning. Thus we think that, modifications of the Spannogram34
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technique could also be of potential interest in other areas of machine learning35

which deal with some other combinatorial problem.36

We show on a large number of datasets with different types of noise that37

the proposed method is able to detect noisy labels with high precision and38

recall. This even holds up to a point where more than 40% of the training39

data-points are noisy. Finally, we show that, two different classifiers (SVM and40

Parzen window) trained using data pre-processed by our technique outperform41

or atleast performs similarly to the classifiers trained using data pre-processed42

by other existing thechniques and also their robust counterpart.43

2. Related Work44

Most of the existing work for detecting noisy labels as pre-processing tech-45

niques such as [2, 15, 12] uses some kind of local learning. They learn a few46

local classifiers from sub-sampled training data and then try to detect the cor-47

rect label of a training data point via a majority vote among the local classifiers.48

The main problem of such greedy approaches is that they examine each training49

data point individually without using the mislabeling information of the sub-50

sampled set. When the observed labels of a large portion of the sub-sampled51

set are noisy then the local classifiers based on them can be completely wrong52

and will in the worst case insert even more noise.53

Given the training dataset D = {xi, yi}ni=1 such that , xi ∈ X ⊂ Rd and

yi ∈ Y = {1,−1} a global approach to the problem has been put forward by [10],

where they assume that each labeled data point xi is noisy with an unknown

probability pi ∈ [0, 1]. Hence the expected class label of the ith data point is

E[yi] = (1− pi)yi + pi(−yi) = (1− 2pi)yi. Given a non-negative kernel function

K : Rd × Rd → R+, the predicted value of xi based on a Parzen window type

classifier is

f(xi) =

∑n
j=1(1− 2pj)yjK(xi,xj)∑n

j=1K(xi,xj)
.

Finally, [10] suggests a criterion to find pi in order to maximize the label54

consistency with respect to the expected labels i.e
∑
iE[yi]f(xi) for the whole55
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dataset. This leads to the following optimization problem56

max0≤pi≤1 〈(1− 2p), Qnorm(1− 2p)〉 − C‖p‖1 (1)

where Qnormij =
yiyjK(xi,xj)∑

j K(xi,xj)
. The regularization term ‖p‖1 is added in order57

to enforce sparsity in the solution. Moreover, for a non-negative kernel function58

without regularization term the optimization problem will result into a trivial59

solution where60

pi =

 0 if yi = 1

1 otherwise
or pi =

 1 if yi = 1

0 otherwise

Note that, Qnorm is not necessarily a negative semi definite matrix and hence61

(1) is a non-convex problem.62

Notation. ‖.‖p= lp norm, |I| =cardinality of set I, the eigenvalues λj of Q63

with corresponding eigenvector vj are in decreasing order, 1 is the vector of all64

ones, bzc = the largest integer ≤ z, 〈x,v〉 =
∑
i xivi and ei is a vector with 165

in the ith position and 0 else.66

3. Label Noise Detection by Mutual Consistency Check67

Given a training dataset D̂ = {xi, yti}ni=1, where xi ∈ Rd and yti ∈ {−1, 1}

is the true label of the i-th data point, the Parzen window classifier [16], f t is

defined as

f t(xi) =

∑n
j=1 y

t
jKh(xi,xj)∑

j Kh(xi,xj)
.

Typically, Kh is chosen to be the Gaussian kernel, Kh(x, y) = exp(−‖x−y‖
2
2

2h ),68

which is non-negative and positive semi-definite. Here h is the bandwidth of69

the kernel. Note that f t takes values in [−1, 1]. Hence the loss in terms of true70

labels can be defined as L(yti , f
t(xi)) = 1− ytif t(xi). Finally, we use a weighted71

loss over D̂ where the idea is that we penalize errors more in regions of high72

density (where we have a lot of nearby points and thus can be more sure that73
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the simple Parzen window classifier is correct) than in regions of low density,74

Loss(f t, D̂) =
1

n

n∑
i=1

wiL(yti , f
t(xi)), (2)

where the weight is wi = 1
n

∑n
j=1Kh(xi,xj). After proper rescaling of wi, it is a75

consistent1 density estimator [17], i.e., wi
hd

= 1
nhd

∑n
j=1Kh(xi,xj) is a consistent76

density estimator: wi
hd
→ p(xi) if h→ 0, n→∞, and nhd →∞.77

In this paper we assume that we do not know the true labels and the observed78

labels may be noisy in the sense that some of the given labels are different from79

the true labels. More precisely, given noisy training data D = {xi, yi}ni=1 we80

assume that the annotation yi is a perturbed version of the true label yti . For81

binary classification problems, the most intuitive noise model is yi = ηiy
t
i , where82

ηi ∈ {1,−1}. ηi = 1 indicates a correctly observed label and ηi = −1 indicates83

a noisy label. The goal is to find yt and hence η by minimizing the global loss84

in (2) with respect to η. We have85

1

n

n∑
i=1

wiL(yti , f
t(xi)) =

1

n2

n∑
i,j=1

Kh(xi,xj)−
1

n2

n∑
i,j=1

ytiy
t
jKh(xi,xj)

=
1

n2

n∑
i,j=1

Kh(xi,xj)−
1

n2

n∑
i,j=1

ηiyiηjyjKh(xi,xj) .(3)

Here 1
n2

∑n
i,j=1Kh(xi,xj) is constant. Hence in order to maximize mutual86

consistency in the labels of all training data-points, we have to minimize the87

loss (3) and hence maximize the following optimization problem88

η∗ = arg max
η∈{−1,1}n

n∑
i,j=1

ηiηjyiyjKh(xi,xj). (4)

Unlike greedy approaches, above optimization problem detects all the noisy89

points simultaneously.90

Note that, the optimization problem (4) has a trivial solution ηi = yi and91

hence is of no interest. The problem becomes challenging as we have two kinds92

of extra information on the problem and we encode them as constraints. First,93

1Note that, consistent has been mentioned earlier in a different sense.
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we make the natural assumption that a small part of the data set is annotated94

by experts and the corresponding labels are always correct. Thus the labels95

given by experts are fixed during the optimization. Let us define IE as the set of96

indices corresponding to data points annotated by expert annotators. Then ηi =97

1, ∀i ∈ IE . The second kind of extra information are the fractions of data points98

with noisy labels given by ρ+ and ρ− for positive and negative annotated classes99

respectively. Hence ρ+ =
|{i|yi=1 and yti=−1}|

n+
and ρ− =

|{i|yi=−1 and yti=1}|
n−

where100

n+ = |I+| = |{i|yi = 1}| and n− = |I−| = |{i|yi = −1}|. The fractions of noisy101

labels ρ+ and ρ− can be estimated similar to [7], but in this paper we estimate102

them by cross-validation using the knowledge of the expert labels. The final103

constraint set of our problem (4) is defined as104

E = {η | η ∈ {1,−1}n,
〈
1, ηI+

〉
= n+ − 2δ+,

〈
1, ηI−

〉
= n− − 2δ−, ηIE = 1} (5)

where δ+ = bρ+n+c and δ− = bρ−n−c. Hence our Label Noise Detection105

(LND) method solves the following optimization problem.106

LND: η∗ = arg max
η∈E

〈η,Qη〉 (6)

where, Qij = yiyjKh(xi,xj). Along with the constraint (5) the solution of (6)107

is no more trivial and we present an efficient algorithm to solve this problem in108

Section 4.2.109

4. Algorithms110

The optimization problem LND is a combinatorial problem and NP-hard in111

general. We present two possible ways to solve it approximately. The first one112

linearizes the objective function in each step and then solves the corresponding113

constrained maximization problem in closed form and the second one is an114

algorithm using the Spannogram technique for which we provide approximation115

guarantees.116

4.1. Sequential Linearization117

Algorithm 1 linearizes the objective function in the k-th step as
〈
η,Qηk

〉
118

and then solves the corresponding maximization problem, maxη∈E
〈
η,Qηk

〉
. It119
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turns out that the solution is a simple projection onto the constraint set E .120

LND solved using Algorithm 1 is denoted as LNDslp.121

Lemma 1. arg max
η∈E

〈η,v〉 ≡ ΠE(v) where ΠE is projection on E.122

Proof. ∀η ∈ E , ‖η‖2 = n is constant and hence123

ΠE(v) = arg min
η∈E

‖η − v‖2 ≡ arg max
η∈E

〈η,v〉 .

124

Moreover, it turns out that the projection onto the discrete set E can be125

easily computed in closed form using Algorihtm 2 .126

Theorem 1. Algorithm 2 computes ΠE(v).127

Proof. We give a proof by contradiction. Let us assume that η, the outcome

from Algorithm 2, is not equal to ΠE(v) and there exists an η∗ 6= η such that

η∗ = ΠE(v). Hence there are at-least two indices (j, l) such that yj = yl but

η∗j = −ηj , η∗l = −ηl and ηl = −ηj . Without loss of generality let us assume that

vl ≥ vj and hence according to Algorithm 2 ηl = 1, ηj = −1 and hence according

to above assumption η∗l = −1 and η∗j = 1. Assuming η∗i = ηi ∀i 6= j, l, we get

‖η − v‖2 − ‖η∗ − v‖2 = −2(ηlvl + ηjvj) + 2(η∗l vl + η∗j vj) = 4(vj − vl).

Now, as vl ≥ vj , 4(vj − vl) ≤ 0 or ‖η − v‖2 ≤ ‖η∗ − v‖. Hence η must be equal128

to ΠE(v).129

Finally, we can show that Algorithm 1 leads to monotonic ascent.130

Lemma 2. Algorithm 1 at each step provides a feasible ηk+1 with monotonically131

increasing function value if Kh is positive definite.132

Proof. If Kh is positive definite, then Q is also positive definite. Using the first-

order condition of convex functions, we get 〈η,Qη〉 ≥
〈
ηk, Qηk

〉
+ 1

2

〈
Qηk, η − ηk

〉
.

Thus the algorithmic scheme maximizes a lower bound on the objective. More-

over, as ηk is feasible, we get〈
ηk+1, Qηk+1

〉
≥
〈
ηk, Qηk

〉
+

1

2

〈
Qηk, ηk+1 − ηk

〉
≥
〈
ηk, Qηk

〉
.
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Algorithm 1 LNDslp

Initialization: Randomly take η0 in E and k := 0.

Output: ηk

repeat

Iteration k: ηk+1 = ΠE(Qη
k).

until
〈ηk+1,Qηk+1〉−〈ηk,Qηk〉

〈ηk,Qηk〉 ≤ ε

Algorithm 2 ΠE(v)

Initialization: η = 1 and Iη = ∅.

Output: η

Iη+ ← {i|vi∈{i|yi=1} ≤ v
[δ+]
+ , where v

[δ+]
+ = δ+-th smallest element of

vi∈{i|yi=1}}

Iη− ← {i|vi∈{i|yi=−1} ≤ v
[δ−]
− , where v

[δ−]
− = δ−-th smallest element of

vi∈{i|yi=−1}}

Iη = {Iη+ , Iη−}

ηIη = −1

133

4.2. Algorithm based on low rank approximation134

The LNDslp (Algorithm 1) has the problem that it can get stuck in local135

optima without any approximation guarantees. On the other-hand, finding the136

global optimum of (6) is NP-hard [18]. In this paper we propose an algorithm137

based on the Spannogram framework [13, 14] which allows to solve LND with138

a certain approximation guarantee.139

Efficient use of IE: Using (ηi = 1, ∀i ∈ IE),140

〈η,Qη〉=
∑
i,j∈IE

Qij + 2
∑

i/∈IE ,j∈IE

ηiQij +
∑
i,j /∈IE

ηiηjQij .

Hence (6) can be solved by solving141

ηs∗ = argmax
η∈Es
〈ηs, Qsηs〉 (7)
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where, Qs =

 〈1, Qi∈IE j∈IE1〉
〈
1, Qi∈IE j /∈IE

〉
Qi/∈IE j∈IE1 Qi/∈IE j /∈IE

 and the new feasibility set142

is defined as, Es = {η|ηi ∈ {+1,−1}, |{i|ηi = −1 and yi = 1}| = δ+, |{i|ηi =143

−1 and yi = −1}| = δ− and η1 = 1}. Finally we can get back the solution of144

(6) by assigning η∗i∈IE = ηs∗1 = 1 and η∗i/∈IE = ηs∗j≥2. As structure of problem (7)145

is the same as that of (6), henceforth we will consider Q = Qs and E = Es.146

For a positive semi-definite(PSD) kernel Kh, Q is also PSD hence using147

eigenvalue decomposition, (6) is equivalent to148

arg max
η∈E

〈η,Qnη〉 , where Qn =

n∑
j=1

λjvjv
T
j (8)

where n is number of training data points. A low rank approximation of (6)149

and (8) is given by150

arg max
η∈E

〈η,Qrη〉 , where Qr =

r∑
j=1

λjvjv
T
j (9)

where Qr is the low rank approximation of Q and ideally r << n. This in turn

is equivalent to

arg max
η∈E

‖Vrη‖22, where Vr = [
√
λ1v1, . . . ,

√
λrvr]

T .

Let c be a r × 1 unit length vector, i.e., ‖c‖2 = 1. Using Cauchy-Schwarz151

inequality, we get 〈c,Vrη〉2 ≤ ‖Vrη‖22; with equality, if and only if, c is co-linear152

to Vrη. Hence (9) is equivalent to153

arg max
η∈E

max
c:‖c‖2=1

〈c,Vrη〉2 . (10)

For a given c∗, defining vc
∗

r = VT
r c∗, (10) is equivalent to

arg max
η∈E

〈c∗,Vrη〉2 = arg max
η∈E

∣∣∣〈vc
∗

r , η
〉∣∣∣ .

Lemma 3. arg max
η∈E

| 〈vcr, η〉 | ∈ Sc
(r,E), where Sc

(r,E) = {ΠE(vcr),ΠE(−vcr)}.154

Proof. We have, arg max
η∈E

| 〈vcr, η〉 | ∈ {arg max
η∈E

〈vcr, η〉 , arg max
η∈E

〈(−vcr), η〉}. Now,155

using Lemma 1 we get, arg max
η∈E

| 〈vcr, η〉 | ∈ {ΠE(vcr), ΠE(−vcr)} = Sc
(r,E).156
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Now for solving (10) the remaining part is to find c∗ such that157

c∗ = arg max
c:‖c‖2=1

max
η∈Sc

(r,E)

〈c,Vrη〉2 . (11)

For r = 1, that is c ∈ R, there are only two feasible c such that ‖c‖2 = 1 and158

they are given by c = ±1 and hence instead of solving (11) one can directly159

solve (10) by160

arg max
η∈E

max
vcr∈±

√
λ1vT1

〈vcr, η〉
2
.

Similarly, for r ≥ 2 instead of solving (11) from an infinitely large set of161

feasible c we find a finite set of potential c denoted as Cr such that162

arg max
η∈E

max
c:‖c‖2=1

〈c,Vrη〉2 ∈ ∪c∈Cr arg max
η∈Sc

(r,E)

〈c,Vrη〉2 .

Please note that for a fixed c, arg max
η∈E

〈c,Vrη〉2 is solved using ΠE (Lemma163

3) where ΠE (or Algorithm 2) uses the sorted order of elements of vcr. Again164

an η ∈ E can be a potential solution of (9) only if there exist a c for which165

η ∈ ΠE(v
c
r). Hence it is enough to build Cr which contains all c which generate166

a different sorted order of elements of vcr.167

4.2.1. The Spannogram framework168

The key idea of the Spannogram framework [13, 14] is the introduction of169

spherical coordinates. For any r ≥ 2 this transformation can be done by using170

r− 1 phase variable Φ = [φ1, . . . , φr−1] ∈ [[−π2 ,
π
2 ](r−2), [−π, π]] by expressing c171

without loss of generality as172

c =



sin(φ1)

cos(φ1) sin(φ2)

cos(φ1) cos(φ2) sin(φ3)

· · ·

cos(φ1) cos(φ2) . . . sin(φr−1)

cos(φ1) cos(φ2) . . . cos(φr−1)


(12)

which is a vector of unit norm and for all φ it produces all r×1 unit vectors.173

Under this transformation vcr can be expressed in terms of φ as174
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v(Φ) = sin(φ1)[
√
λ1v1] + cos(φ1) sin(φ2)[

√
λ2v2] + . . .

+ cos(φ1) cos(φ2) . . . cos(φr−1)[
√
λrvr] (13)

where each element of [v(Φ)]i is continuous function of r − 1 variables Φ.

Calculating ΠE(v
c
r) for a fixed vector c is equivalent to finding the relative sort-

ing of the n surfaces [v(Φ)]i=1,...,n for corresponding Φ. If the relative ranking of

i-th and j-th elements of v(Φ1) and v(Φ2) change, i.e, [v(Φ1)]i > [v(Φ1)]j but

[v(Φ2)]i < [v(Φ2)]j , then there must be a Φ3 ∈ [Φ1,Φ2] such that [v(Φ3)]i =

[v(Φ3)]j . Hence it is enough to collect all the points where any two of these

surfaces intersect. Please note that, the solution of [v(Φ)]i = [v(Φ)]j is not a

single point (i.e., a single vector c) but a (r− 1) dimensional space of solutions

denoted as

Φi,j = {φ | [v(φ)]i = [v(φ)]j}.

Since ΠE and hence local optimum changes only if the local ranking changes,175

the intersection points defined by all Φi,j sets are the only points of interest.176

For the vectors in this space Φi,j , there are again some critical φ’s where both177

the i-th and j-th elements are greater than δ+-th (δ−-th ) largest or less than178

δ+-th (δ−-th ) smallest element of v(φ) and still sorted order of element of v(φ)179

changes at φ. This happens when both i-th and j-th elements of v(φ) become180

equal to the l-th element of v(φ). This new (r − 3) dimensional sub-space is181

denoted as Φi,j,l. At this point, the intersection points defined by all Φi,j,l sets182

are the only points of interest. In this manner we can find Φi1,i2,...,ir which183

contains all Φ such that184

[v(Φ)]i1 = [v(Φ)]i2 = . . . = [v(Φ)]ir .

Finally, the intersection points defined by all such Φi1,i2,...,ir sets are the185

only points of interest. Hence only c corresponding to φ ∈ Φi1,i2,...,ir need to186

be checked and can be obtained by solving the system of r− 1, linear equations187
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Algorithm 3 Computing Cr corresponding to Vr

Initialization: Cr = ∅

Output: Cr
for all class y do

for all
(
ny
r

)
subsets {i1, . . . , ir} ⊂ {i|i ∈ Iy/IE} do

c = nullspace



eTi1 − e

T
i2

· · ·

eTi1 − e
T
ir

VT
r


sort elements of vcr = VT

r c

if ∃(i ∈ {i1, . . . , ir}) such that vcri(or −vcri) is equal to δy -th smallest

element of vcr(or −vcr) then

Cr ← Cr ∪ {c}

end if

end for

end for


eTi1 − e

T
i2

· · ·

eTi1 − e
T
ir

v(Φ) =


eTi1 − e

T
i2

· · ·

eTi1 − e
T
ir

vcr =


eTi1 − e

T
i2

· · ·

eTi1 − e
T
ir

VT
r c = 0. (14)

where ei is a vector of all zeros except 1 in the i-th position.188

Please note that, we need only the sorted order of elements corresponding to189

each annotation separately. Algorithm 3 finds such c considering elements of vcr190

corresponding to all positively and negatively annotated data points separately.191

Again, we will consider those c for which at least one of these r elements of vcr192

with equal values is equal to δ+-th (δ−-th) smallest (or largest) element of vcr.193

Finally, LND solved by Algorithm 4 is denoted as LNDr for r-rank approx-194

imation.195

Similarity with other algorithms: The Spannogram framework is inspired196

by the work of [13, 14], where sparse PCA and the densest subgraph problem197

have been studied. Both of these problems are quadratic maximization prob-198
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Algorithm 4 LNDr

Input: E , Q, r

Output: η∗r

Compute Vr = [
√
λ1v1, . . . ,

√
λrvr]

T .

Build Cr (Algorithm 3)

Build S(r,E) = ∪c∈CrSc
(r,E) (Lemma 3)

η∗r = argmaxη∈S(r,E) 〈η,Qη〉

lems, like LND in (6). Unlike LND they need sparse solutions while LND199

has a {1,−1} constraint on the variables which requires a fundamental modifi-200

cation in the theoretical analysis. [14] seems to be the closest to the proposed201

algorithm where the Spannogram technique is used to maximize a quadratic202

function with {0, 1} constraint. For projecting onto the cardinality constraint203

[14] needs a sorted order of elements of a vector similar to vcr and to get differ-204

ent possible rankings they use the Spannogram technique. For our problem the205

projection onto E also has a closed form solution depending on the sorted order206

of elements. This similarity between both the problems motivate us to extend207

the Spannogram framework for solving LND. We show that the Spannogram208

type algorithms can also be used when the required solution is not sparse. The209

proposed algorithm can also be easily extended to solve similar problems with210

other integer constraints on η in place of {1,−1} constraint by assigning ηi ≥ ηj211

when vcri > vcrj and again ηi ≥ ηj when −vcri > −vcrj .212

Complexity of proposed algorithm: For a rank-r approximation we have to213

solve a set of
(
n+

r

)
and

(
n−
r

)
equations to find Cr. Each of these equation sets will214

add one c in Cr and add at-most 2
(
r
r
2

)
candidates in Sc(r,E). Hence, |S(r,E)| is less215

than 2
(
r
r
2

) ((
n+

r

)
+
(
n−
r

))
or O

((
max{n+,n−}

r

))
. Considering the complexity of216

sorting O(n log n) and of final matrix multiplication 〈η,Qη〉 for every η ∈ Sr,E ,217

the time complexity of the proposed algorithm isO(max{n+, n−}r(n2+n log n)).218

For our experiment we have used mostly r ≤ 2 so that the search space has been219

reduced to O(n2) and time complexity is O(n4).220
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5. Approximation Guarantees221

We have the following different problems,222

OPT ∗ = max
η∈E
〈η,Qη〉 , η∗ = argmax

η∈E
〈η,Qη〉 ,

OPT ∗r = max
η∈S(r,E)

〈η,Qη〉 , η∗r = arg max
η∈S(r,E)

〈η,Qη〉 ,

Here S(r,E) = ∪c∈CrSc
(r,E).223

Lemma 4. If Og = 〈ηg, Qηg〉, where ηg = ΠE(q1) and q1 denotes the first row224

of Q. Then225

OPT ∗ ≥ max
{
Og, λ1 〈ΠE(v1),v1〉2 , λ1 〈ΠE(−v1),v1〉2

}
. (15)

Proof. The first part follows using OPT ∗ = maxη∈E 〈η,Qη〉 ≥ 〈ηg, Qηg〉, while226

the second and third parts inside the max in (15) can be proven as follows.227

OPT ∗ ≥ max
η∈E
〈η,Q1η〉 = max

η∈E
λ1

(
〈η,v1〉2

)
(as Q is PSD)

= λ1 max
{
〈ΠE(v1),v1〉2 , 〈ΠE(−v1),v1〉2

}
. (16)

228

Theorem 2. OPT ∗r ≥ (1− εr)OPT ∗, where229

εr ≤
n (λr+1 − λn)

max
{
Og, λ1 〈ΠE(v1),v1〉2 , λ1 〈ΠE(−v1),v1〉2

} .
Proof. We decompose the quadratic form in (6) in two parts

〈η,Qη〉 = 〈η,Qrη〉+ 〈η,Qrcη〉

where Qr =
∑r
i=1 λiviv

T
i and Qrc =

∑n
i=r+1 λiviv

T
i . By defining, ηr =230

argmaxη∈S(r,E) 〈η,Qrη〉 and hence OPTr = 〈ηr, Qrηr〉 = maxη∈S(r,E) 〈η,Qrη〉,231

OPT ∗r ≥ 〈ηr, Qηr〉 (as ηr ∈ S(r,E)) = 〈ηr, Qrηr〉+ 〈ηr, Qrcηr〉

≥ OPTr + n min
η:‖η‖2=1

〈η,Qrcη〉 ≥ OPTr + nλn

⇒ OPTr ≤ OPT ∗r − nλn (17)
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Using maxη∈E 〈η,Qrcη〉 ≤ nmaxη:‖η‖2=1 〈η,Qrcη〉 = nλr+1 and (17) we get,232

OPT ∗ ≤ max
η∈E
〈η,Qrη〉+ max

η∈E
〈η,Qrcη〉 ≤ OPTr + nλr+1

( max
η∈E
〈η,Qrη〉 = max

η∈S(r,E)
〈η,Qrη〉 as Qr is a rank-r matrix)

⇒ OPT ∗ ≤ OPT ∗r − nλn + nλr+1 (using (17)) (18)

One can write (18) as OPT ∗r ≥
(

1− n(λr+1−λn)
OPT∗

)
OPT ∗. Now the lower233

bound of OPT ∗ from Lemma 4 completes the proof.234

235

Note that, when a significant number of the training data points are labeled236

by expert annotators the first row and the first column of Q will have signifi-237

cantly larger values than other elements of Q. This makes the largest eigenvalue238

(λ1) much greater than other eigenvalues and hence εr becomes relatively small239

as is also shown in Section 6.240

6. Experiments241

This section presents our experimental setup and the results. We apply242

the proposed LND on a variety of data-sets contaminated with different kind243

of label noise. The objectives of our experiments are: (1) to illustrate the244

improvements in classification accuracy after correcting the label noise, (2) to245

compare the performance of LND against other existing methods in terms of246

ability to detect wrongly annotated data points, and (3) to prove superiority247

of the proposed Algorithm 4 for solving the non-convex optimization problem248

LND against the popular sequential linearization based algorithm LNDslp.249

6.1. Experimental Setup250

Data-sets: To evaluate the performance of our method, we use 8 data-sets251

from [19] described in Table 1. All the experiments are repeated ten times on252

ten random partitions and then the average performance is reported.253

The percentage of training data-set labeled by experts is fixed at 10% for254

most of our experiments. In our experiments we select all the parameters for255
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Table 1: Datasets

Name # Data-set Train-Test Split

Mushrooms 8124 x 112 (50%, 50%)

Svmguide1 7089 x 4 As in [19]

Fourclass 862 x 2 (50%, 50%)

Australian 619 x 14 (50%, 50%)

WDBC 569 x 30 (50%, 50%)

Heart 270 x 13 (50%, 50%)

Adult 32561 x 123 As in [19]

Covertype 581012 x 54 (1%, 9%)

various methods using 5-fold cross-validation and hence consider at-least 5 data256

points from each class for each data-set to be labeled by expert annotators.257

Considering the size of our smallest data-set (Heart), we fix this number at 10%258

for our experiments. But to study the effect of amount of available expert labels259

on performance of the proposed method, we repeated all experiments with less260

number (1% , 2% and 5%) of expert labels for larger data-sets (Mushrooms,261

Svmguide1 and Covertype). The rest of the training data-set, other than the262

portion annotated by experts, is contaminated by noise according to the follow-263

ing three different noise models.264

Noise models: The idea behind these different noise models is that they reflect265

real life scenarios of label noise.266

Boundary or margin noise (M): Here we try to mimic the situation where267

annotators are confused about the correct label of a data point if it is close to268

the decision boundary. Hence to simulate margin noise we first train a support269

vector machine classifier (SVM) and get the margin γ. Then we flip the labels270

of 60% of the data points lying inside the margin. To increase the noise level271

we widen the margin by changing the parameter C of the SVM.272

Biased annotator noise (BA): Here we are simulating the situation when a273

fraction of annotators are biased towards some unknown classifier and hence274
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they annotate all the data points according to that specific classifier. To simu-275

late this kind of noise we fix a random classifier and then change the labels of276

randomly chosen data points according to the outcome of that random classifier.277

Adversarial noise (A): We follow the method described in [8] to insert adver-278

sarial noise by flipping labels of those data points which have maximum impact279

on the classifier.280

To illustrate the effect of noisy labels on various classifiers, we repeat all the281

experiments by varying the number of mislabeled examples from 5% to 45% of282

the training data-set and use a SVM and a Parzen window PW classifier as283

the final classifiers. We also study the case where label noise is present only in284

one class.285

Methods compared: We compare the proposed LND with KBDMS1[10].286

In case of KBDMS1, we use two regularization terms C+‖pI+‖1 and C−‖pI−‖1287

instead of C‖p‖1 so that it can handle class conditional noise, where both C+ and288

C− are tuned in the range of 2{−5:1:5}. For learning a classifier from the outcome289

of the noisy label detection method KBDMS1, we flip the label of the i-th data290

point when pi > 0.5. We also compare LND with some intuitive and simple291

approaches, SubSVM [12] and SubPW where we learn 50 local classifiers292

on the sub-sampled training data-set with a sample size of log2 n. We correct293

the label of every training data point except those annotated by the experts,294

using majority vote from predictions of these 50 sub learners. We keep the295

parameter values equal for all the 50 sub learners. We study the impact of noise296

correction methods against a nominal SVM, PW and robust counter parts of297

SVM such as SVM with class conditional cost (CSVM) [9] and Robust SVM298

(RSVM) [8]. Moreover, we compare the obtained classification accuracy with299

the results of classifiers trained with correctly annotated labels (True-SVM or300

True-PW) and trained with data points annotated by the expert annotators301

(Expert-SVM or Expert-PW).302

The parameters ρ+/ρ− for all kinds of LND are chosen by cross-validation303

from {0 : 0.05 : 0.5} using knowledge of expert labels. For cross-validation, the304

training data-set is divided in such a way that the data points labeled by expert305
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annotators are equally distributed over all the partitions and the validation error306

is calculated by considering the mis-classification error only for the data points307

labeled by experts. All other parameters like C,C+, C− ∈ 2{−10:2:10} for all308

SVM classifiers and µ ∈ {0 : 0.1 : 0.5} of RSVM are chosen also by 5-fold309

cross-validation in a similar way. The bandwidth h of the Gaussian kernel is310

tuned independently for all the algorithms varying in the range of 2{−5:1:5}. We311

are not able to compare the proposed method with ROD [6] as it is not scalable312

beyond only hundred data points.313

We compare the performances of all the proposed algorithms LNDslp, LNDr314

for r = 1, 2 and LNDslp1 to verify importance of the proposed Algorithm 4.315

LNDslp1 uses LNDslp with output from LND1 as the starting point. The316

results for LNDslp correspond to the best local maximum obtained from 100317

random initializations.318

Computational setting: All experiments are done using Intel(R)-Xeon(R)319

(2.67GHz) processor with 36 GB RAM. For SVM and SubSVM we use Lib-320

SVM [19] with its Matlab interface. While all other algorithms are implemented321

with Matlab(R2013a). 2.322

6.2. Results323

Classification accuracy: In this section we study how the correction of label324

noise by different algorithms influence the test error of the final classifiers (SVM325

and PW). Experimental results in Figure 1,2,3,43 indicate the fact that for both326

SVM and PW classifiers, correcting annotations using our model helps to get327

better test errors. By increasing the number of noisy labels in the training328

data-set test errors of SVM and PW classifiers increase heavily while after329

pre-processing with the proposed method (LND1 , LND2 and LNDslp1) the330

test error increases with lower rate and in most of the cases remain very close to331

2Both the code for LNDs and the used data-sets with label noise are available at

http://www.ml.uni-saarland.de/code/LabelNoiseCorrection/LabelNoiseCorrection.htm
3 Each plot shows comparison of performance of various methods on each data-set (written

on the plot).
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Figure 1: Comparison of different label noise correction methods and robust SVMs in terms

of classification error of the SVM classifiers trained with corrected labels. In each plot the

y-axis shows the test error (in %) and the x-axis shows the fraction of noisy labels present in

the majority class of the training data-set.
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Figure 2: Comparison of different label noise correction methods and robust SVMs in terms

of classification error of the SVM classifiers trained with corrected labels. In each plot the

y-axis shows the test error (in %) and the x-axis shows the fraction of noisy labels present in

both classes of the training data-set.

the test error of the classifier trained with true labels. KBDMS1 performs well332

when the number of noisy data points is small but by increasing the number333

of noisy labels it deteriorates. The reason is that with a high regularization334

parameter it can only detect a few data points as noisy on the other hand by335

decreasing the value of the regularization parameters after a certain value, the336

effect of regularization become negligible and it starts detecting noisy data-337

points only from one class (as discussed in Section 2). The performance of338

SubSVM and SubPW are not consistent and vary for different data-sets and339
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Figure 3: Comparison of different label noise correction methods in terms of classification

error of PW classifiers trained with corrected labels. In a plot the y-axis shows the test error

(in %) and the x-axis shows the fraction of noisy labels present in the majority class of the

training data-set.
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Figure 4: Comparison of different label noise correction methods in terms of classification

error of PW classifiers trained with corrected labels. In a plot the y-axis shows the test error

(in %) and the x-axis shows the fraction of noisy labels present in both classes of the training

data-set.

also have large variance.340

Figures 1,2 show that in general, for the biased annotator noise and adver-341

sarial noise, SVM classifiers trained with the labels corrected by LND also342

outperforms all the other robust counter parts (CSVM and RSVM). Only343

in the case of boundary noise, CSVM performs best but our method is close.344

But for other kinds of noise the performance of CSVM deteriorates. When the345

noise is symmetric for both the classes, the performance of CSVM is not better346

than the performance of SVM trained with noisy data. As the margin noise in347

both the classes does not affect SVM much, we have not studied that kind of348
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Figure 5: Effect of approximation quality for LND in terms of classification error of the

SVM classifiers trained with labels corrected by LND1, LND2 and LND3. In the plots the

y-axis shows the test error (in %) and the x-axis shows the fraction of noisy labels present in

the majority class (left) and in both classes (right) of the training data-set.

noisy data.349

We also study performance of rank-3 approximation of LND(LND3) for350

the smaller data-sets: WDBC and Heart. Figure 5, 6 show that for all kinds of351

noise in the case of WDBC and for biased annotator and boundary noise in the352

case of Heart the performance of rank-1 approximation of LND(LND1) is also353

very close (sometimes better) to the performance of higher order (rank-2 and354

rank-3) approximations. Figure 1, 2, 3, 4 also show that one can get a good355

amount of improvement in terms of classification accuracy over SVM and PW356

classifiers by pre-processing the noisy data-sets using (LND1) with a running357

time of O(n2) which is also feasible for large data-sets.358

We compare classification accuracy when availability of the expert labels359
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Figure 6: Effect of approximation quality for LND in terms of classification error of the

PW classifiers trained with labels corrected by LND1, LND2 and LND3. In the plots the

y-axis shows the test error (in %) and the x-axis shows the fraction of noisy labels present in

the majority class (left) and in both classes (right) of the training data-set.

varies. Figure 7, 8 show how the performance of Expert-SVM (Expert-PW),360

nominal SVM (PW) and LND1 differ when the percentage of expert labels in361

the training data-set varies among 1%, 2%, 5%, 10% and 20%. Important to note362

that, even with 1% of expert labels, the proposed LND improves classification363

accuracy sometimes more than 10% of that achieved by nominal SVM and364

PW. LND1 also beats Expert-SVM and Expert-PW with high margin for365

small noise level and the difference is more when small number of expert labels366

are available. Please note that, we are using expert label information to tune367

ρ− and ρ+ in cross-validation. Hence, we are not able to tune these parameters368

when there are no expert label available. That is why, we do not include the369
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Figure 7: Plots show the effect of different fraction of expert labels for LND in terms of

classification error of SVM trained with corrected label. In the plots the y-axis shows the test

error (in %) and the x-axis shows the fraction of noisy labels present in the training data-set.
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Figure 8: Plots show the effect of different fraction of expert labels for LND in terms of

classification error of PW trained with corrected label. In the plots the y-axis shows the test

error (in %) and the x-axis shows the fraction of noisy labels present in the training data-set.

26



0
  SubSVM,  SubPW,  KDBMS1,  LND

slp
,  LND

1
,  LND

2
,  LND

slp
1

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

1.2
Mushrooms

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1
Svmguide1

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

1.2
Fourclass

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

Australian

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1 WDBC

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8
Heart

0.1 0.2 0.3 0.4

0.2

0.4

0.6

Adult

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6
Covertype

(a) Boundary Noise

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

1.2 Mushrooms

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1

1.2
Svmguide1

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

1.2
Fourclass

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1 Australian

0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1

WDBC

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1
Heart

0.1 0.2 0.3 0.4

0.2

0.4

0.6

Adult

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6
Covertype

(b) Biased Annotator Noise

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

1.2
Mushrooms

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1

1.2
Svmguide1

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1

1.2 Fourclass

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1
Australian

0.1 0.2 0.3 0.4

0.4

0.6

0.8

1

1.2
WDBC

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1
Heart

0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8 Adult

0.1 0.2 0.3 0.4

0.2

0.4

0.6

Covertype

(c) Adversarial Noise

Figure 9: The label noise detecting ability of various methods in term of the F1-score. In

the plot the y-axis shows the F1-score of noise detection and the x-axis shows the fraction of

noisy labels present in the majority class of the training data-set.
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Figure 10: The label noise detecting ability of various methods in term of the F1-score. In

the plot the y-axis shows the F1-score of noise detection and the x-axis shows the fraction of

noisy labels present in both classes of the training data-set.

plot for the worst case scenario, i.e., the plots for no expert labels.370

371

Noisy label detection ability: We compare in Figures 9, 10 the average F1372

scores of detecting noisy labels achieved by different methods with proper pa-373

rameter tuning through cross-validation. For this set of experiments we show374

the results only up-to rank-2 approximation of LND as for WDBC and Heart,375

the F1 score of rank-3 approximation is very close to that of the rank-2 approx-376

imation. In case of adversarial noise and biased annotator noise our proposed377

method is able to detect noisy labels with F1 scores higher than 0.8 except378
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Figure 11: Accurate estimation of noise ratio. In each plot the y-axis shows the average

estimation of noise ratio (ρ+ or ρ−) and the x-axis shows the fraction of noisy labels present

in the majority class of the training data-set.
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Figure 12: Accurate estimation of noise ratio. In each plot the y-axis shows the average

estimation of noise ratio (ρ+ or ρ−) and the x-axis shows the fraction of noisy labels present

in both classes of the training data-set.

for the Adult and the Covertype data-set. For the Mushrooms the F1 score379

is even closer to 1 for all kind of noise. Whereas the F1 scores for the other380

algorithms are below 0.6 in most of the cases. For small number of noisy labels,381

KBDMS1 sometimes performs better than LND but when more noisy data382

points are present, LND1, LND2 and LNDslp1 outperform KBDMS1 with a383

margin of more than 0.2. Performance of LNDslp is not consistent and varies384

a lot. This shows the superiority of Algorithm 4.385

386

Accurate estimation of the noise ratio: We verify how close the estimated387
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Figure 13: Plots show objective values achieved by various algorithms and approximations of

LND, i.e., LNDslp,LND1, LND2 and LNDslp1 . In each plot the y-axis shows the objective

values of LND (Equation (6)) and the x-axis shows the fraction of noisy labels present in the

majority class of the training data-set.

noise ratios (ρ+ and ρ−) are to the actual percentage of noisy labels. Figures388

11, 12 show that for proposed methods (LND1, LND2 and LNDslp1) the noise389

ratios are estimated accurately by cross-validation. For all data-sets except390

Adult and Fourclass and all types of noise models the estimated values are very391

close to the actual proportion of the noise. When the noise is larger (≥ 0.3) the392

estimated values are sometimes smaller than the true values.393

394

Solution quality: We compare the objective values achieved by various al-395
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Figure 14: Plots show objective values achieved by various algorithms and approximations

of LND, i.e., LNDslp,LND1, LND2 and LNDslp1 . In each plots the y-axis shows the

objective values of LND (Equation (6)) and the x-axis shows the fraction of noisy labels

present in both classes of the training data-set.

gorithms for solving (6). In these experiments, we use ρ+ and ρ− to be same396

as that used during the phase of insertion of noise. The experimental results397

(Figure 13,14 show that in almost all the cases the objective values achieved by398

LND1 and LND2 based on Algorithm 4 are much higher than that of LNDslp.399

Whereas the objective values achieved by LNDslp1 is higher than that of LND1,400

and also for few data-sets (Svmguide1, Fourclass and Australian) objective val-401

ues achieved by LND1 are even higher than LND2. Performance of LNDslp is402

not consistent as most of the time the objective values achieved by it are very403

far from the optimal one.404

We plot (Figure 15,16) Bound of OPT∗

OPT∗r
, where the bound is calculated by405

(18). For the Mushrooms the bound is very tight with Bound of OPT∗

OPT∗r
≤ 1.03. In406

general, the approximation guarantees are very good and quite stable across all407

the data-sets.408
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Figure 15: Plots show Bound of OPT∗

OPT∗r
for r = 1 and 2. In each plot the y-axis shows

Bound of OPT∗

OPT∗r
and the x-axis shows the fraction of noisy labels present in the majority class

of the training data-set.

409

Comparison of time complexity for noise label detection: Here we410

compare time complexities for various methods and algorithms. Each number411

in Table 2 reports average time required for each algorithm to detect noisy412

labels for a fixed set of parameter h, C, C−, C+ ρ− and ρ+. Time required413

for LND1 is less than that for KBDMS1, LNDslp and for smaller data sets414

it is comparable to SubPW and SubSVM. For moderately sized data-sets415

training time of LND1 is more than that of SubPW and SubSVM, where416

timing for SubPW and SubSVM depends on the number of local classifiers417
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Figure 16: Plots show Bound of OPT∗

OPT∗r
for r = 1 and 2. In the plot the y-axis shows

Bound of OPT∗

OPT∗r
and the x-axis shows the fraction of noisy labels present in both classes of

the training data-set.

learned. Here we learn SubSVM and SubPW with only 50 local classifiers.418

On the other hand, classification accuracy achieved by SubSVM and SubPW419

is much worse compared to that of LND1. As expected, the running time for420

LND2 is high but for larger data-sets it is better than the running time of421

KBDMS1. The time required for rank-3 approximation of LND for Heart422

and WDBC are 954.67± 106.2 and 591.23± 41.62 respectively.423

In Figure 17 we study how the time complexities of noise detection algo-424

rithms vary with the increase of training data-sets. We do this using the Cover-425

type data-set and we are not able to do this experiment beyond 3× 104 for the426

proposed LND algorithms in our system.427

7. Conclusion428

In this paper we propose LND as a novel method for correcting labels of429

mislabeled data points. Although, the optimization problem underlying LND430

is NP-hard, we extend the Spannogram algorithm to obtain a solution with431
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Table 2: The time required for detecting noisy labels by various methods (in seconds)

Dataset SubSVM SubPW KBDMS1 LNDslp LND1 LND2 LNDslp1

Heart 0.035 0.007 0.213 1.060 0.012 1.369 0.1473

150x13 ±0.019 ±0.002 ±0.056 ±0.245 ±0.003 ±0.571 ±0.051

WDBC 0.034 0.006 0.291 2.249 0.013 2.826 0.0752

290x30 ±0.012 ±0.004 ±0.060 ±0.752 ±0.0.002 ±1.359 ±0.015

Australian 0.047 0.009 0.358 2.510 0.013 2.081 0.0850

310x14 ±0.015 ±0.002 ±0.155 ±0.498 ±0.002 ±0.399 ±0.015

Fourclass 0.054 0.011 0.621 3.8754 0.019 3.412 0.155

430x2 ± 0.020 ±0.003 ±0.187 ±0.834 ±0.002 ±0.282 ±0.072

Adult 0.566 0.155 2.739 6.198 0.151 7.076 0.2538

1605x123 ±0.394 ±0.129 ±0.681 ±1.99 ±0.016 ±1.009 ±0.543

Svmguide1 0.329 0.297 16.893 28.994 0.323 10.486 0.850

3089x4 ±0.263 ±0.133 ±1.362 ±5.405 ±0.021 ±1.380 ±0.385

Mushroom 0.437 0.350 27.062 99.849 0.824 18.3610 2.8788

4062x112 ±0.279 ±0.085 ±2.999 ±17.813 ±0.030 ±1.885 ±1.240

Covertype 0.502 0.286 41.386 156.517 1.394 35.266 3.702

5810x54 ±0.277 ± 0.053 ± 3.845 ±26.02 ±0.0074 ±2.111 ±0.708

a provable approximation guarantee. Experimental results using a variety of432

data-sets and different noise models demonstrate that the proposed approach433

LND outperforms all existing methods for the detection of noisy labels by large434

margin. SVM trained with data pre-processed by LND also outperforms all435

other existing version of SVMs which are supposed to be robust to the label436

noise.437
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