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Abstract

The paradigm of multi-task learning is that one can achieve better generalization
by learning tasks jointly and thus exploiting the similarity between the tasks rather
than learning them independently of each other. While previously the relationship
between tasks had to be user-defined in the form of an output kernel, recent ap-
proaches jointly learn the tasks and the output kernel. As the output kernel is a
positive semidefinite matrix, the resulting optimization problems are not scalable
in the number of tasks as an eigendecomposition is required in each step. Using
the theory of positive semidefinite kernels we show in this paper that for a certain
class of regularizers on the output kernel, the constraint of being positive semidef-
inite can be dropped as it is automatically satisfied for the relaxed problem. This
leads to an unconstrained dual problem which can be solved efficiently. Experi-
ments on several multi-task and multi-class data sets illustrate the efficacy of our
approach in terms of computational efficiency as well as generalization perfor-
mance.

1 Introduction

Multi-task learning (MTL) advocates sharing relevant information among several related tasks dur-
ing the training stage. The advantage of MTL over learning tasks independently has been shown
theoretically as well as empirically [1, 2, 3, 4, 5, 6, 7].

The focus of this paper is the question how the task relationships can be inferred from the data.
It has been noted that naively grouping all the tasks together may be detrimental [8, 9, 10, 11].
In particular, outlier tasks may lead to worse performance. Hence, clustered multi-task learning
algorithms [10, 12] aim to learn groups of closely related tasks. The information is then shared only
within these clusters of tasks. This corresponds to learning the task covariance matrix, which we
denote as the output kernel in this paper. Most of these approaches lead to non-convex problems.

In this work, we focus on the problem of directly learning the output kernel in the multi-task learning
framework. The multi-task kernel on input and output is assumed to be decoupled as the product
of a scalar kernel and the output kernel, which is a positive semidefinite matrix [1, 13, 14, 15]. In
classical multi-task learning algorithms [1, 16], the degree of relatedness between distinct tasks is
set to a constant and is optimized as a hyperparameter. However, constant similarity between tasks
is a strong assumption and is unlikely to hold in practice. Thus recent approaches have tackled the
problem of directly learning the output kernel. [17] solves a multi-task formulation in the framework
of vector-valued reproducing kernel Hilbert spaces involving squared loss where they penalize the
Frobenius norm of the output kernel as a regularizer. They formulate an invex optimization prob-
lem that they solve optimally. In comparison, [18] recently proposed an efficient barrier method
to optimize a generic convex output kernel learning formulation. On the other hand, [9] proposes a
convex formulation to learn low rank output kernel matrix by enforcing a trace constraint. The above
approaches [9, 17, 18] solve the resulting optimization problem via alternate minimization between
task parameters and the output kernel. Each step of the alternate minimization requires an eigen-
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value decomposition of a matrix having as size the number of tasks and a problem corresponding to
learning all tasks independently.

In this paper we study a similar formulation as [17]. However, we allow arbitrary convex loss
functions and employ general p-norms for p ∈ (1, 2] (including the Frobenius norm) as regularizer
for the output kernel. Our problem is jointly convex over the task parameters and the output kernel.
Small p leads to sparse output kernels which allows for an easier interpretation of the learned task
relationships in the output kernel. Under certain conditions on p we show that one can drop the
constraint that the output kernel should be positive definite as it is automatically satisfied for the
unconstrained problem. This significantly simplifies the optimization and our result could also be of
interest in other areas where one optimizes over the cone of positive definite matrices. The resulting
unconstrained dual problem is amenable to efficient optimization methods such as stochastic dual
coordinate ascent [19], which scale well to large data sets. Overall we do not require any eigenvalue
decomposition operation at any stage of our algorithm and no alternate minimization is necessary,
leading to a highly efficient methodology. Furthermore, we show that this trick not only applies to
p-norms but also applies to a large class of regularizers for which we provide a characterization.

Our contributions are as follows: (a) we propose a generic p-norm regularized output kernel matrix
learning formulation, which can be extended to a large class of regularizers; (b) we show that the
constraint on the output kernel to be positive definite can be dropped as it is automatically satisfied,
leading to an unconstrained dual problem; (c) we propose an efficient stochastic dual coordinate
ascent based method for solving the dual formulation; (d) we empirically demonstrate the superiority
of our approach in terms of generalization performance as well as significant reduction in training
time compared to other methods learning the output kernel.

The paper is organized as follows. We introduce our formulation in Section 2. Our main technical
result is discussed in Section 3. The proposed optimization algorithm is described in Section 4. In
Section 5, we report the empirical results.

2 The Output Kernel Learning Formulation

We first introduce the setting considered in this paper. We denote the number of tasks by T . We
assume that all tasks have a common input space X and a common positive definite kernel function
k : X × X → R. We denote by ψ(·) the feature map and by Hk the reproducing kernel Hilbert
space (RKHS) [20] associated with k. The training data is (xi, yi, ti)

n
i=1, where xi ∈ X , ti is the

task the i-th instance belongs to and yi is the corresponding label. Moreover, we have a positive
definite matrix Θ ∈ ST+ on the set of tasks {1, . . . , T}, where ST+ is the set of T × T symmetric and
positive semidefinite (p.s.d.) matrices.

If one arranges the predictions of all tasks in a vector one can see multi-task learning as learning a
vector-valued function in a RKHS [see 1, 13, 14, 15, 18, and references therein]. However, in this
paper we use the one-to-one correspondence between real-valued and matrix-valued kernels, see
[21], in order to limit the technical overhead. In this framework we define the joint kernel of input
space and the set of tasks M : (X × {1, . . . , T})× (X × {1, . . . , T})→ R as

M
(
(x, s), (z, t)

)
= k(x, z)Θ(s, t), (1)

We denote the corresponding RKHS of functions on X × {1, . . . , T} as HM and by ‖·‖HM
the

corresponding norm. We formulate the output kernel learning problem for multiple tasks as

min
Θ∈ST

+ ,F∈HM

C

n∑
i=1

L
(
yi, F (xi, ti)

)
+

1

2
‖F‖2HM

+ λV (Θ) (2)

where L : R × R → R is the convex loss function (convex in the second argument), V (Θ) is a
convex regularizer penalizing the complexity of the output kernel Θ and λ ∈ R+ is the regularization
parameter. Note that ‖F‖2HM

implicitly depends also on Θ. In the following we show that (2) can
be reformulated into a jointly convex problem in the parameters of the prediction function and the
output kernel Θ. In order to see this we first need the following representer theorem for fixed output
kernel Θ.
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Lemma 1 The optimal solution F ∗ ∈ HM of the optimization problem

min
F∈HM

C

n∑
i=1

L
(
yi, F (xi, ti)

)
+

1

2
‖F‖2HM

(3)

admits a representation of the form

F ∗(x, t) =

T∑
s=1

n∑
i=1

γisM
(
(xi, s), (x, t)

)
=

T∑
s=1

n∑
i=1

γisk(xi, x)Θ(s, t),

where F ∗(x, t) is the prediction for instance x belonging to task t and γ ∈ Rn×T .

Proof: The proof is analogous to the standard representer theorem [20]. We denote by U =
Span(M((xi, s), (·, ·)) | i = 1, . . . , n, s = 1, . . . , T ) the subspace in HM spanned by the training
data. This induces the orthogonal decomposition of HM = U ⊕ U⊥, where U⊥ is the orthogonal
subpace of U . Every function F ∈ HM can correspondingly decomposed into F = F ‖ + F⊥,
where F ‖ ∈ U and F⊥ ∈ U⊥. Then ‖F‖2HM

=
∥∥F ‖∥∥2

HM
+
∥∥F⊥∥∥2

HM
. As

F (xi, ti) = 〈F,M((xi, ti), (·, ·))〉 =
〈
F ‖,M((xi, ti), (·, ·))

〉
= F ‖(xi, ti). (4)

As the loss only depends on F ‖ and we minimize the objective by having
∥∥F⊥∥∥

HM
= 0. This

yields the result. �

With the explicit form of the prediction function one can rewrite the main problem (2) as

min
Θ∈ST

+ ,γ∈Rn×T
C

n∑
i=1

L
(
yi,

T∑
s=1

n∑
j=1

γjskjiΘs ti

)
+

1

2

T∑
r,s=1

n∑
i,j=1

γirγjskijΘrs + λV (Θ), (5)

where Θrs = Θ(r, s) and kij = k(xi, xj). Unfortunately, problem (5) is not jointly convex in Θ
and γ due to the product in the second term. A similar problem has been analyzed in [17]. They
could show that for the squared loss and V (Θ) = ‖Θ‖2F the corresponding optimization problem is
invex and directly optimize it. For an invex function every stationary point is globally optimal [22].

We follow a different path which leads to a formulation similar to the one of [2] used for learning
an input mapping (see also [9]). Our formulation for the output kernel learning problem is jointly
convex in the task kernel Θ and the task parameters. We present a derivation for the general RKHS
Hk, analogous to the linear case presented in [2, 9]. We use the following variable transformation,

βit =

T∑
s=1

Θtsγis, i = 1, . . . , n, s = 1, . . . , T, resp. γis =

T∑
t=1

(
Θ−1

)
st
βit.

In the last expression Θ−1 has to be understood as the pseudo-inverse if Θ is not invertible. Note
that this causes no problems as in case Θ is not invertible, we can without loss of generality restrict
γ in (5) to the range of Θ. The transformation leads to our final problem formulation, where the
prediction function F and its squared norm ‖F‖2HM

can be written as

F (x, t) =

n∑
i=1

βitk(xi, x), ‖F‖2HM
=

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr
βisβjrk(xi, xj). (6)

This can be seen as follows

‖F‖2HM
=

T∑
r,s=1

n∑
i,j=1

γirγjsk(xi, xj)Θrs (7)

=

T∑
t,u=1

T∑
r,s=1

n∑
i,j=1

βitβju
(
Θ−1

)
tr

(
Θ−1

)
us
k(xi, xj)Θrs (8)

=

T∑
t,u=1

n∑
i,j=1

(
Θ−1

)
tu
βitβjuk(xi, xj). (9)
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We get our final primal optimization problem

min
Θ∈ST

+ ,β∈Rn×T
C

n∑
i=1

L
(
yi,

n∑
j=1

βjtikji
)

+
1

2

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr
βisβjrkij + λV (Θ) (10)

Before we analyze the convexity of this problem, we want to illustrate the connection to the formu-
lations in [9, 17]. With the task weight vectors wt =

∑n
j=1 βjtψ(xj) ∈ Hk we get predictions as

F (x, t) = 〈wt, ψ(x)〉 and one can rewrite

‖F‖2HM
=

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr
βisβjrk(xi, xj) =

T∑
r,s=1

(
Θ−1

)
sr
〈ws, wt〉 .

This identity is known for vector-valued RKHS, see [15] and references therein. When Θ is κ times
the identity matrix, then ‖F‖2HM

=
∑T
t=1

‖wt‖2
κ and thus (2) is learning the tasks independently. As

mentioned before the convexity of the expression of ‖F‖2HM
is crucial for the convexity of the full

problem (10). The following result has been shown in [2] (see also [9]).

Lemma 2 Let R(Θ) denote the range of Θ ∈ ST+ and let Θ† be the pseudoinverse. The extended
function f : ST+ × Rn×T → R ∪ {∞} defined as

f(Θ, β) =

{∑T
r,s=1

∑n
i,j=1

(
Θ†
)
sr
βisβjrk(xi, xj), if βi· ∈ R(Θ),∀ i = 1, . . . , n,

∞ else .
,

is jointly convex.

Proof: It has been shown in [2] and [23][p. 223] that
〈
x,A†x

〉
is jointly convex on ST+ × R(A),

where R(A) is the range of A and A† is the pseudoinverse of A ∈ ST+. As L := (k(xi, xj))
n
i,j=1 is

positive semi-definite we can compute the eigendecomposition as

Lij =

n∑
l=1

λluliulj ,

where λl ≥ 0, l = 1, . . . , n are the eigenvalues and ul ∈ Rn the eigenvectors. Using this we get

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr
βisβjrk(xi, xj) =

n∑
l=1

λl

T∑
r,s=1

( n∑
i=1

βisuli

)( n∑
j=1

βjrulj

)(
Θ−1

)
rs

(11)

and thus we can write the function f as a positive combination of convex functions, where the
arguments are composed with linear mappings which preserves convexity [24]. �

The formulation in (10) is similar to [9, 17, 18]. [9] uses the constraint Trace(Θ) ≤ 1 instead
of a regularizer V (Θ) enforcing low rank of the output kernel. On the other hand, [17] employs
squared Frobenius norm for V (Θ) with squared loss function. [18] proposed an efficient algorithm
for convex V (Θ). Instead we think that sparsity of Θ is better to avoid the emergence of spurious
relations between tasks and also leads to output kernels which are easier to interpret. Thus we
propose to use the following regularization functional for the output kernel Θ:

V (Θ) =

T∑
t,t′=1

|Θtt′ |p = ‖Θ‖pp ,

for p ∈ [1, 2]. Several approaches [9, 17, 18] employ alternate minimization scheme, involving
costly eigendecompositions of T ×T matrix per iteration (as Θ ∈ ST+). In the next section we show
that for a certain set of values of p one can derive an unconstrained dual optimization problem which
thus avoids the explicit minimization over the ST+ cone. The resulting unconstrained dual problem
can then be easily optimized by stochastic coordinate ascent. Having explicit expressions of the
primal variables Θ and β in terms of the dual variables allows us to get back to the original problem.
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3 Unconstrained Dual Problem Avoiding Optimization over ST
+

The primal formulation (10) is a convex multi-task output kernel learning problem. The next lemma
derives the Fenchel dual function of (10). This still involves the optimization over the primal variable
Θ ∈ ST+. A main contribution of this paper is to show that this optimization problem over the ST+
cone can be solved with an analytical solution for a certain class of regularizers V (Θ). In the
following we denote by αr := {αi | ti = r} the dual variables corresponding to task r and by Krs

the kernel matrix (k(xi, xj) | ti = r, tj = s) corresponding to the dual variables of tasks r and s.

Lemma 3 Let L∗i be the conjugate function of the loss Li : R→ R, u 7→ L(yi, u), then

q : Rn → R, q(α) = −C
n∑
i=1

L∗i

(
− αi
C

)
− λ max

Θ∈ST
+

( 1

2λ

T∑
r,s=1

Θrs 〈αr,Krsα
s〉 − V (Θ)

)
(12)

is the dual function of (10), where α ∈ Rn are the dual variables. The primal variable β ∈ Rn×T
in (10) and the prediction function F can be expressed in terms of Θ and α as βis = αiΘsti and
F (x, s) =

∑n
j=1 αjΘstjk(xj , x) respectively, where tj is the task of the j-th training example.

Proof: We derive the Fenchel dual function of (10). For this purpose we introduce auxiliary vari-
ables z ∈ Rn which satisfy the constraint

zi =

n∑
j=1

βjtik(xj , xi) = F (xi, ti).

The Lagrangian L of the resulting problem (10) is given as:

L(β,Θ, z, α) = C

n∑
i=1

L(yi, zi) +
1

2

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr
βisβjrk(xi, xj) (13)

+

n∑
i=1

αi

(
zi −

n∑
j=1

βjtik(xj , xi)
)

+ iST
+

(Θ) + λV (Θ).

where iC is the indicator function of the set C. The dual function q is defined as

q(α) = min
β∈Rn×T ,Θ∈ST

+ , z∈Rn
L(β,Θ, z, α). (14)

Using the definition of the conjugate function [24], we get

min
zi∈R

C L(yi, zi) + αizi = C min
zi∈R

L(yi, zi) +
αi
C
zi = −C max

zi∈R

(
− αi
C
zi − L(yi, zi)

)
(15)

= −C L∗i
(
− αi
C

)
, (16)

where L∗i is the conjugate function of Li : z → L(yi, z). Moreover, we compute the minimizer with
respect to β, via

∂

∂βlu

(1

2

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr
βisβjrk(xi, xj)−

n∑
i=1

αi
( n∑
j=1

βjtik(xj , xi)
)

(17)

=

T∑
r=1

n∑
j=1

βjr(Θ
−1)urk(xl, xj)−

n∑
i=1

αiδutik(xl, xi),

where δ is the Kronecker symbol, that is δuti =

{
1 if u = ti,

0 else
. Solving for the global minimizer

β∗ yields
β∗jr = αjΘrtj . (18)
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Plugging β∗ back into the above expressions yields

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr
βisβjrk(xi, xj) =

T∑
r,s=1

n∑
i,j=1

(
Θ−1

)
sr

ΘstiΘrtjαiαjk(xi, xj)

=

n∑
i,j=1

Θtitjαiαjk(xi, xj), (19)

n∑
i,j=1

αiβjtik(xj , xi) =

n∑
i,j=1

αiαjΘtjtik(xj , xi), (20)

Introducing αr = (αi)ti=r, Krs =
(
k(xi, xj)

)
ti=r,tj=s

and gathering the terms corresponding to
the individual tasks we get

n∑
i,j=1

αiαjΘtjtik(xj , xi) =

T∑
r,s=1

〈αr,Krsα
s〉 .

Plugging all the expressions back into (14), we get the dual function as

q(α) = −C L∗ti(−
αti
C

) + min
Θ∈ST

+

λV (Θ)− 1

2

T∑
r,s=1

Θrs 〈αr,Krsα
s〉 (21)

= −C L∗ti(−
αti
C

) + λ min
Θ∈ST

+

V (Θ)− 〈ρ,Θ〉 (22)

= −C L∗ti(−
αti
C

)− λ max
Θ∈ST

+

〈ρ,Θ〉 − V (Θ) (23)

where we have introduced in the second step ρ ∈ RT×T with

ρrs =
1

2λ
〈αr,Krsα

s〉 , r, s = 1, . . . , T.

Note that ρ is a Gram matrix and thus positive semidefinite. The expression for the prediction
function is obtained by plugging (18) into (6). �

We now focus on the remaining maximization problem in the dual function in (12)

max
Θ∈ST

+

1

2λ

T∑
r,s=1

Θrs 〈αr,Krsα
s〉 − V (Θ). (24)

This is a semidefinite program which is computationally expensive to solve and thus prohibits to
scale the output kernel learning problem to a large number of tasks. However, we show in the
following that this problem has an analytical solution for a subset of the regularizers V (Θ) =
1
2

∑T
r,s=1 |Θrs|p for p ≥ 1. For better readability we defer a more general result towards the end of

the section. The basic idea is to relax the constraint on Θ ∈ RT×T in (24) so that it is equivalent
to the computation of the conjugate V ∗ of V . If the maximizer of the relaxed problem is positive
semi-definite, one has found the solution of the original problem.

Theorem 4 Let k ∈ N and p = 2k
2k−1 , then with ρrs = 1

2λ 〈α
r,Krsα

s〉 we have

max
Θ∈ST

+

T∑
r,s=1

Θrsρrs −
1

2

T∑
r,s=1

|Θrs|p =
1

4k − 2

(2k − 1

2kλ

)2k T∑
r,s=1

〈αr,Krsα
s〉2k , (25)

and the maximizer is given by the positive semi-definite matrix

Θ∗rs =
(2k − 1

2kλ

)2k−1

〈αr,Krsα
s〉2k−1

, r, s = 1, . . . , T. (26)
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Proof: We relax the constraints and solve

max
Θ∈RT×T

1

2λ

T∑
r,s=1

Θrs 〈αr,Krsα
s〉 − 1

2

T∑
r,s=1

|Θrs|p.

Note that the problem is separable and thus we can solve for each component separately,

max
Θrs∈R

1

2λ
Θrs 〈αr,Krsα

s〉 − 1

2
|Θrs|p.

The optimality condition for Θ∗rs becomes with ρrs = 1
2λ 〈α

r,Krsα
s〉,

0 = ρrs −
p

2
sign(Θ∗rs)|Θ∗rs|p−1 =⇒ Θ∗rs =

(2

p

) 1
p−1

sign(ρrs)|ρrs|
1

p−1 .

The solution of the relaxed problem is the solution of the original constrained problem, if we can
show that the corresponding maximizer is positive semidefinite. Note that ρrs = 1

2λ 〈α
r,Krsα

s〉 is

a positive semidefinite (p.s.d.) matrix as it is a Gram matrix. The factor
(

2
p

) 1
p−1

is positive and thus

the resulting matrix is p.s.d. if sign(ρrs)|ρrs|
1

p−1 is p.s.d.

It has been shown [25], that the elementwise power Alrs of a positive semidefinite matrix A is
positive definite for all A ∈ ST+ and T ∈ N if and only if l is a positive integer. Note that we have
an elementwise integer power of Θ if 1

p−1 is an odd positive integer (the case of an even integer is
ruled out by Theorem 5), that is 1

p−1 = 2k − 1 for k ∈ N as in this case we have

Θ∗rs =
(2

p

)2k−1

sign(ρrs)|ρrs|2k−1 =
(2

p

)2k−1

ρ2k−1
rs =

(2k − 1

2kλ

)2k−1

〈αr,Krsα
s〉2k−1

.

We get the admissible values of p as p = 2k
2k−1 , k ∈ N (resp. 2k = p

p−1 ). We compute the optimal
objective value as

T∑
r,s=1

ρ2k
rs

((2

p

)2k−1

− 1

2

(2

p

)2k)
= (p− 1)

1

2

(2

p

)2k T∑
r,s=1

ρ2k
rs =

1

4k − 2

(2k − 1

k

)2k T∑
r,s=1

ρ2k
rs

(27)

=
1

4k − 2

(2k − 1

2λ k

)2k T∑
r,s=1

〈αr,Krsα
s〉2k (28)

�

Plugging the result of the previous theorem into the dual function of Lemma 3 we get for k ∈ N and
p = 2k

2k−1 with V (Θ) = ‖Θ‖pp the following unconstrained dual of our main problem (10):

max
α∈Rn

−C
n∑
i=1

L∗i

(
− αi
C

)
− λ

4k − 2

(2k − 1

2kλ

)2k T∑
r,s=1

〈αr,Krsα
s〉2k . (29)

Note that by doing the variable transformation κi := αi

C we effectively have only one hyper-
parameter in (29). This allows us to cross-validate more efficiently. The range of admissible values
for p in Theorem 4 lies in the interval (1, 2], where we get for k = 1 the value p = 2 and as k →∞
we have p→ 1. The regularizer for p = 2 together with the squared loss has been considered in the
primal in [17, 18]. Our analytical expression of the dual is novel and allows us to employ stochastic
dual coordinate ascent to solve the involved primal optimization problem. Please also note that by
optimizing the dual, we have access to the duality gap and thus a well-defined stopping criterion.
This is in contrast to the alternating scheme of [17, 18] for the primal problem which involves costly
matrix operations. Our runtime experiments show that our solver for (29) outperforms the solvers
of [17, 18]. Finally, note that even for suboptimal dual variables α, the corresponding Θ matrix in
(26) is positive semidefinite. Thus we always get a feasible set of primal variables.
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Table 1: Examples of regularizers V (Θ) together with their generating function φ and the explicit
form of Θ∗ in terms of the dual variables, ρrs = 1

2λ 〈α
r,Krsα

s〉. The optimal value of (24) is given
in terms of φ as max

Θ∈RT×T
〈ρ,Θ〉 − V (Θ) =

∑T
r,s=1 φ(ρrs).

φ(z) V (Θ) Θ∗rs

z2k

2k , k ∈ N 2k−1
2k

T∑
r,s=1

|Θrs|
2k

2k−1 ρ2k−1
rs

ez =
∑∞
k=0

zk

k!


T∑

r,s=1
Θrs log(Θrs)−Θrs if Θrs > 0∀r, s

∞ else .
eρrs

cosh(z)− 1 =
∑∞
k=1

z2k

(2k)!

T∑
r,s=1

(
Θrs arcsinh(Θrs)−

√
1 + Θ2

rs

)
+ T 2 arcsinh(ρrs)

Characterizing the set of convex regularizers V which allow an analytic expression for the
dual function The previous theorem raises the question for which class of convex, separable reg-
ularizers we can get an analytical expression of the dual function by explicitly solving the opti-
mization problem (24) over the positive semidefinite cone. A key element in the proof of the pre-
vious theorem is the characterization of functions f : R → R which when applied elementwise
f(A) = (f(aij))

T
i,j=1 to a positive semidefinite matrix A ∈ ST+ result in a p.s.d. matrix, that is

f(A) ∈ ST+. This set of functions has been characterized by Hiai [26].

Theorem 5 ([26]) Let f : R → R and A ∈ ST+. We denote by f(A) = (f(aij))
T
i,j=1 the element-

wise application of f to A. It holds ∀T ≥ 2, A ∈ ST+ =⇒ f(A) ∈ ST+ if and only if f is analytic
and f(x) =

∑∞
k=0 akx

k with ak ≥ 0 for all k ≥ 0.

Note that in the previous theorem the condition on f is only necessary when we require the implica-
tion to hold for all T . If T is fixed, the set of functions is larger and includes even (large) fractional
powers, see [25]. We use the stronger formulation as we want that the result holds without any
restriction on the number of tasks T . Theorem 5 is the key element used in our following charac-
terization of separable regularizers of Θ which allow an analytical expression of the dual function.

Theorem 6 Let φ : R → R be analytic on R and given as φ(z) =
∑∞
k=0

ak
k+1z

k+1 where ak ≥
0 ∀k ≥ 0. If φ is convex, then, V (Θ) :=

∑T
r,s=1 φ

∗(Θrs), is a convex function V : RT×T → R and

max
Θ∈RT×T

〈ρ,Θ〉 − V (Θ) = V ∗(ρ) =

T∑
r,s=1

φ
(
ρrs
)
, (30)

where the global maximizer fulfills Θ∗ ∈ ST+ if ρ ∈ ST+ and Θ∗rs =
∑∞
k=0 akρ

k
rs.

Proof: Note that φ is analytic on R and thus infinitely differentiable on R. As φ is additionally
convex, it is a proper, lower semi-continuous convex function and thus (φ∗)∗ = φ [27, Corollary
1.3.6]. As φ∗ is convex, V is a convex function and using (φ∗)∗ = φ we get

max
Θ∈RT×T

〈ρ,Θ〉 − V (Θ) = V ∗(ρ) =

T∑
r,s=1

φ(ρrs). (31)

Finally, we show that the global maximizer has the given form. Note that as φ is a proper, lower
semi-continuous convex function it holds [27, Corollary 1.4.4]

Θrs ∈ ∂φ∗(ρrs) ⇐⇒ ρrs ∈ ∂φ(Θrs).

Note that the maximizer Θ∗rs of problem (31) fulfills ρrs ∈ ∂φ∗

∂Θrs
(Θ∗rs) and thus Θ∗rs = ∂φ

∂ρrs
(ρrs),

where we have used that φ is infinitely differentiable. These conditions allow us to express the
maximizer of (30) in terms of ∂φ. As φ is continuously differentiable, we get

Θ∗rs =
∂φ

∂ρrs
(ρrs) =

∞∑
k=0

akρ
k
rs.

8



Note that the series has infinite convergence radius and ak ≥ 0 for all k and thus it is of the form
provided in Theorem 5. Thus Θ∗ ∈ ST+ if ρ ∈ ST+. �

Table 1 summarizes e.g. of functions φ, the corresponding V (Θ) and the maximizer Θ∗ in (30).

Examples

• First we recover the results of Theorem 4. We use φ(x) = 1
2kx

2k for k ∈ N, which is
convex. We compute

φ∗(y) = sup
x∈R

xy − φ(x) = sup
x∈R

xy − 1

2k
x2k =

2k − 1

2k
|y|

2k
2k−1 ,

where we have used x∗ = |y|
1

2k−1 sign(y). We recover

V (Θ) =

T∑
r,s=1

φ∗(Θrs) =
2k − 1

2k

T∑
r,s=1

Θ
2k

2k−1
rs ,

which with p = 2k
2k−1 yields up to a positive factor the family of regularizers employed in

Theorem 4 together with
Θ∗rs = ρ2k−1

rs

• In the second example we use φ(x) = ex =
∑∞
k=0

xk

k! , which is convex and the series has
infinite convergence radius The conjugate φ∗ is given as

φ∗(y) = sup
x∈R

xy − ex =

{
y log(y)− y if y > 0

∞ else.

so that the regularizer is given by,

V (Θ) =

T∑
r,s=1

φ∗(Θrs) =

{∑T
r,s=1 Θrs log(Θrs)−Θrs if Θrs > 0 ∀r, s = 1, . . . , T

∞ else .
.

This can be seen as a generalized KL-divergence between Θ and Θ0, where Θ0 ∈ ST+ is
the matrix of all ones

V (Θ) =

T∑
r,s=1

φ∗(Θrs) =


∑T
r,s=1 Θrs log

(
Θrs(
Θ0

)
rs

)
−Θrs +

(
Θ0

)
rs

if Θrs > 0 ∀r, s

∞ else .
.

Note that adding the constant term
∑T
r,s=1

(
Θ0

)
rs

does not change the optimization prob-
lem (10). The corresponding Θ∗ is given by

Θ∗rs =

∞∑
k=0

ρkrs
k!

= eρrs .

• Next we consider φ(x) = cosh(x) − 1 =
∑∞
k=1

x2k

(2k)! which is obviously convex and the
series has infinite convergence radius (ex is majorant). The conjugate φ∗ can be computed
as
φ∗(y) = sup

x∈R
xy−cosh(x)+1 = y arcsinh(y)−

√
1 + y2+1 = y log(y+

√
y2 + 1)−

√
1 + y2+1.

so that the regularizer is given by

V (Θ) =

T∑
r,s=1

φ∗(Θrs) =

T∑
r,s=1

(
Θrs arcsinh(Θrs)−

√
1 + Θ2

rs + 1
)
.

The corresponding Θ∗ is given by

Θ∗rs = arcsinh(ρrs) = log
(
ρrs +

√
ρ2
rs + 1

)
.

This regularizer is interpolating between a squared norm and a variant of 1-norm. One has

lim
y→0

φ∗(y) =
y2

2
, lim

y→∞
φ∗(y) = |y|(log(2|y|)− 1) + 1.

9



Algorithm 1 Fast MTL-SDCA
Input: Gram matrix K, label vector y, regularization parameter and relative duality gap parameter ε
Output: α (Θ is computed from α using our result in 26)
Initialize α = α(0)

repeat
Let {i1, . . . , in} be a random permutation of {1, . . . , n}
for j = 1, . . . , n do

Solve for ∆ in (32) corresponding to αij

αij ← αij + ∆
end for

until Relative duality gap is below ε

4 Optimization Algorithm

The dual problem (29) can be efficiently solved via decomposition based methods like stochastic
dual coordinate ascent algorithm (SDCA) [19]. SDCA enjoys low computational complexity per
iteration and has been shown to scale effortlessly to large scale optimization problems.

Our algorithm for learning the output kernel matrix and task parameters is summarized in Algo-
rithm 1. At each step of the iteration we optimize the dual objective over a randomly chosen αi
variable. Let ti = r be the task corresponding to αi. We apply the update αi ← αi + ∆. The
optimization problem of solving (29) with respect to ∆ is as follows:

min
∆∈R

L∗i
(
(−αi −∆)/C

)
+ η
(
(a∆2 + 2brr∆ + crr)

2k + 2
∑
s6=r

(brs∆ + crs)
2k +

∑
s,z 6=r

c2ksz
)
, (32)

where a = kii, brs =
∑
j:tj=s kijαj ∀s, csz = 〈αs,Kszα

z〉 ∀s, z and η = λ
C(4k−2)

(
2k−1
2kλ

)2k

.
This one-dimensional convex optimization problem is solved efficiently via Newton method. The
complexity of the proposed algorithm is O(T ) per iteration . The proposed algorithm can also be
employed for learning output kernels regularized by generic V (Θ), discussed in the previous section.

Special case p = 2(k = 1): For certain loss functions such as the hinge loss, the squared loss, etc.,
L∗ti
(
− αti+∆

C

)
yields a linear or a quadratic expression in ∆. In such cases problem (32) reduces to

finding the roots of a cubic equation, which has a closed form expression. Hence, our algorithm is
highly efficient with the above loss functions when Θ is regularized by the squared Frobenius norm.

5 Empirical Results

In this section, we present our results on benchmark data sets comparing our algorithm with existing
approaches in terms of generalization accuracy as well as computational efficiency. In Section 5.1,
we discuss generalization results in multi-task setting. We evaluate the performance of our algorithm
against several recent multi-task methods that employ clustering, low-dimensional projection of
input feature space or output kernel learning. Section 5.2 discusses multi-class experiment results.
Single task learning (STL) is a common baseline in both these experiments, and it employs hinge
loss and ε-SVR loss functions for classification and regression problems respectively. Finally, in
Section 5.3, we discuss the results on the computational efficiency of our algorithm.

5.1 Multi-Task Data Sets

We begin with the generalization results in multi-task setups. The data sets are as follows:
Sarcos: A multi-task regression data set. The aim is to predict 7 degrees of freedom of a robotic
arm [28].
Parkinson: A multi-task regression data set [29] where one needs to predict the Parkinson’s disease
symptom score for 42 patients.
Yale: A face recognition data set from the Yale face base with 28 binary classification tasks [30].
Landmine: A data set containing binary classification problems from 19 different landmines [30].
MHC-I: A bioinformatics data set having 10 binary classification tasks [12].
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Table 2: Dataset statistics. T represents the number of tasks and m represents the average number
of training examples per task.

Dataset T m Dataset T m

Sarcos 7 15 Landmine 19 102
Parkinson 42 5 MHC-I 10 24
Yale 28 5 Letter 9 60
USPS 10 100 MNIST 10 100
MIT Indoor67 67 80 SUN397 397 5, 50

Table 3: Mean generalization performance and the standard deviation over ten train-test splits.

Data set STL MTL CMTL MTFL GMTL MTRL FMTLp

p = 2 p = 4/3 p = 8/7

Regression data sets: Explained Variance (%)
Sarcos 40.5±7.6 34.5±10.2 33.0±13.4 49.9±6.3 45.8±10.6 41.6±7.1 46.7±6.9 50.3±5.8 48.4±5.8
Parkinson 2.8±7.5 4.9±20.0 2.7±3.6 16.8±10.8 33.6±9.4 12.0±6.8 27.0±4.4 27.0±4.4 27.0±4.4

Classification data sets: AUC (%)
Yale 93.4±2.3 96.4±1.6 95.2±2.1 97.0±1.6 91.9±3.2 96.1±2.1 97.0±1.2 97.0±1.4 96.8±1.4
Landmine 74.6±1.6 76.4±0.8 75.9±0.7 76.4±1.0 76.7±1.2 76.1±1.0 76.8±0.8 76.7±1.0 76.4±0.9
MHC-I 69.3±2.1 72.3±1.9 72.6±1.4 71.7±2.2 72.5±2.7 71.5±1.7 71.7±1.9 70.8±2.1 70.7±1.9
Letter 61.2±0.8 61.0±1.6 60.5±1.1 60.5±1.8 61.2±0.9 60.3±1.4 61.4±0.7 61.5±1.0 61.4±1.0

Letter: A data set containing handwritten letters from several writers and having 9 binary classifi-
cation tasks [31].

Table 2 presents the data set statistics. We compare the following algorithms:
MTL [16]: A classical multi-task learning baseline. They define the Θ matrix as: Θ(t, t′) = 1

µ+δtt′ ,
where µ > 0 is a hyper-parameter and δtt′ = 1 if t = t′ else δtt′ = 0. The hyper-parameter µ is
cross-validated.
CMTL [12]: A clustered multi-task learning algorithm. Tasks within a cluster are assumed to be
close to a mean vector. It requires the number of task clusters as a hyper-parameter.
MTFL [11]: Learns the input kernel and the output kernel matrix as a linear combination of base
kernel matrices.
GMTL [10]: A clustered multi-task feature learning approach. Tasks within a cluster are assumed
to share a low dimensional feature subspace [2]. Hence, it effectively learns both the input kernel as
well as the output kernel.
MTRL [9]: A multi-task relationship learning approach. It learns a low rank output kernel matrix
by enforcing a trace constraint on it.
FMTLp: Our proposed multi-task learning formulation (29). We consider three different values for
the p-norm: p = 2 (k = 1), p = 4/3 (k = 2) and p = 8/7 (k = 4). Hinge and ε-SVR loss functions
were used for classification and regression problems respectively.

We follow the experimental protocol1 described in [11]. Three-fold cross validation was performed
for parameter selection. Linear kernel was employed for all data sets. Also, note that GMTL [10] and
MTFL [11] enjoy the advantage of both input and output kernel learning. Hence, their generalization
results are not directly comparable to our method, which focuses solely on learning the output kernel
matrix.

Table 3 reports the performance of the algorithms averaged over ten random train-test splits. The
proposed FMTLp attains the best generalization accuracy in general. It outperforms the baseline
MTL as well as MTRL and CMTL, which solely learns the output kernel matrix. Moreover, it
achieves an overall better performance than GMTL and MTFL. The FMTLp=4/3,8/7 give compa-
rable generalization to p = 2 case, with the additional benefit of learning sparser and more inter-
pretable output kernel matrix (see Figure 1).

1The performance of STL, MTL, CMTL and MTFL are reported from [11].
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Figure 1: Plots of |Θ| matrices (rescaled to [0,1] and averaged over ten splits) computed by our
solver FMTLp for the Landmine data set for different p-norms, with cross-validated hyper-parameter
values. The darker regions indicate higher value. Tasks (landmines) numbered 1-10 correspond to
highly foliated regions and those numbered 11-19 correspond to bare earth or desert regions. Hence,
we expect two groups of tasks (indicated by the red squares). We can observe that the learned Θ
matrix at p = 2 depicts much more spurious task relationships than the ones at p = 4/3 and p = 8/7.
Thus, our sparsifying regularizer improves interpretability.

Table 4: Mean accuracy and the standard deviation over five train-test splits.

Data set STL MTL-SDCA GMTL MTRL FMTLp-H FMTLp-S FMTLklp = 2 p = 8/7 p = 2 p = 8/7

MNIST 84.1±0.3 86.0±0.2 84.8±0.3 85.6±0.4 86.1±0.4 86.2±0.4 82.3±0.6 82.4±0.3 82.5±0.5
USPS 90.5±0.3 90.6±0.2 91.6±0.3 92.4±0.2 92.4±0.2 92.6±0.1 87.2±0.4 87.5±0.3 87.0±0.4

5.2 Multi-Class Data Sets

The multi-class setup is cast as T one-vs-all binary classification tasks, corresponding to T classes.
In this section we experimented with two loss functions: a) FMTLp-H – the hinge loss employed in
SVMs, and b) FMTLp-S – the squared loss employed in OKL [17]. In these experiments, we also
compare our results with MTL-SDCA, a state-of-the-art multi-task feature learning method [32].
In addition, we report results from our KL-divergence regularized formulation with squared loss
(denoted by FMTLkl ).

Handwritten Digit Recognition: We consider the following two data sets and follow the experi-
mental protocol detailed in [10].
USPS: A handwritten digit data sets with 10 classes [33]. We process the images using PCA and
reduce the dimensionality to 87. This retains almost 87% of variance.
MNIST: Another handwritten digit data set with 10 classes [34]. PCA is employed to reduce the
dimensionality to 64.

We use 1000, 500 and 500 examples for training, validation and test respectively. Table 4 reports
the average accuracy achieved by various methods on both data sets over 5 splits. Our approach
FMTLp-H obtains better accuracy than GMTL, MTRL and MTL-SDCA [32] on both data sets.

MIT Indoor67 Experiments: We also report results on the MIT Indoor67 benchmark [35] which
covers 67 indoor scene categories with over 100 images per class. We use the train/test split (80/20
images per class) provided by the authors. FMTLp-S achieved the accuracy of 73.1%, 73.1% and
73.3% with p = 2, 4/3 and 8/7 respectively. Our KL-divergence regularized approach FMTLkl
obtained 73.1%. Note that these are better than the ones reported in [36] (70.1%) and [35] (68.24%).

SUN397 Experiments: SUN397 [37] is a challenging scene classification benchmark [35] with 397
scene classes and more than 100 images per class. We use m = 5, 50 images per class for training,
50 images per class for testing and report the average accuracy over the 10 standard splits. We
employed the CNN features extracted with the convolutional neural network (CNN) provided by
[35] using Places 205 database. We resized the images directly to 227 × 227 pixels, which is the
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Table 5: Mean accuracy and the standard deviation over ten train-test splits on SUN397.

m STL MTL MTL-SDCA FMTLp-H FMTLp-S FMTLklp = 2 p = 4/3 p = 8/7 p = 2 p = 4/3 p = 8/7

5 40.5±0.9 42.0±1.4 41.2±1.3 41.5±1.1 41.6±1.3 41.6±1.2 44.1±1.3 44.1±1.1 44.0±1.2 44.1±1.3
50 55.0±0.4 57.0±0.2 54.8±0.3 55.1±0.2 55.6±0.3 55.1±0.3 58.6±0.1 58.5±0.1 58.6±0.2 58.4±0.1

50 100 150 200 250 300 350

50

100

150

200

250

300

350

50 100 150 200 250 300 350

50

100

150

200

250

300

350

50 100 150 200 250 300 350

50

100

150

200

250

300

350

(p = 2) (p = 4/3) (p = 8/7)

Figure 2: Plots of matrices log(1 + |Θ|) (rescaled to [0,1] and diagonal entries removed since they
reflect high similarity of a task with itself, which is obvious) computed by our solver FMTLp-S for
the SUN397 data set for different p-norms, with cross-validated hyper-parameter values. The hierar-
chical block structure indicated by the red squares corresponds to the groups of classes available in
SUN397, e.g., the top 3 super-classes are indoor, outdoor-natural, and outdoor-man-made, which in
turn contain subgroups of classes. Note that this information was not used in experiments. We can
observe that the learned Θ matrix at p = 2 depicts much more spurious task relationships than the
one at p = 8/7. Thus, our sparsifying regularizer improves interpretability. Best viewed in color.

size of the receptive field of that network. The parameters were set by 2-fold cross-validation. The
results are tabulated in Table 5.

Figure 2 offers a qualitative assessment of the proposed method by showing the output kernel ma-
trices Θ computed by our formulation FMTLp-S for various p-norms. We can observe that the Θ
matrix becomes sparser as the p-norm decreases from 2 towards one. Enforcing sparsity helps to
detect the hierarchical structure of the tasks (see caption for more details).
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Figure 3: (a) Plot compares the runtime of various algorithms with varying number of tasks on
SUN397. Our approach FMTL2-S is 7 times faster that OKL [17] and 4.3 times faster than Con-
vexOKL [18] when the number of tasks is maximum. It can be observed that FMTL2-S also has the
best computational complexity in terms of number of tasks. (b) Plot showing the factor by which
FMTL2-S outperforms OKL and ConvexOKL over the hyper-parameter range on various data sets.
On SUN397, we outperform OKL and ConvexOKL by factors of 5.2 and 7 respectively. On MIT
Indoor67, we are better than OKL and ConvexOKL by factors of 8.4 and 2.4 respectively.
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Figure 4: (a)Plot showing the factor by which FMTL2-S outperforms OKL and ConvexOKL over
the hyper-parameter range on MNIST and USPS data sets. On MNIST, we outperform OKL and
ConvexOKL by factors of 25.5 and 6.3 respectively. On USPS, we are better than OKL and Con-
vexOKL by factors of 26.2 and 7.4 respectively. (b) Plot comparing the average rate at which the
three algorithms achieve the optimal primal objective (on SUN397 data set). FMTL2-S was run with
a duality gap of 10−15 and its primal objective value was taken to be the optimal primal objective.

5.3 Scaling Experiment

We compare the runtime of our solver for FMTL2-S with the OKL solver of [17] and the Convex-
OKL solver of [18] on several data sets. All the three methods solve the same optimization problem.
Figure 3a shows the result of the scaling experiment where we vary the number of tasks (classes).
The parameters employed are the ones obtained via cross-validation. Note that both OKL and Con-
vexOKL algorithms do not have a well defined stopping criterion whereas our approach can easily
compute the relative duality gap (set as 10−3). We terminate them when they reach the primal ob-
jective value achieved by FMTL2-S . Our optimization approach is 7 times and 4.3 times faster than
the alternate minimization based OKL and ConvexOKL, respectively, when the number of tasks is
maximal. The generic FMTLp=4/3,8/7 are also considerably faster than OKL and ConvexOKL.

Figure 3b compares the average runtime of our FMTLp-S with OKL and ConvexOKL on the cross-
validated range of hyper-parameter values. The hyper-parameter value chosen by cross-validation
for SUN397 and MIT Indoor67 data sets was around 105. FMTLp-S outperform them on both MIT
Indoor67 and SUN397 data sets. Figure 4 shows the same comparison on MNIST and USPS data
sets.

6 Conclusion

We proposed a novel formulation for learning the positive semi-definite output kernel matrix for
multiple tasks. Our main technical contribution is our analysis of a certain class of regularizers on the
output kernel matrix where one may drop the positive semi-definite constraint from the optimization
problem, but still solve the problem optimally. This leads to a dual formulation that can be efficiently
solved using stochastic dual coordinate ascent algorithm. Results on benchmark multi-task and
multi-class data sets demonstrates the effectiveness of the proposed multi-task algorithm in terms of
runtime as well as generalization accuracy.
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