
A Proof of Proposition 1

The proof of Proposition 1 follows from results in [2].

Definition A.1. Let C ⊆ R
d be a convex cone. The statistical dimension of C is defined as δ(C) =

E[‖ΠCg‖22], where ΠC denotes the Euclidean projection onto C and the entries of g are i.i.d. N(0, 1).

Theorem A.1. [2] Let f : R
d → R ∪ {−∞,+∞} be a proper convex function. Suppose that

A ∈ R
n×d has i.i.d. N(0, 1) entries, and let z0 = Ax0 for a fixed x0 ∈ R

d. Consider the convex
optimization problem

minimize f(x) subject to Ax = z0. (19)

and let D(f, x0) =
⋃

t>0{v ∈ R
d : f(x0 + tv) ≤ f(x0)} denote the descent cone of f at x0. Then,

for any ε > 0, if n ≤ (1 − ε)δ(D(f, x0)), with probability at least 1 − 32 exp(−ε2δm), x0 fails to
be the unique solution of (19).

Proof. (Proposition 1). Define the symmetric vectorization map svec : Sm → R
δm by

Σ = (σjk) 7→ (σ11,
√
2σ12, . . . ,

√
2σ1m, σ22,

√
2σ23, . . . ,

√
2σ(m−1)m, σmm)⊤, (20)

which is an isometry with respect to the Euclidean inner product on S
m and R

δm , and by svec−1 :
R

δm → S
m its inverse. We can then apply Theorem A.1 to the setting of Proposition 1 by using

d = δm, x = svec(Σ), x0 = 0, f(x) = ιSm
+
(svec−1(x)), A =




svec(X1)
...

svec(Xn)


 ,

where ιSm
+

is the convex indicator function of Sm+ which takes the value 0 if its argument is contained

in S
m
+ and +∞ otherwise. Observe that D(f, 0) = S

m
+ . It is shown in [2], Proposition 3.2, that the

statistical dimension δ(Sm+ ) = δm/2. This concludes the proof.

B Proof of Proposition 2

Proposition 2 follows from the dual problem of the convex optimization problem associated with
τ2(X , R). Below, it will be shown that the Lagrangian dual of the optimization problem

min
A,B

1

n1/2
‖X (A)−X (B)‖2

subject to A � 0, B � 0, tr(A) = R, tr(B) = 1.

(21)

is given by

max
θ,δ,a

θ · R− δ

subject to
X ∗(a)√

n
� θI,

X ∗(a)√
n

� δI, ‖a‖2 ≤ 1.
(22)

The assertion of Proposition 2 follows immediately from (22) by identifying θ =
λmin(n

−1/2X ∗(a)) and δ = λmax(n
−1/2X ∗(a)). In the remainder of the proof, duality of (21)

and (22) is established. Using the shortcut X̃ = X/
√
n, the Lagrangian of the dual problem (22) is

given by

L(θ, δ, a;A,B, κ) = θ ·R− δ +
〈
X̃ ∗(a)− θI, A

〉
−
〈
X̃ ∗(a)− δI, B

〉
− κ(‖a‖22 − 1).

Taking derivatives w.r.t. θ, δ, r and the setting the result equal to zero, we obtain from the KKT

conditions that a primal-dual optimal pair (θ̂, δ̂, â, Â, B̂, κ̂) obeys

tr(Â) = R, tr(B̂) = 1, X̃ (Â)− X̃ (B̂)− κ̂2â = 0. (23)
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Taking the inner product of the rightmost equation with â, we obtain

〈
â, X̃ (Â)− X̃ (B̂)

〉
− κ̂2‖â‖22 = 0.

⇔
〈
X̃ ∗(â), Â− B̂

〉
− κ̂2‖â‖22 = 0.

⇔ θ̂ tr(Â)− δ̂ tr(B̂)− κ̂2‖â‖22 = 0.

⇔ θ̂R− δ̂ = κ̂2‖â‖22,

where the second equivalence is by complementary slackness. Consider first the case θ̂R − δ̂ > 0.

This entails κ̂ > 0 and thus ‖â‖22 = 1, so that 2κ̂ = θ̂R−δ̂. Substituting this result into the rightmost
equation in (23) and taking norms, we obtain

θ̂R− δ̂ = ‖X̃ (Â)− X̃ (B̂)‖2 =
1√
n
‖X (Â)−X (B̂)‖2. (24)

For the second case, note that θ̂R − δ̂ cannot be negative as a = 0 is feasible for (22). Thus,

θ̂R− δ̂ = 0 implies that â = 0 and in turn also (24).

C Proof of Corollary 1

The corollary follows from Proposition 2 by choosing a = 1/
√
n so that n−1/2X ∗(a) =

1
n

∑n
i=1 Xi, and using that ‖Γ − Γ̂n‖∞ ≤ ǫn implies that |λj(Γ) − λj(Γ̂n)| ≤ ǫn, j = 1, . . . ,m

([12], §4.3). The specific values of R∗ and τ2∗ are obtained by choosing ζ = 2 in Proposition 2.

D Proof of Theorem 1

The following lemma is a crucial ingredient in the proof. In the sequel, let ∆̂ = Σ̂ − Σ∗. Let the

eigendecomposition of ∆̂ be given by

∆̂ =

m∑

j=1

λj(∆̂)uju
⊤
j =

m∑

j=1

max{0, λj(∆̂)}uju
⊤
j

︸ ︷︷ ︸
=:∆̂+

+

m∑

j=1

min{0, λj(∆̂)}uju
⊤
j

︸ ︷︷ ︸
=:∆̂−

= ∆̂+ + ∆̂− (25)

Lemma D.1. Consider the decomposition (25). We have ‖∆̂−‖1 ≤ ‖Σ∗‖1.

Proof. Write ∆̂+ = U+Λ+U
⊤
+ and ∆̂− = U−Λ−U

⊤
− for the eigendecompositions of ∆̂+ and ∆̂−,

respectively. Since Σ̂ � 0, we must have tr(Σ̂U−U
⊤
− ) ≥ 0 and thus

0 ≤ tr(Σ̂U−U
⊤
− ) = tr(U⊤

− Σ̂U−)

= tr(U⊤
− (Σ∗ + ∆̂)U−)

= tr(U⊤
− (Σ∗ + U+Λ+U

⊤
+ + U−Λ−U

⊤
− )U−)

= tr(Σ∗U−U
⊤
− ) + tr(Λ−),

where for the last identity, we have used that U⊤
+U− = 0. It follows that

‖∆̂−‖1 = ‖Λ−‖1 = − tr(Λ−) ≤ tr(Σ∗U−U
⊤
− ) ≤ ‖Σ∗‖1‖U−U

⊤
− ‖∞ = ‖Σ∗‖1.

Equipped with Lemma D.1, we turn to the proof of Theorem 1.
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Proof. (Theorem 1) By definition of Σ̂, we have ‖y−X (Σ̂)‖22 ≤ ‖y−X (Σ∗)‖22. Using (6) and the

definition of ∆̂, we obtain after re-arranging terms that

1

n
‖X (∆̂)‖22 ≤ 2

n

〈
ε,X (∆̂)

〉
=

2

n

〈
X ∗(ε), ∆̂

〉

⇒ 1

n
‖X (∆̂)‖22 ≤ 2‖X ∗(ε)/n‖∞‖∆̂‖1 = 2λ0(‖∆̂+‖1 + ‖∆̂−‖1), (26)

where we have used Hölder’s inequality, the decomposition of ∆̂ as in Lemma D.1 and λ0 =
‖X ∗(ε)/n‖∞. We now upper bound the l.h.s. of (26) by invoking Condition 1 and Lemma D.1,

which yields ‖∆̂−‖1 ≤ ‖Σ∗‖1. If ‖∆̂+‖1 ≤ R∗‖∆̂−‖1, we have

1

n
‖X (Σ̂)−X (Σ∗)‖22 =

1

n
‖X (∆̂)‖22 ≤ 2(R∗ + 1)λ0‖Σ∗‖1,

which is the first part in the maximum of the bound to be established. In the opposite case, suppose

first that ‖∆̂−‖1 > 0 (the case ‖∆̂−‖1 = 0 is discussed at the end of this proof) and we have

‖∆̂+‖1/‖∆̂−‖1 = R̂ > R∗ > 1. Consequently,

1

n
‖X (∆̂)‖22 =

1

n
‖X (∆̂+)−X (−∆̂−)‖22

= ‖∆̂−‖21
1

n

∥∥∥∥∥X
(

∆̂+

‖∆̂−‖1

)
−X

(
−∆̂−

‖∆̂−‖1

)∥∥∥∥∥

2

2

≥ ‖∆̂−‖21 min
A∈R̂S+

1
(m)

B∈S+

1
(m)

1

n
‖X (A) −X (B)‖22

= τ2(X , R̂)‖∆̂−‖21 = τ2(X , R̂)
‖∆̂+‖21
R̂2

Inserting this into (26), we obtain the following upper bound on ‖∆̂+‖1.

τ2(X , R̂)

R̂2
‖∆+‖21 ≤ 2λ0

R̂ + 1

R̂
‖∆̂+‖1

⇒ ‖∆̂+‖1 ≤ 2λ0
R̂(R̂+ 1)

τ2(X , R̂)
≤ 4λ0

R̂2

τ2(X , R̂)
≤ 4λ0

R2
∗

τ2∗
,

where the last inequality follows from the observation that for any R ≥ R∗

τ2(X , R) ≥ (R/R∗)
2τ2(X , R∗),

which can be easily seen from the dual problem (22) associated with τ2(X , R). Substituting the

above bound on ‖∆̂+‖1 into (26) and using the bound ‖∆̂−‖1 ≤ ‖Σ∗‖1 yields the second part in the

maximum of the desired bound. To finish the proof, we still need to address the case ‖∆̂−‖1 = 0.
Recalling the definition of the quantity τ20 (X ) in (13), we bound

1

n
‖X̂(∆̂)‖22 =

1

n
‖X̂(∆̂+)‖22 ≥ τ20 (X )‖∆̂+‖21.

Inserting this into (26), we obtain from

‖∆̂+‖1 ≤ 2λ0

τ20 (X )
≤ 2λ0(R∗ − 1)2

τ2∗
, (27)

where the second inequality follows from

τ2(X , R∗) = min
A∈R∗S

+

1
(m)B∈S+

1
(m)

1

n
‖X (A)− X (B)‖22

≤ min
A∈S+

1
(m)

1

n
‖X (R∗ · A)−X (A)‖22

= (R∗ − 1)2 min
A∈S+

1
(m)

1

n
‖X (A)‖22 = (R∗ − 1)2τ20 (X )

(28)
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Back-substitution of (27) into (26) yields a bound that is implied by that of Theorem 1. This con-
cludes the proof.

Bound on λ0. The bound on λ0 is an application of Theorem 4.6.1 in [25].

Theorem D.1. [25] Consider a sequence {Xi}ni=1 of fixed matrices in S
m and let {εi}ni=1

i.i.d.∼
N(0, σ2). Then for all t ≥ 0

P

(∥∥∥∥∥

n∑

i=1

εiXi

∥∥∥∥∥
∞

≥ t

)
≤ 2m exp(−t2/(2σ2V 2)), V 2 :=

∥∥∥∥∥

n∑

i=1

X2
i

∥∥∥∥∥
∞

.

Choosing t = σV
√
(1 + µ)2 log(2m) yields the desired bound.

E Proof of Theorem 1, Remark 3

The bound hinges on the following concentration result for the extreme eigenvalues of the sample
covariance of a Gaussian sample.

Theorem E.1. [9] Let z1, . . . , zN be an i.i.d. sample from N(0, Im) and let ΓN = 1
N

∑N
i=1 ziz

⊤
i .

We then have for any δ > 0

P

(
λmax

(
1

N
ΓN

)
>

(
1 + δ +

√
m

N

)2
)

≤ exp(−Nδ2/2).

In the proof, we also make use of the following fact.

Lemma E.1. Let {Xi}ni=1 ⊂ S
m
+ . Then∥∥∥∥∥

n∑

i=1

X2
i

∥∥∥∥∥
∞

≤ max
1≤i≤n

‖Xi‖∞

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
∞

.

Proof. First note that for any v ∈ R
m and any M ∈ S

m
+ , we have that

v⊤M2v =
m∑

j=1

λ2
j(M)(u⊤

j v)
2 ≤ λmax(M)

m∑

j=1

λj(M)(u⊤
j v)

2 = ‖M‖∞v⊤Xv,

where {uj}mj=1 are the eigenvectors of X . Accordingly, we have∥∥∥∥∥

n∑

i=1

X2
i

∥∥∥∥∥
∞

= max
‖v‖2=1

v⊤
n∑

i=1

X2
i v ≤ max

1≤i≤n
‖Xi‖∞ max

‖v‖2=1
v⊤

n∑

i=1

Xiv

= max
1≤i≤n

‖Xi‖∞

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
∞

.

We now establish the bound to be shown. Each measurement matrix can be expanded as

Xi =
1

q

q∑

k=1

zikz
⊤
ik, {zik}qk=1

i.i.d.∼ N(0, Im), i = 1, . . . , n.

Accordingly, we have
∥∥∥∥∥
1

n

n∑

i=1

X2
i

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
1

n

n∑

i=1

{
1

q

q∑

k=1

zikz
⊤
ik

}2
∥∥∥∥∥∥
∞

≤ max
1≤i≤n

{∥∥∥∥∥

{
1

q

q∑

k=1

zikz
⊤
ik

}∥∥∥∥∥
∞

}∥∥∥∥∥
1

nq

n∑

i=1

q∑

k=1

zikz
⊤
ik

∥∥∥∥∥
∞

≤ max
1≤i≤n

{
λmax

(
1

q

q∑

k=1

zikz
⊤
ik

)}
λmax(Γnq)
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where Γnq follows the distribution of ΓN in Theorem E.1 with N = nq. For the first term, applying

Theorem E.1 with N = q and δ =
√
4m log(n)/q and using the union bound, we obtain that

P

(
λmax

(
1

q

q∑

k=1

zikz
⊤
ik

)
>

(√
q +

√
m+

√
4m logn

√
q

)2
)

≤ exp(−(2m− 1) logn).

Applying Theorem E.1 to ΓN with δ = 1/
√
q, we obtain that

P

(
λmax(Γnq) >

(
1 +

1√
q
+

√
m

nq

)2
)

≤ exp(−n/2).

Combining the two previous bounds yields the assertion.

F Proof of Proposition 3

In the sequel, we write ΠT and ΠT⊥ for the orthogonal projections on T and T
⊥, respectively. Note

first that since the {εi}ni=1 are zero, any minimizer Σ̂ satisfies

X (Σ̂) = X (Σ∗) ⇐⇒ X (∆̂) = 0 ⇐⇒ X (∆̂T) + X (∆̂T⊥) = 0 (29)

where ∆̂T = ΠT∆̂ and ∆̂T⊥ = ΠT⊥∆̂, where we recall that ∆̂ = Σ̂ − Σ∗. Note that since

Σ∗ = ΠTΣ
∗, for Σ̂ to be feasible, it is necessary that ∆̂T⊥ � 0.

Suppose first that τ2(T) = 0. Then there exist Θ ∈ T and Λ ∈ S+
1 (m) ∩ T

⊥ such that X (Θ) +

X (Λ) = 0. Hence, for any Σ∗ ∈ T with Σ∗ + Θ � 0, the choices ∆̂T = Θ and ∆̂T⊥ = Λ ensure

that Σ̂ is feasible and that (29) is satisfied. Since Λ is contained in the Schatten 1-norm sphere of

radius 1, it is necessarily non-zero and thus Σ̂ 6= Σ∗.
If φ2(T) = 0, there exists 0 6= Θ ∈ T such that X (Θ) = 0. Consequently, for any Σ∗ ∈ T ∩ S

m
+

with Σ̂ = Σ∗ +Θ � 0, (29) is satisfied with Σ̂ 6= Σ∗.

Conversely, if τ2(T) > 0, (29) cannot be satisfied for ∆̂T⊥ � 0, ∆̂T⊥ 6= 0. Otherwise, we could

divide by tr(∆̂T⊥), which would yield

X (∆̂T

/
tr(∆̂T⊥)

︸ ︷︷ ︸
∈T

) + X (∆̂T⊥

/
tr(∆̂T⊥)

︸ ︷︷ ︸
∈S+

1
(m)∩T⊥

) = 0,

which would imply τ2(T) = 0. Therefore, we must have ∆̂T⊥ = 0 and X (∆̂T) = 0, which implies

∆̂T = 0 as long as φ2(T) > 0.

G Proof of Theorem 2

Let ∆̂ = Σ̂− Σ∗, ∆̂T = ΠT∆̂ and ∆̂T⊥ = ΠT⊥∆̂ � 0 as in the preceding proof. We start with the
following analog to (26)

1

n
‖X (∆̂)‖22 =

1

n
‖X (∆̂T + ∆̂T⊥)‖22 ≤ 2λ0(‖∆̂T‖1 + ‖∆̂T⊥‖1) (30)

Suppose that ∆̂T⊥ 6= 0. We then have

‖∆̂T⊥‖21





1

n

∥∥∥∥∥X
(

∆̂T

‖∆̂T⊥‖1

)
+ X

(
∆̂T⊥

‖∆̂T⊥‖1

)∥∥∥∥∥

2

2



 ≤ 2λ0(‖∆̂T‖1 + ‖∆̂T⊥‖1)

Since ∆̂T/‖∆̂T⊥‖1 ∈ T and ∆̂T⊥/‖∆̂T⊥‖1 = ∆̂T⊥/ tr(∆̂T⊥) ∈ S+
1 (m), we obtain that the term

inside the curly brackets is lower bounded by τ2(T) and thus

‖∆̂T⊥‖1 ≤ 2λ0

τ2(T)

(
1 +

‖∆̂T‖1
‖∆̂T⊥‖1

)
(31)
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On the other hand, expanding the quadratic term in (30), we obtain that

1

n
‖X (∆̂T)‖22 −

2

n

〈
X (∆̂T),X (∆̂T⊥ )

〉
≤ 1

n
‖X (∆̂)‖22 ≤ 2λ0(‖∆̂T‖1 + ‖∆̂T⊥‖1)

⇒ 1

n
‖X (∆̂T)‖22 ≤ 2λ0(‖∆̂T‖1 + ‖∆̂T⊥‖1) + 2µ(T)‖∆̂T‖1‖∆̂T⊥‖1

⇒ φ2(T)‖∆̂T‖21 ≤ 2λ0(‖∆̂T‖1 + ‖∆̂T⊥‖1) + 2µ(T)‖∆̂T‖1‖∆̂T⊥‖1

⇒ ‖∆̂T‖1 ≤
2λ0

(
1 + ‖∆̂T⊥‖1

/
‖∆̂T‖1

)
+ 2µ(T)‖∆̂T⊥‖1

φ2(T)
(32)

We now distinguish several cases.

Case 1: ‖∆̂T‖1 ≤ ‖∆̂T⊥‖1. It then immediately follows from (31) that

‖∆̂‖1 ≤ 8λ0

τ2(T)
=: T3. (33)

Case 2a: ‖∆̂T‖1 > ‖∆̂T⊥‖1 and ‖∆̂T⊥‖1 ≤ 4λ0/φ
2(T). From (32), we first get

‖∆̂T‖1 ≤ 4λ0 + 2µ(T)‖∆̂T⊥‖1
φ2(T)

(34)

and thus

‖∆̂‖1 ≤ 8λ0

φ2(T)

(
1 +

µ(T)

φ2(T)

)
=: T2 (35)

Case 2b: ‖∆̂T‖1 > ‖∆̂T⊥‖1 and ‖∆̂T⊥‖1 > 4λ0/φ
2(T). Plugging (34) into (31), we obtain that

‖∆̂T⊥‖1 ≤ 4λ0

τ2(T)
+

4λ0µ(T)

τ2(T)φ2(T)
.

Substituting this bound back into (34) yields

‖∆̂T‖1 ≤ 4λ0

φ2(T)
+

8λ0µ(T)

τ2(T)φ2(T)
+

8λ0µ
2(T)

φ4(T)τ2(T)
.

Collecting terms, we obtain altogether

‖∆̂‖1 ≤ 8λ0
µ(T)

τ2(T)φ2(T)

(
3

2
+

µ(T)

φ2(T)

)
+ 4λ0

(
1

φ2(T)
+

1

τ2(T)

)
=: T1. (36)

Combining (33), (35) and (36) yields the assertion.

H Additional Experiments: Scaling of the Constant τ 2(T)

For X and T given, it is possible to evaluate τ2(T) by solving a convex optimization problem. This
is different from other conditions employed in the literature such as restricted strong convexity [17],
1-RIP [8] or restricted uniform boundedness [3] that involve a non-convex optimization problem
even for fixed T.

We here consider sampling operators with random i.i.d. measurements Xi = ziz
⊤
i , where zi ∼

N(0, I) is a standard Gaussian random vector in R
m (equivalently, Xi follows a Wishart distribu-

tion) , i = 1, . . . , n. We expect τ2(T) to behave similarly for random rank-one measurements of the
same form as long as the underlying probability distribution has finite fourth moments, and thus for
(a broad subclass of) the ensemble M(πm, q) (14).

In order to explore the scaling of τ2(T) with n, m and r, we fix m ∈ {30, 50, 70, 100}. For each
choice of m, we vary n = αδm, where a grid of 20 values ranging from 0.16 to 1.1 is considered
α. For r, we consider the grid {1, 2, . . . ,m/5}. For each combination of m, n, and r, we use 50
replications. Within each replication, the subspace T is generated randomly from the eigenspace
associated with the non-zero eigenvalues of a random matrix G⊤G, where the entries of the m× r
matrix G are i.i.d. N(0, 1).

15



1 2 4 6 8 10
−25

−20

−15

−10

−5

0

r

   m=50   

lo
g

(t
a

u
2
(T

))

 

 

α : 0.2
α : 0.24
α : 0.3
α : 0.32
α : 0.4
α : 0.55
α : 0.6
α : 0.8

1 4 8 12 16 20
−25

−20

−15

−10

−5

0

r

   m=100   

lo
g

(t
a

u
2
(T

))

 

 

α : 0.2
α : 0.24
α : 0.3
α : 0.32
α : 0.4
α : 0.55
α : 0.6
α : 0.8

Figure 3: Scaling of log τ2(T) in dependence of r (horizontal axis) and α = n/δm (colors/symbols).
The solid lines represent the fit of model (37). Note that the curves are only fitted to those points for
which τ2(T) exceeds 10−6. Best seen in color.

The results point to the existence of a phase transition as it is typical for problems related to that
under study [2]. Specifically, it turns out that the scaling of τ2(T) can be well described by the
relation

τ2(T) ≈ φm,n max{1/r − θm,n, 0}, (37)

where φm,n, θm,n > 0 depend on m and n. In order to arrive at model (37), we first obtain the
5%-quantile as summary statistic of the 50 replications associated with each triple (n,m, r). At this
point, note that the use of the mean as a summary statistic is not appropriate as it may mask the fact
that the majority of the observations are zero. For each pair of (n,m), we then identify all values of
r for which the corresponding 5%-quantile drops below 10−6, which serves as effective zero here.
For the remaining values, we fit model (37) using nonlinear least squares (working on a log scale).
Figure 3 shows that model (37) provides a rather accurate description of the given data. Concerning
φm,n and θm,n, the scalings φm,n = φ0n/m and θm,n = θ0m/n for constants φ0, θ0 > 0 appear to
be reasonable. This gives rise to the requirement n > θ0(mr) for exact recovery to be possible in
the noiseless case (cf. Proposition 3) and yields that τ2(T) = Ω(1/r) as long as n = Ω(mr),
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I Enlarged Figures and Additional Tables

I.1 Enlarged version of Figure 1
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Figure 4: Average estimation error (over 50 replications) in nuclear norm for fixed m = 50 and
certain choices of n and r. In the legend, “LS” is used as a shortcut for “least squares”. Chen et
al. refers to (16). “#”indicates an oracular choice of the tuning parameter. “oracle” refers to the ideal

error σr
√

m/n. Best seen in color.
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Enlarged version of Figure 2
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Figure 5: Average reconstruction errors log10‖Σ̂− Σ∗‖F in dependence of n/(mr) and the param-
eter β. “oracle” refers to the best rank r-approximation Σr.

Additional Tables

The tables below contain orders of the errors ‖Σ̂ − Σ∗‖F relative to the error of the best rank r
approximation ‖Σr − Σ∗‖F for selected values of C = n/mr.

CBCL NASDAQ

β 1 1 .4 .4 .08

C 2 6 4 6 10

‖Σ̂−Σ∗‖F

‖Σr−Σ∗‖F

< 3 < 2 4 3 5

β 1 1 1 1

C 1 2 3 6

‖Σ̂−Σ∗‖F

‖Σr−Σ∗‖F

< 3.5 < 2 < 1.3 < 1.1

Table 1: Average reconstruction errors relative toΣr for some selected values of β andC = n/(mr).
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