A Proof of Proposition 1

The proof of Proposition 1 follows from results in [2].
Definition A.1. Let $\mathcal{C} \subseteq \mathbb{R}^{d}$ be a convex cone. The statistical dimension of \mathcal{C} is defined as $\delta(\mathcal{C})=$ $\mathbf{E}\left[\left\|\Pi_{\mathcal{C}} g\right\|_{2}^{2}\right]$, where $\Pi_{\mathcal{C}}$ denotes the Euclidean projection onto \mathcal{C} and the entries of g are i.i.d. $N(0,1)$.
Theorem A.1. [2] Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ be a proper convex function. Suppose that $A \in \mathbb{R}^{n \times d}$ has i.i.d. $N(0,1)$ entries, and let $z_{0}=A x_{0}$ for a fixed $x_{0} \in \mathbb{R}^{d}$. Consider the convex optimization problem

$$
\begin{equation*}
\text { minimize } f(x) \quad \text { subject to } A x=z_{0} . \tag{19}
\end{equation*}
$$

and let $\mathcal{D}\left(f, x_{0}\right)=\bigcup_{t>0}\left\{v \in \mathbb{R}^{d}: f\left(x_{0}+t v\right) \leq f\left(x_{0}\right)\right\}$ denote the descent cone of f at x_{0}. Then, for any $\varepsilon>0$, if $n \leq(1-\varepsilon) \delta\left(\mathcal{D}\left(f, x_{0}\right)\right)$, with probability at least $1-32 \exp \left(-\varepsilon^{2} \delta_{m}\right)$, x_{0} fails to be the unique solution of (19).

Proof. (Proposition 1). Define the symmetric vectorization map svec : $\mathbb{S}^{m} \rightarrow \mathbb{R}^{\delta_{m}}$ by

$$
\begin{equation*}
\Sigma=\left(\sigma_{j k}\right) \mapsto\left(\sigma_{11}, \sqrt{2} \sigma_{12}, \ldots, \sqrt{2} \sigma_{1 m}, \sigma_{22}, \sqrt{2} \sigma_{23}, \ldots, \sqrt{2} \sigma_{(m-1) m}, \sigma_{m m}\right)^{\top} \tag{20}
\end{equation*}
$$

which is an isometry with respect to the Euclidean inner product on \mathbb{S}^{m} and $\mathbb{R}^{\delta_{m}}$, and by svec ${ }^{-1}$: $\mathbb{R}^{\delta_{m}} \rightarrow \mathbb{S}^{m}$ its inverse. We can then apply Theorem A. 1 to the setting of Proposition 1 by using

$$
d=\delta_{m}, \quad x=\operatorname{svec}(\Sigma), \quad x_{0}=0, \quad f(x)=\iota_{\mathbb{S}_{+}^{m}}\left(\operatorname{svec}^{-1}(x)\right), \quad A=\left[\begin{array}{c}
\operatorname{svec}\left(X_{1}\right) \\
\vdots \\
\operatorname{svec}\left(X_{n}\right)
\end{array}\right]
$$

where $\iota_{\mathbb{S}_{+}^{m}}$ is the convex indicator function of \mathbb{S}_{+}^{m} which takes the value 0 if its argument is contained in \mathbb{S}_{+}^{m} and $+\infty$ otherwise. Observe that $\mathcal{D}(f, 0)=\mathbb{S}_{+}^{m}$. It is shown in [2], Proposition 3.2, that the statistical dimension $\delta\left(\mathbb{S}_{+}^{m}\right)=\delta_{m} / 2$. This concludes the proof.

B Proof of Proposition 2

Proposition 2 follows from the dual problem of the convex optimization problem associated with $\tau^{2}(\mathcal{X}, R)$. Below, it will be shown that the Lagrangian dual of the optimization problem

$$
\begin{align*}
& \min _{A, B} \frac{1}{n^{1 / 2}}\|\mathcal{X}(A)-\mathcal{X}(B)\|_{2} \tag{21}\\
& \text { subject to } A \succeq 0, B \succeq 0, \operatorname{tr}(A)=R, \operatorname{tr}(B)=1
\end{align*}
$$

is given by

$$
\begin{align*}
& \max _{\theta, \delta, a} \theta \cdot R-\delta \\
& \text { subject to } \frac{\mathcal{X}^{*}(a)}{\sqrt{n}} \succeq \theta I, \quad \frac{\mathcal{X}^{*}(a)}{\sqrt{n}} \preceq \delta I, \quad\|a\|_{2} \leq 1 . \tag{22}
\end{align*}
$$

The assertion of Proposition 2 follows immediately from (22) by identifying $\theta=$ $\lambda_{\min }\left(n^{-1 / 2} \mathcal{X}^{*}(a)\right)$ and $\delta=\lambda_{\max }\left(n^{-1 / 2} \mathcal{X}^{*}(a)\right)$. In the remainder of the proof, duality of (21) and (22) is established. Using the shortcut $\widetilde{\mathcal{X}}=\mathcal{X} / \sqrt{n}$, the Lagrangian of the dual problem (22) is given by

$$
L(\theta, \delta, a ; A, B, \kappa)=\theta \cdot R-\delta+\left\langle\widetilde{\mathcal{X}}^{*}(a)-\theta I, A\right\rangle-\left\langle\widetilde{\mathcal{X}}^{*}(a)-\delta I, B\right\rangle-\kappa\left(\|a\|_{2}^{2}-1\right)
$$

Taking derivatives w.r.t. θ, δ, r and the setting the result equal to zero, we obtain from the KKT conditions that a primal-dual optimal pair $(\widehat{\theta}, \widehat{\delta}, \widehat{a}, \widehat{A}, \widehat{B}, \widehat{\kappa})$ obeys

$$
\begin{equation*}
\operatorname{tr}(\widehat{A})=R, \quad \operatorname{tr}(\widehat{B})=1, \quad \widetilde{\mathcal{X}}(\widehat{A})-\widetilde{\mathcal{X}}(\widehat{B})-\widehat{\kappa} 2 \widehat{a}=0 . \tag{23}
\end{equation*}
$$

Taking the inner product of the rightmost equation with \widehat{a}, we obtain

$$
\begin{aligned}
& \langle\widehat{a}, \widetilde{\mathcal{X}}(\widehat{A})-\widetilde{\mathcal{X}}(\widehat{B})\rangle-\widehat{\kappa} 2\|\widehat{a}\|_{2}^{2}=0 \\
\Leftrightarrow & \left\langle\widetilde{\mathcal{X}}^{*}(\widehat{a}), \widehat{A}-\widehat{B}\right\rangle-\widehat{\kappa} 2\|\widehat{a}\|_{2}^{2}=0 \\
\Leftrightarrow & \widehat{\theta} \operatorname{tr}(\widehat{A})-\widehat{\delta} \operatorname{tr}(\widehat{B})-\widehat{\kappa} 2\|\widehat{a}\|_{2}^{2}=0 \\
\Leftrightarrow & \widehat{\theta} R-\widehat{\delta}=\widehat{\kappa} 2\|\widehat{a}\|_{2}^{2}
\end{aligned}
$$

where the second equivalence is by complementary slackness. Consider first the case $\widehat{\theta} R-\widehat{\delta}>0$. This entails $\widehat{\kappa}>0$ and thus $\|\widehat{a}\|_{2}^{2}=1$, so that $2 \widehat{\kappa}=\widehat{\theta} R-\widehat{\delta}$. Substituting this result into the rightmost equation in (23) and taking norms, we obtain

$$
\begin{equation*}
\widehat{\theta} R-\widehat{\delta}=\|\widetilde{\mathcal{X}}(\widehat{A})-\tilde{\mathcal{X}}(\widehat{B})\|_{2}=\frac{1}{\sqrt{n}}\|\mathcal{X}(\widehat{A})-\mathcal{X}(\widehat{B})\|_{2} \tag{24}
\end{equation*}
$$

For the second case, note that $\widehat{\theta} R-\widehat{\delta}$ cannot be negative as $a=0$ is feasible for (22). Thus, $\widehat{\theta} R-\widehat{\delta}=0$ implies that $\widehat{a}=0$ and in turn also (24).

C Proof of Corollary 1

The corollary follows from Proposition 2 by choosing $a=1 / \sqrt{n}$ so that $n^{-1 / 2} \mathcal{X}^{*}(a)=$ $\frac{1}{n} \sum_{i=1}^{n} X_{i}$, and using that $\left\|\Gamma-\widehat{\Gamma}_{n}\right\|_{\infty} \leq \epsilon_{n}$ implies that $\left|\lambda_{j}(\Gamma)-\lambda_{j}\left(\widehat{\Gamma}_{n}\right)\right| \leq \epsilon_{n}, j=1, \ldots, m$ ([12], §4.3). The specific values of R_{*} and τ_{*}^{2} are obtained by choosing $\zeta=2$ in Proposition 2.

D Proof of Theorem 1

The following lemma is a crucial ingredient in the proof. In the sequel, let $\widehat{\Delta}=\widehat{\Sigma}-\Sigma^{*}$. Let the eigendecomposition of $\widehat{\Delta}$ be given by

$$
\begin{equation*}
\widehat{\Delta}=\sum_{j=1}^{m} \lambda_{j}(\widehat{\Delta}) u_{j} u_{j}^{\top}=\underbrace{\sum_{j=1}^{m} \max \left\{0, \lambda_{j}(\widehat{\Delta})\right\} u_{j} u_{j}^{\top}}_{=: \widehat{\Delta}^{+}}+\underbrace{\sum_{j=1}^{m} \min \left\{0, \lambda_{j}(\widehat{\Delta})\right\} u_{j} u_{j}^{\top}}_{=: \widehat{\Delta}^{-}}=\widehat{\Delta}^{+}+\widehat{\Delta}^{-} \tag{25}
\end{equation*}
$$

Lemma D.1. Consider the decomposition (25). We have $\left\|\widehat{\Delta}^{-}\right\|_{1} \leq\left\|\Sigma^{*}\right\|_{1}$.

Proof. Write $\widehat{\Delta}^{+}=U_{+} \Lambda_{+} U_{+}^{\top}$ and $\widehat{\Delta}^{-}=U_{-} \Lambda_{-} U_{-}^{\top}$ for the eigendecompositions of $\widehat{\Delta}^{+}$and $\widehat{\Delta}^{-}$, respectively. Since $\widehat{\Sigma} \succeq 0$, we must have $\operatorname{tr}\left(\widehat{\Sigma} U_{-} U_{-}^{\top}\right) \geq 0$ and thus

$$
\begin{aligned}
0 \leq \operatorname{tr}\left(\widehat{\Sigma} U_{-} U_{-}^{\top}\right) & =\operatorname{tr}\left(U_{-}^{\top} \widehat{\Sigma} U_{-}\right) \\
& =\operatorname{tr}\left(U_{-}^{\top}\left(\Sigma^{*}+\widehat{\Delta}\right) U_{-}\right) \\
& =\operatorname{tr}\left(U_{-}^{\top}\left(\Sigma^{*}+U_{+} \Lambda_{+} U_{+}^{\top}+U_{-} \Lambda_{-} U_{-}^{\top}\right) U_{-}\right) \\
& =\operatorname{tr}\left(\Sigma^{*} U_{-} U_{-}^{\top}\right)+\operatorname{tr}\left(\Lambda_{-}\right),
\end{aligned}
$$

where for the last identity, we have used that $U_{+}^{\top} U_{-}=0$. It follows that

$$
\left\|\widehat{\Delta}^{-}\right\|_{1}=\left\|\Lambda_{-}\right\|_{1}=-\operatorname{tr}\left(\Lambda_{-}\right) \leq \operatorname{tr}\left(\Sigma^{*} U_{-} U_{-}^{\top}\right) \leq\left\|\Sigma^{*}\right\|_{1}\left\|U_{-} U_{-}^{\top}\right\|_{\infty}=\left\|\Sigma^{*}\right\|_{1}
$$

Equipped with Lemma D.1, we turn to the proof of Theorem 1.

Proof. (Theorem 1) By definition of $\widehat{\Sigma}$, we have $\|y-\mathcal{X}(\widehat{\Sigma})\|_{2}^{2} \leq\left\|y-\mathcal{X}\left(\Sigma^{*}\right)\right\|_{2}^{2}$. Using (6) and the definition of $\widehat{\Delta}$, we obtain after re-arranging terms that

$$
\begin{align*}
& \frac{1}{n}\|\mathcal{X}(\widehat{\Delta})\|_{2}^{2} \leq \frac{2}{n}\langle\varepsilon, \mathcal{X}(\widehat{\Delta})\rangle=\frac{2}{n}\left\langle\mathcal{X}^{*}(\varepsilon), \widehat{\Delta}\right\rangle \\
\Rightarrow \quad & \frac{1}{n}\|\mathcal{X}(\widehat{\Delta})\|_{2}^{2} \leq 2\left\|\mathcal{X}^{*}(\varepsilon) / n\right\|_{\infty}\|\widehat{\Delta}\|_{1}=2 \lambda_{0}\left(\left\|\widehat{\Delta}^{+}\right\|_{1}+\left\|\widehat{\Delta}^{-}\right\|_{1}\right), \tag{26}
\end{align*}
$$

where we have used Hölder's inequality, the decomposition of $\widehat{\Delta}$ as in Lemma D. 1 and $\lambda_{0}=$ $\left\|\mathcal{X}^{*}(\varepsilon) / n\right\|_{\infty}$. We now upper bound the l.h.s. of (26) by invoking Condition 1 and Lemma D.1, which yields $\left\|\widehat{\Delta}^{-}\right\|_{1} \leq\left\|\Sigma^{*}\right\|_{1}$. If $\left\|\widehat{\Delta}^{+}\right\|_{1} \leq R_{*}\left\|\widehat{\Delta}^{-}\right\|_{1}$, we have

$$
\frac{1}{n}\left\|\mathcal{X}(\widehat{\Sigma})-\mathcal{X}\left(\Sigma^{*}\right)\right\|_{2}^{2}=\frac{1}{n}\|\mathcal{X}(\widehat{\Delta})\|_{2}^{2} \leq 2\left(R_{*}+1\right) \lambda_{0}\left\|\Sigma^{*}\right\|_{1}
$$

which is the first part in the maximum of the bound to be established. In the opposite case, suppose first that $\left\|\widehat{\Delta}^{-}\right\|_{1}>0$ (the case $\left\|\widehat{\Delta}^{-}\right\|_{1}=0$ is discussed at the end of this proof) and we have $\left\|\widehat{\Delta}^{+}\right\|_{1} /\left\|\widehat{\Delta}^{-}\right\|_{1}=\widehat{R}>R_{*}>1$. Consequently,

$$
\begin{aligned}
\frac{1}{n}\|\mathcal{X}(\widehat{\Delta})\|_{2}^{2} & =\frac{1}{n}\left\|\mathcal{X}\left(\widehat{\Delta}^{+}\right)-\mathcal{X}\left(-\widehat{\Delta}^{-}\right)\right\|_{2}^{2} \\
& =\left\|\widehat{\Delta}^{-}\right\|_{1}^{2} \frac{1}{n}\left\|\mathcal{X}\left(\frac{\widehat{\Delta}^{+}}{\left\|\widehat{\Delta}^{-}\right\|_{1}}\right)-\mathcal{X}\left(\frac{-\widehat{\Delta}^{-}}{\left\|\widehat{\Delta}^{-}\right\|_{1}}\right)\right\|_{2}^{2} \\
& \geq\left\|\widehat{\Delta}^{-}\right\|_{1}^{2} \min _{\substack{A \in \widehat{R} \mathcal{S}_{1}^{+}(m) \\
B \in \mathcal{S}_{1}^{+}(m)}} \frac{1}{n}\|\mathcal{X}(A)-\mathcal{X}(B)\|_{2}^{2} \\
& =\tau^{2}(\mathcal{X}, \widehat{R})\left\|\widehat{\Delta}^{-}\right\|_{1}^{2}=\tau^{2}(\mathcal{X}, \widehat{R}) \frac{\left\|\widehat{\Delta}^{+}\right\|_{1}^{2}}{\widehat{R}^{2}}
\end{aligned}
$$

Inserting this into (26), we obtain the following upper bound on $\left\|\widehat{\Delta}^{+}\right\|_{1}$.

$$
\begin{aligned}
& \frac{\tau^{2}(\mathcal{X}, \widehat{R})}{\widehat{R}^{2}}\left\|\Delta^{+}\right\|_{1}^{2} \leq 2 \lambda_{0} \frac{\widehat{R}+1}{\widehat{R}}\left\|\widehat{\Delta}^{+}\right\|_{1} \\
\Rightarrow & \left\|\widehat{\Delta}^{+}\right\|_{1} \leq 2 \lambda_{0} \frac{\widehat{R}(\widehat{R}+1)}{\tau^{2}(\mathcal{X}, \widehat{R})} \leq 4 \lambda_{0} \frac{\widehat{R}^{2}}{\tau^{2}(\mathcal{X}, \widehat{R})} \leq 4 \lambda_{0} \frac{R_{*}^{2}}{\tau_{*}^{2}},
\end{aligned}
$$

where the last inequality follows from the observation that for any $R \geq R_{*}$

$$
\tau^{2}(\mathcal{X}, R) \geq\left(R / R_{*}\right)^{2} \tau^{2}\left(\mathcal{X}, R_{*}\right)
$$

which can be easily seen from the dual problem (22) associated with $\tau^{2}(\mathcal{X}, R)$. Substituting the above bound on $\left\|\widehat{\Delta}^{+}\right\|_{1}$ into (26) and using the bound $\left\|\widehat{\Delta}^{-}\right\|_{1} \leq\left\|\Sigma^{*}\right\|_{1}$ yields the second part in the maximum of the desired bound. To finish the proof, we still need to address the case $\left\|\widehat{\Delta}^{-}\right\|_{1}=0$. Recalling the definition of the quantity $\tau_{0}^{2}(\mathcal{X})$ in (13), we bound

$$
\frac{1}{n}\|\widehat{X}(\widehat{\Delta})\|_{2}^{2}=\frac{1}{n}\left\|\widehat{X}\left(\widehat{\Delta}^{+}\right)\right\|_{2}^{2} \geq \tau_{0}^{2}(\mathcal{X})\left\|\widehat{\Delta}^{+}\right\|_{1}^{2}
$$

Inserting this into (26), we obtain from

$$
\begin{equation*}
\left\|\widehat{\Delta}^{+}\right\|_{1} \leq \frac{2 \lambda_{0}}{\tau_{0}^{2}(\mathcal{X})} \leq \frac{2 \lambda_{0}\left(R_{*}-1\right)^{2}}{\tau_{*}^{2}} \tag{27}
\end{equation*}
$$

where the second inequality follows from

$$
\begin{align*}
\tau^{2}\left(\mathcal{X}, R_{*}\right) & =\min _{A \in R_{*} \mathcal{S}_{1}^{+}(m) B \in \mathcal{S}_{1}^{+}(m)} \frac{1}{n}\|\mathcal{X}(A)-\mathcal{X}(B)\|_{2}^{2} \\
& \leq \min _{A \in \mathcal{S}_{1}^{+}(m)} \frac{1}{n}\left\|\mathcal{X}\left(R_{*} \cdot A\right)-\mathcal{X}(A)\right\|_{2}^{2} \tag{28}\\
& =\left(R_{*}-1\right)^{2} \min _{A \in \mathcal{S}_{1}^{+}(m)} \frac{1}{n}\|\mathcal{X}(A)\|_{2}^{2}=\left(R_{*}-1\right)^{2} \tau_{0}^{2}(\mathcal{X})
\end{align*}
$$

Back-substitution of (27) into (26) yields a bound that is implied by that of Theorem 1. This concludes the proof.

Bound on λ_{0}. The bound on λ_{0} is an application of Theorem 4.6.1 in [25].
Theorem D.1. [25] Consider a sequence $\left\{X_{i}\right\}_{i=1}^{n}$ of fixed matrices in \mathbb{S}^{m} and let $\left\{\varepsilon_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim}$ $N\left(0, \sigma^{2}\right)$. Then for all $t \geq 0$

$$
\mathbf{P}\left(\left\|\sum_{i=1}^{n} \varepsilon_{i} X_{i}\right\|_{\infty} \geq t\right) \leq 2 m \exp \left(-t^{2} /\left(2 \sigma^{2} V^{2}\right)\right), \quad V^{2}:=\left\|\sum_{i=1}^{n} X_{i}^{2}\right\|_{\infty} .
$$

Choosing $t=\sigma V \sqrt{(1+\mu) 2 \log (2 m)}$ yields the desired bound.

E Proof of Theorem 1, Remark 3

The bound hinges on the following concentration result for the extreme eigenvalues of the sample covariance of a Gaussian sample.
Theorem E.1. [9] Let z_{1}, \ldots, z_{N} be an i.i.d. sample from $N\left(0, I_{m}\right)$ and let $\Gamma_{N}=\frac{1}{N} \sum_{i=1}^{N} z_{i} z_{i}^{\top}$. We then have for any $\delta>0$

$$
\mathbf{P}\left(\lambda_{\max }\left(\frac{1}{N} \Gamma_{N}\right)>\left(1+\delta+\sqrt{\frac{m}{N}}\right)^{2}\right) \leq \exp \left(-N \delta^{2} / 2\right) .
$$

In the proof, we also make use of the following fact.
Lemma E.1. Let $\left\{X_{i}\right\}_{i=1}^{n} \subset \mathbb{S}_{+}^{m}$. Then

$$
\left\|\sum_{i=1}^{n} X_{i}^{2}\right\|_{\infty} \leq \max _{1 \leq i \leq n}\left\|X_{i}\right\|_{\infty}\left\|\sum_{i=1}^{n} X_{i}\right\|_{\infty}
$$

Proof. First note that for any $v \in \mathbb{R}^{m}$ and any $M \in \mathbb{S}_{+}^{m}$, we have that

$$
v^{\top} M^{2} v=\sum_{j=1}^{m} \lambda_{j}^{2}(M)\left(u_{j}^{\top} v\right)^{2} \leq \lambda_{\max }(M) \sum_{j=1}^{m} \lambda_{j}(M)\left(u_{j}^{\top} v\right)^{2}=\|M\|_{\infty} v^{\top} X v
$$

where $\left\{u_{j}\right\}_{j=1}^{m}$ are the eigenvectors of X. Accordingly, we have

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} X_{i}^{2}\right\|_{\infty}=\max _{\|v\|_{2}=1} v^{\top} \sum_{i=1}^{n} X_{i}^{2} v & \leq \max _{1 \leq i \leq n}\left\|X_{i}\right\|_{\infty} \max _{\|v\|_{2}=1} v^{\top} \sum_{i=1}^{n} X_{i} v \\
& =\max _{1 \leq i \leq n}\left\|X_{i}\right\|_{\infty}\left\|\sum_{i=1}^{n} X_{i}\right\|_{\infty} .
\end{aligned}
$$

We now establish the bound to be shown. Each measurement matrix can be expanded as

$$
X_{i}=\frac{1}{q} \sum_{k=1}^{q} z_{i k} z_{i k}^{\top}, \quad\left\{z_{i k}\right\}_{k=1}^{q} \stackrel{\text { i.i.d. }}{\sim} N\left(0, I_{m}\right), i=1, \ldots, n .
$$

Accordingly, we have

$$
\begin{aligned}
\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right\|_{\infty} & =\left\|\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{1}{q} \sum_{k=1}^{q} z_{i k} z_{i k}^{\top}\right\}^{2}\right\|_{\infty} \\
& \leq \max _{1 \leq i \leq n}\left\{\left\|\left\{\frac{1}{q} \sum_{k=1}^{q} z_{i k} z_{i k}^{\top}\right\}\right\|_{\infty}\right\}\left\|\frac{1}{n q} \sum_{i=1}^{n} \sum_{k=1}^{q} z_{i k} z_{i k}^{\top}\right\|_{\infty} \\
& \leq \max _{1 \leq i \leq n}\left\{\lambda_{\max }\left(\frac{1}{q} \sum_{k=1}^{q} z_{i k} z_{i k}^{\top}\right)\right\} \lambda_{\max }\left(\Gamma_{n q}\right)
\end{aligned}
$$

where $\Gamma_{n q}$ follows the distribution of Γ_{N} in Theorem E. 1 with $N=n q$. For the first term, applying Theorem E. 1 with $N=q$ and $\delta=\sqrt{4 m \log (n) / q}$ and using the union bound, we obtain that

$$
\mathbf{P}\left(\lambda_{\max }\left(\frac{1}{q} \sum_{k=1}^{q} z_{i k} z_{i k}^{\top}\right)>\left(\frac{\sqrt{q}+\sqrt{m}+\sqrt{4 m \log n}}{\sqrt{q}}\right)^{2}\right) \leq \exp (-(2 m-1) \log n)
$$

Applying Theorem E. 1 to Γ_{N} with $\delta=1 / \sqrt{q}$, we obtain that

$$
\mathbf{P}\left(\lambda_{\max }\left(\Gamma_{n q}\right)>\left(1+\frac{1}{\sqrt{q}}+\sqrt{\frac{m}{n q}}\right)^{2}\right) \leq \exp (-n / 2)
$$

Combining the two previous bounds yields the assertion.

F Proof of Proposition 3

In the sequel, we write $\Pi_{\mathbb{T}}$ and $\Pi_{\mathbb{T}} \perp$ for the orthogonal projections on \mathbb{T} and \mathbb{T}^{\perp}, respectively. Note first that since the $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ are zero, any minimizer $\widehat{\Sigma}$ satisfies

$$
\begin{equation*}
\mathcal{X}(\widehat{\Sigma})=\mathcal{X}\left(\Sigma^{*}\right) \Longleftrightarrow \mathcal{X}(\widehat{\Delta})=0 \Longleftrightarrow \mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}}\right)+\mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}^{\perp}}\right)=0 \tag{29}
\end{equation*}
$$

where $\widehat{\Delta}_{\mathbb{T}}=\Pi_{\mathbb{T}} \widehat{\Delta}$ and $\widehat{\Delta}_{\mathbb{T}^{\perp}}=\Pi_{\mathbb{T}^{\perp}} \widehat{\Delta}$, where we recall that $\widehat{\Delta}=\widehat{\Sigma}-\Sigma^{*}$. Note that since $\Sigma^{*}=\Pi_{\mathbb{T}} \Sigma^{*}$, for $\widehat{\Sigma}$ to be feasible, it is necessary that $\widehat{\Delta}_{\mathbb{T}^{\perp}} \succeq 0$.
Suppose first that $\tau^{2}(\mathbb{T})=0$. Then there exist $\Theta \in \mathbb{T}$ and $\Lambda \in \mathcal{S}_{1}^{+}(m) \cap \mathbb{T}^{\perp}$ such that $\mathcal{X}(\Theta)+$ $\mathcal{X}(\Lambda)=0$. Hence, for any $\Sigma^{*} \in \mathbb{T}$ with $\Sigma^{*}+\Theta \succeq 0$, the choices $\widehat{\Delta}_{\mathbb{T}}=\Theta$ and $\widehat{\Delta}_{\mathbb{T}^{\perp}}=\Lambda$ ensure that $\widehat{\Sigma}$ is feasible and that (29) is satisfied. Since Λ is contained in the Schatten 1-norm sphere of radius 1 , it is necessarily non-zero and thus $\widehat{\Sigma} \neq \Sigma^{*}$.
If $\phi^{2}(\mathbb{T})=0$, there exists $0 \neq \Theta \in \mathbb{T}$ such that $\mathcal{X}(\Theta)=0$. Consequently, for any $\Sigma^{*} \in \mathbb{T} \cap \mathbb{S}_{+}^{m}$ with $\widehat{\Sigma}=\Sigma^{*}+\Theta \succeq 0,(29)$ is satisfied with $\widehat{\Sigma} \neq \Sigma^{*}$.
Conversely, if $\tau^{2}(\mathbb{T})>0$, (29) cannot be satisfied for $\widehat{\Delta}_{\mathbb{T}^{\perp}} \succeq 0, \widehat{\Delta}_{\mathbb{T}^{\perp}} \neq 0$. Otherwise, we could divide by $\operatorname{tr}\left(\widehat{\Delta}_{\mathbb{T}^{\perp}}\right)$, which would yield

$$
\mathcal{X}(\underbrace{\widehat{\Delta}_{\mathbb{T}} / \operatorname{tr}\left(\widehat{\Delta}_{\mathbb{T}^{\perp}}\right)}_{\in \mathbb{T}})+\mathcal{X}(\underbrace{\widehat{\Delta}_{\mathbb{T}^{\perp}} / \operatorname{tr}\left(\widehat{\Delta}_{\mathbb{T}^{\perp}}\right)}_{\in \mathcal{S}_{1}^{+}(m) \cap \mathbb{T}^{\perp}})=0
$$

which would imply $\tau^{2}(\mathbb{T})=0$. Therefore, we must have $\widehat{\Delta}_{\mathbb{T}^{\perp}}=0$ and $\mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}}\right)=0$, which implies $\widehat{\Delta}_{\mathbb{T}}=0$ as long as $\phi^{2}(\mathbb{T})>0$.

G Proof of Theorem 2

Let $\widehat{\Delta}=\widehat{\Sigma}-\Sigma^{*}, \widehat{\Delta}_{\mathbb{T}}=\Pi_{\mathbb{T}} \widehat{\Delta}$ and $\widehat{\Delta}_{\mathbb{T}^{\perp}}=\Pi_{\mathbb{T}^{\perp}} \widehat{\Delta} \succeq 0$ as in the preceding proof. We start with the following analog to (26)

$$
\begin{equation*}
\frac{1}{n}\|\mathcal{X}(\widehat{\Delta})\|_{2}^{2}=\frac{1}{n}\left\|\mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}}+\widehat{\Delta}_{\mathbb{T}^{\perp}}\right)\right\|_{2}^{2} \leq 2 \lambda_{0}\left(\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}+\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}\right) \tag{30}
\end{equation*}
$$

Suppose that $\widehat{\Delta}_{\mathbb{T}^{\perp}} \neq 0$. We then have

$$
\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}^{2}\left\{\frac{1}{n}\left\|\mathcal{X}\left(\frac{\widehat{\Delta}_{\mathbb{T}}}{\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}}\right)+\mathcal{X}\left(\frac{\widehat{\Delta}_{\mathbb{T}^{\perp}}}{\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}}\right)\right\|_{2}^{2}\right\} \leq 2 \lambda_{0}\left(\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}+\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}\right)
$$

Since $\widehat{\Delta}_{\mathbb{T}} /\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1} \in \mathbb{T}$ and $\widehat{\Delta}_{\mathbb{T}^{\perp}} /\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}=\widehat{\Delta}_{\mathbb{T}^{\perp}} / \operatorname{tr}\left(\widehat{\Delta}_{\mathbb{T}^{\perp}}\right) \in \mathcal{S}_{1}^{+}(m)$, we obtain that the term inside the curly brackets is lower bounded by $\tau^{2}(\mathbb{T})$ and thus

$$
\begin{equation*}
\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1} \leq \frac{2 \lambda_{0}}{\tau^{2}(\mathbb{T})}\left(1+\frac{\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}}{\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}}\right) \tag{31}
\end{equation*}
$$

On the other hand, expanding the quadratic term in (30), we obtain that

$$
\begin{align*}
& \frac{1}{n}\left\|\mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}}\right)\right\|_{2}^{2}-\frac{2}{n}\left\langle\mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}}\right), \mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}^{\perp}}\right)\right\rangle \leq \frac{1}{n}\|\mathcal{X}(\widehat{\Delta})\|_{2}^{2} \leq 2 \lambda_{0}\left(\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}+\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}\right) \\
\Rightarrow & \frac{1}{n}\left\|\mathcal{X}\left(\widehat{\Delta}_{\mathbb{T}}\right)\right\|_{2}^{2} \leq 2 \lambda_{0}\left(\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}+\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}\right)+2 \mu(\mathbb{T})\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1} \\
\Rightarrow & \phi^{2}(\mathbb{T})\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}^{2} \leq 2 \lambda_{0}\left(\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}+\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}\right)+2 \mu(\mathbb{T})\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1} \\
\Rightarrow & \left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1} \leq \frac{2 \lambda_{0}\left(1+\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1} /\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}\right)+2 \mu(\mathbb{T})\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}}{\phi^{2}(\mathbb{T})} \tag{32}
\end{align*}
$$

We now distinguish several cases.
Case 1: $\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1} \leq\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}$. It then immediately follows from (31) that

$$
\begin{equation*}
\|\widehat{\Delta}\|_{1} \leq \frac{8 \lambda_{0}}{\tau^{2}(\mathbb{T})}=: T_{3} \tag{33}
\end{equation*}
$$

Case 2a: $\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}>\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}$ and $\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1} \leq 4 \lambda_{0} / \phi^{2}(\mathbb{T})$. From (32), we first get

$$
\begin{equation*}
\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1} \leq \frac{4 \lambda_{0}+2 \mu(\mathbb{T})\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}}{\phi^{2}(\mathbb{T})} \tag{34}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\|\widehat{\Delta}\|_{1} \leq \frac{8 \lambda_{0}}{\phi^{2}(\mathbb{T})}\left(1+\frac{\mu(\mathbb{T})}{\phi^{2}(\mathbb{T})}\right)=: T_{2} \tag{35}
\end{equation*}
$$

Case 2b: $\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1}>\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}$ and $\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1}>4 \lambda_{0} / \phi^{2}(\mathbb{T})$. Plugging (34) into (31), we obtain that

$$
\left\|\widehat{\Delta}_{\mathbb{T}^{\perp}}\right\|_{1} \leq \frac{4 \lambda_{0}}{\tau^{2}(\mathbb{T})}+\frac{4 \lambda_{0} \mu(\mathbb{T})}{\tau^{2}(\mathbb{T}) \phi^{2}(\mathbb{T})}
$$

Substituting this bound back into (34) yields

$$
\left\|\widehat{\Delta}_{\mathbb{T}}\right\|_{1} \leq \frac{4 \lambda_{0}}{\phi^{2}(\mathbb{T})}+\frac{8 \lambda_{0} \mu(\mathbb{T})}{\tau^{2}(\mathbb{T}) \phi^{2}(\mathbb{T})}+\frac{8 \lambda_{0} \mu^{2}(\mathbb{T})}{\phi^{4}(\mathbb{T}) \tau^{2}(\mathbb{T})}
$$

Collecting terms, we obtain altogether

$$
\begin{equation*}
\|\widehat{\Delta}\|_{1} \leq 8 \lambda_{0} \frac{\mu(\mathbb{T})}{\tau^{2}(\mathbb{T}) \phi^{2}(\mathbb{T})}\left(\frac{3}{2}+\frac{\mu(\mathbb{T})}{\phi^{2}(\mathbb{T})}\right)+4 \lambda_{0}\left(\frac{1}{\phi^{2}(\mathbb{T})}+\frac{1}{\tau^{2}(\mathbb{T})}\right)=: T_{1} \tag{36}
\end{equation*}
$$

Combining (33), (35) and (36) yields the assertion.

H Additional Experiments: Scaling of the Constant $\tau^{2}(\mathbb{T})$

For \mathcal{X} and \mathbb{T} given, it is possible to evaluate $\tau^{2}(\mathbb{T})$ by solving a convex optimization problem. This is different from other conditions employed in the literature such as restricted strong convexity [17], 1-RIP [8] or restricted uniform boundedness [3] that involve a non-convex optimization problem even for fixed \mathbb{T}.
We here consider sampling operators with random i.i.d. measurements $X_{i}=z_{i} z_{i}^{\top}$, where $z_{i} \sim$ $N(0, I)$ is a standard Gaussian random vector in \mathbb{R}^{m} (equivalently, X_{i} follows a Wishart distribution), $i=1, \ldots, n$. We expect $\tau^{2}(\mathbb{T})$ to behave similarly for random rank-one measurements of the same form as long as the underlying probability distribution has finite fourth moments, and thus for (a broad subclass of) the ensemble $\mathcal{M}\left(\pi_{m}, q\right)$ (14).
In order to explore the scaling of $\tau^{2}(\mathbb{T})$ with n, m and r, we fix $m \in\{30,50,70,100\}$. For each choice of m, we vary $n=\alpha \delta_{m}$, where a grid of 20 values ranging from 0.16 to 1.1 is considered α. For r, we consider the grid $\{1,2, \ldots, m / 5\}$. For each combination of m, n, and r, we use 50 replications. Within each replication, the subspace \mathbb{T} is generated randomly from the eigenspace associated with the non-zero eigenvalues of a random matrix $G^{\top} G$, where the entries of the $m \times r$ matrix G are i.i.d. $N(0,1)$.

Figure 3: Scaling of $\log \tau^{2}(\mathbb{T})$ in dependence of r (horizontal axis) and $\alpha=n / \delta_{m}$ (colors/symbols). The solid lines represent the fit of model (37). Note that the curves are only fitted to those points for which $\tau^{2}(\mathbb{T})$ exceeds 10^{-6}. Best seen in color.

The results point to the existence of a phase transition as it is typical for problems related to that under study [2]. Specifically, it turns out that the scaling of $\tau^{2}(\mathbb{T})$ can be well described by the relation

$$
\begin{equation*}
\tau^{2}(\mathbb{T}) \approx \phi_{m, n} \max \left\{1 / r-\theta_{m, n}, 0\right\} \tag{37}
\end{equation*}
$$

where $\phi_{m, n}, \theta_{m, n}>0$ depend on m and n. In order to arrive at model (37), we first obtain the 5%-quantile as summary statistic of the 50 replications associated with each triple (n, m, r). At this point, note that the use of the mean as a summary statistic is not appropriate as it may mask the fact that the majority of the observations are zero. For each pair of (n, m), we then identify all values of r for which the corresponding 5%-quantile drops below 10^{-6}, which serves as effective zero here. For the remaining values, we fit model (37) using nonlinear least squares (working on a log scale). Figure 3 shows that model (37) provides a rather accurate description of the given data. Concerning $\phi_{m, n}$ and $\theta_{m, n}$, the scalings $\phi_{m, n}=\phi_{0} n / m$ and $\theta_{m, n}=\theta_{0} m / n$ for constants $\phi_{0}, \theta_{0}>0$ appear to be reasonable. This gives rise to the requirement $n>\theta_{0}(m r)$ for exact recovery to be possible in the noiseless case (cf. Proposition 3) and yields that $\tau^{2}(\mathbb{T})=\Omega(1 / r)$ as long as $n=\Omega(m r)$,

I Enlarged Figures and Additional Tables

I. 1 Enlarged version of Figure 1

Figure 4: Average estimation error (over 50 replications) in nuclear norm for fixed $m=50$ and certain choices of n and r. In the legend, "LS" is used as a shortcut for "least squares". Chen et al. refers to (16). "\#"indicates an oracular choice of the tuning parameter. "oracle" refers to the ideal error $\sigma r \sqrt{m / n}$. Best seen in color.

Enlarged version of Figure 2

Figure 5: Average reconstruction errors $\log _{10}\left\|\widehat{\Sigma}-\Sigma^{*}\right\|_{F}$ in dependence of $n /(m r)$ and the parameter β. "oracle" refers to the best rank r-approximation Σ_{r}.

Additional Tables

The tables below contain orders of the errors $\left\|\widehat{\Sigma}-\Sigma^{*}\right\|_{F}$ relative to the error of the best rank r approximation $\left\|\Sigma_{r}-\Sigma^{*}\right\|_{F}$ for selected values of $C=n / m r$.

CBCL

β	1	1	.4	.4	.08				
C	2	6	4	6	10				
$\frac{\left\\|\widehat{\Sigma}-\Sigma^{*}\right\\|_{F}}{\left\\|\Sigma_{r}-\Sigma^{*}\right\\|_{F}}$	<3	<2	4	3	5				

NASDAQ

β	1	1	1	1				
C	1	2	3	6				
$\frac{\left\\|\widehat{\Sigma}-\Sigma^{*}\right\\|_{F}}{\left\\|\Sigma_{r}-\Sigma^{*}\right\\|_{F}}$	<3.5	<2	<1.3	<1.1				

Table 1: Average reconstruction errors relative to Σ_{r} for some selected values of β and $C=n /(m r)$.

