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Abstract
In the recent literature the important role of depth
in deep learning has been emphasized. In this
paper we argue that sufficient width of a feed-
forward network is equally important by answer-
ing the simple question under which conditions
the decision regions of a neural network are con-
nected. It turns out that for a class of activation
functions including leaky ReLU, neural networks
having a pyramidal structure, that is no layer has
more hidden units than the input dimension, pro-
duce necessarily connected decision regions. This
implies that a sufficiently wide hidden layer is
necessary to guarantee that the network can pro-
duce disconnected decision regions. We discuss
the implications of this result for the construction
of neural networks, in particular the relation to the
problem of adversarial manipulation of classifiers.

1. Introduction
While deep learning has become state of the art in many
application domains such as computer vision and natural
language processing and speech recognition, the theoretical
understanding of this success is steadily growing but there
are still plenty of questions where there is little or no un-
derstanding. In particular, for the question how one should
construct the network e.g. choice of activation function,
number of layers, number of hidden units per layer etc.,
there is little guidance and only limited understanding on
the implications of the choice e.g. “The design of hidden
units is an extremely active area of research and does not
yet have many definitive guiding theoretical principles.” is
a quote from the recent book on deep learning (Goodfellow
et al., 2016, p. 191). Nevertheless there is recently progress
in the understanding of these choices.
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The first important results are the universal approximation
theorems (Cybenko, 1989; Hornik et al., 1989) which show
that even a single hidden layer network with standard non-
polynomial activation function (Leshno et al., 1993), like
the sigmoid, can approximate arbitrarily well every contin-
uous function over a compact domain of Rd. In order to
explain the success of deep learning, much of the recent
effort has been spent on analyzing the representation power
of neural networks from the perspective of depth (Delalleau
& Bengio, 2011; Telgarsky, 2016; 2015; Eldan & Shamir,
2016; Safran & Shamir, 2017; Yarotsky, 2016; Poggio et al.,
2016; Liang & Srikant, 2017; Mhaskar & Poggio, 2016).
Basically, they show that there exist functions that can be
computed efficiently by deep networks of linear or polyno-
mial size but require exponential size for shallow networks.
To further highlight the power of depth, (Montufar et al.,
2014; Pascanu et al., 2014) show that the number of linear
regions that a ReLU network can form in the input space
grows exponentially with depth. Tighter bounds on the
number of linear regions are later on developed by (Arora
et al., 2018; Serra et al., 2018; Charisopoulos & Maragos,
2018). Another measure of expressivity so-called trajec-
tory length is proposed by (Raghu et al., 2017). They show
that the complexity of functions computed by the network
along a one-dimensional curve in the input space also grows
exponentially with depth.

While most of previous work can only show the existence
of depth efficiency (i.e. there exist certain functions that
can be efficiently represented by deep networks but not
effectively represented or even approximated by shallow
networks) but cannot show how often this holds for all
functions of interest, (Cohen et al., 2016) have taken the
first step to address this problem. In particular, by studying
a special type of networks called convolutional arithmetic
circuits – also known as Sum-Product networks (Poon &
Domingos, 2011), the authors show that besides a set of
measure zero, all functions that can be realized by a deep
network of polynomial size require exponential size in order
to be realized, or even approximated by a shallow network.
Later, (Cohen & Shashua, 2016) show that this property
however no longer holds for convolutional rectifier networks,
which represents so far the empirically most successful deep
learning architecture in practice.
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Unlike most of previous work which focuses on the power
of depth, (Lu et al., 2017; Hanin & Sellke, 2017) have re-
cently shown that neural networks with ReLU activation
function have to be wide enough in order to have the univer-
sal approximation property as depth increases. In particular,
the authors show that the class of continuous functions on
a compact set cannot be arbitrarily well approximated by
an arbitrarily deep network if the maximum width of the
network is not larger than the input dimension d. Moreover,
it has been shown recently, that the loss surface of fully
connected networks (Nguyen & Hein, 2017) and for con-
volutional neural networks (Nguyen & Hein, 2018) is well
behaved, in the sense that almost all local minima are global
minima, if there exists a layer which has more hidden units
than the number of training points.

In this paper we study the question under which conditions
on the network the decision regions of a neural network
are connected respectively can potentially be disconnected.
The decision region of a class is the subset of Rd, where
the network predicts this class. A similar study has been
in (Makhoul et al., 1989; 1990) for feedforward networks
with threshold activation functions, where they show that
the initial layer has to have width d + 1 in order that one
can get disconnected decision regions. On an empirical
level it has recently been argued (Fawzi et al., 2017) that
the decision regions of the Caffe Network (Jia et al., 2014)
on ImageNet are connected. In this paper we analyze feed-
forward networks with continuous activation functions as
currently used in practice. We show in line with previ-
ous work that almost all networks which have a pyramidal
structure up to the last hidden layer, that is the width of all
hidden layers is smaller than the input dimension d, can
only produce connected decision regions. We show that the
result is tight by providing explicit counterexamples for the
case d + 1. We conclude that a guiding principle for the
construction of neural networks should be that there is a
layer which is wider than the input dimension as it would
be a strong assumption that the Bayes optimal classifier
must have connected decision regions. Interestingly, our
result holds for leaky ReLU, that is σ(t) = max{t, αt} for
0 < α < 1, whereas the result of (Hanin & Sellke, 2017)
is for ReLU, that is σ(t) = max{t, 0}, but “the generaliza-
tion is not straightforward, even for activations of the form
σ(t) = max{l1(t), l2(t)}, where l1, l2 are affine functions
with different slopes.” We discuss also the implications of
connected decision regions regarding the generation of ad-
versarial samples, which will provide another argument in
favor of larger width for neural network architectures.

2. Feedforward Neural Networks
We consider in this paper feedforward neural networks for
multi-class classification. Let d be the input dimension and

m the number of classes. Let L be the number of layers
where the layers are indexed from k = 0, 1, . . . , L which
respectively corresponds to the input layer, 1st hidden layer,
. . ., and the output layer L. Let nk be the width of layer k.
For consistency, we assume that n0 = d and nL = m. Let
σk : R→ R be the activation function of every hidden layer
1 ≤ k ≤ L− 1. In the following, all functions are applied
componentwise. We define fk : Rd → Rnk as the feature
map of layer k, which computes for every input x ∈ Rd a
feature vector at layer k defined as

fk(x) =


x k = 0

σk
(
WT

k fk−1(x) + bk
)

1 ≤ k ≤ L− 1

WT
L fL−1(x) + bL k = L

where Wk ∈ Rnk−1×nk is the weight matrix at layer k.
Please note that the output layer is linear as it is usually
done in practice. We consider in the following activation
functions σ : R → R which are continuous and strictly
monotonically increasing. This is true for most of pro-
posed activation functions, but does not hold for ReLU,
σ(t) = max{t, 0}. On the other hand, it has been argued
in the recent literature, that the following variants are to be
preferred over ReLU as they deal better with the vanishing
gradient problem and outperform ReLU in prediction perfor-
mance (He et al., 2015; Clevert et al., 2016). This is leaky
ReLU (Maas et al., 2013):

σ(t) = max{t, αt} for 0 < α < 1,

where typically α is fixed but it has also been optimized
together with the network weights (He et al., 2015) and
ELU (exponential linear unit) (Clevert et al., 2016):

σ(t) =

{
et − 1 t < 0

t t ≥ 0.
.

Note that image of the activation function σ, σ(R) =
{σ(t) | t ∈ R}, is equal to R for leaky ReLU and (−1,∞)
for the exponential linear unit.

3. Connectivity of Decision Regions
In this section, we prove two results on the connectivity
of the decision regions of a classifier. Both require that
the activation function is continuous and strictly monotoni-
cally increasing. Our main Theorem 3.10 holds for feedfor-
ward networks of arbitrary depth and requires additionally
σ(R) = R, the second Theorem 3.11 holds just for one
hidden layer networks but has no further requirements on
the activation function. Both show that in general pyramidal
feedforward neural networks where the width of all the hid-
den layers is smaller than or equal to the input dimension
can only produce connected decision regions.
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3.1. Preliminary technical results

We first introduce the definitions and terminologies used in
the following, before we prove or recall some simple results
about continuous mappings from Rm to Rn. For a function
f : U → V , where dom(f) = U ⊆ Rm and V ⊆ Rn, we
denote for every subset A ⊆ U , the image f(A) as f(A) :=
{f(x) | x ∈ A} =

⋃
x∈A f(x). Let range(f) := f(U).

Definition 3.1 (Decision region) The decision region of a
given class 1 ≤ j ≤ m, denoted by Cj , is defined as

Cj =
{
x ∈ Rd

∣∣ (fL)j(x) > (fL)k(x), ∀k 6= j
}
.

Definition 3.2 (Connected set) A subset S ⊆ Rd is called
connected if for every x, y ∈ S, there exists a continuous
curve r : [0, 1]→ S such that r(0) = x and r(1) = y.

To prove our key Lemma 3.9, the following properties of
connected sets and continuous functions are useful. All
proofs are moved to the appendix due to limited space.

Proposition 3.3 Let f : U → V be a continuous function.
If A ⊆ U is a connected set then f(A) ⊆ V is also a
connected set.

Proposition 3.4 The Minkowski sum of two connected
subsets U, V ⊆ Rn, defined as U + V =
{u+ v | u ∈ U, v ∈ V }, is a connected set.

As our main idea is to transfer the connectedness of a set
from the output layer back to the input layer, we require the
notion of pre-image and inverse mapping.

Definition 3.5 (Pre-Image) The pre-image of a function
f : U → V is the set-valued function f−1 : V → U defined
for every y ∈ V as

f−1(y) = {x ∈ U | f(x) = y} .

Similarly, for every subset A ⊆ V , let

f−1(A) =
⋃
y∈A

f−1(y) = {x ∈ U | f(x) ∈ A} .

By definition, it holds for every subset A ⊆ V that f(x) ∈
A if and only if x ∈ f−1(A). Moreover, for every A ⊆ V

f−1(A) = f−1(A ∩ range(f)) ∪ f−1(A \ range(f))
= f−1(A ∩ range(f)) ∪ ∅
= f−1(A ∩ range(f)).

As a deep feedforward network is a composition of the
individual layer functions, we need the following property.

Proposition 3.6 Let f : U → V and g : V → Q be two
functions. Then it holds that (g ◦ f)−1 = f−1 ◦ g−1.

Apart from the property of connectivity, we can also show
the openness of a set when considering the pre-image of a
given network. We recall the following standard result from
topology (see e.g. Apostol, 1974, Theorem 4.23, p. 82).

Proposition 3.7 Let f : Rm → Rn be a continuous func-
tion. If U ⊆ Rn is an open set then f−1(U) is also open.

We now recall a standard result from calculus showing that
under certain, restricted conditions the inverse of a continu-
ous mapping exists and is as well continuous.

Proposition 3.8 Let f : R → f(R) be continuous and
strictly monotonically increasing. Then the inverse mapping
f−1 : f(R)→ R exists and is continuous.

The following lemma is a key ingredient in the following
proofs. It allows us to show that the pre-image of an open
and connected set by a one hidden layer network is again
open and connected. Using the fact that deep networks can
be seen as a composition of such individual layers, this will
later on allow us to transfer the result to deep networks.

Lemma 3.9 Let m ≥ n and f : Rm → Rn be a function
defined as f = σ̂ ◦ h where σ̂ : Rn → Rn is defined as

σ̂(x) =

σ(x1)...
σ(xn)

 , (1)

and σ : R→ R is bijective, continuous and strictly mono-
tonically increasing, h : Rm → Rn is a linear map defined
as h(x) = WTx + b where W ∈ Rm×n has full rank
and b ∈ Rn. If V ⊆ Rn is an open connected set then
f−1(V ) ⊆ Rm is also an open connected set.

Proof: By Proposition 3.6, it holds that f−1(V ) =
h−1(σ̂−1(V )). As σ̂ is a componentwise function, the in-
verse mapping σ̂−1 is given by the inverse mappings of the
components

σ̂−1 : Rn → Rn, σ̂−1(x) =

σ
−1(x1)

...
σ−1(xn)

 ,

where under the stated assumptions the inverse mapping
σ−1 : R → R exists by Lemma 3.8 and is continuous.
Since V ⊆ Rn = dom(σ̂−1), σ̂−1(V ) is the image of the
connected set V under the continuous map σ̂−1. Thus by
Proposition 3.3, σ̂−1(V ) is connected. Moreover, σ̂−1(V )
is an open set by Proposition 3.7.

It holds for every y ∈ Rn that

h−1(y)

=

{
∅ y /∈ range(h)

W (WTW )−1(y − b) + ker(WT ) y ∈ range(h),
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Figure 1. Left: illustration of the image of R under the mapping f , denoted as f(R) ⊂ R2 for the toy example from (2) which maps into a
lower-dimensional subspace (the diagonal line). Right: The pre-image f−1(S) ⊂ R of the connected S becomes disconnected.

where the inverse of WTW exists as W has full rank n
(note that we assume n ≤ m). As W has full rank and
m ≥ n, it holds that range(h) = Rn and thus

h−1(y) =W (WTW )−1(y − b) + ker(WT ), ∀ y ∈ Rn.

Therefore it holds for σ̂−1(V ) ⊆ Rn that

h−1
(
σ̂−1(V )

)
=W (WTW )−1

(
σ̂−1(V )− b

)
+ ker(WT ),

where the first term is the image of the connected set σ̂−1(V )
under an affine mapping and thus is again connected by
Proposition 3.3, the second term ker(WT ) is a linear sub-
space which is also connected. By Proposition 3.4, the
Minkowski sum of two connected sets is connected. Thus
f−1(V ) = h−1(σ̂−1(V )) is a connected set. Moreover, as
f−1(V ) is the pre-image of the open set V under the contin-
uous function f , it must be also an open set by Proposition
3.7. Thus f−1(V ) is an open and connected set. �

Note that in Lemma 3.9, if m < n and W has full rank
then range(h) ( Rn and the linear equation h(x) = y
has a unique solution x = (WWT )−1W (y − b) for every
y ∈ range(h) and thus

f−1(V ) = h−1
(
σ−1(V )

)
= h−1

(
σ−1(V ) ∩ range(h)

)
= (WWT )−1W

(
(σ−1(V ) ∩ range(h))− b

)
.

In this case, even though σ−1(V ) is a connected set, the
intersection σ−1(V )∩ range(h) can be disconnected which
can imply that f−1(V ) is disconnected and thus the decision
region becomes disconnected.

We illustrate this with a simple example, where m = 1 and

n = 2 with σ(x) = x3 and WT =

(
−1
1

)
and b =

(
0
0

)
.

In this case it holds that

f(x) = σ̂(WTx+ b) =

(
σ(−x)
σ(x)

)
=

(
−x3
x3

)
. (2)

Figure 1 shows that f(R) is a one-dimensional submanifold
(in this case subspace) of R2 and provides an example of a
set S ⊂ R2 where the pre-image f−1(S) is disconnected.

3.2. Main results

We show in the following that the decisions regions of feed-
forward networks which are pyramidal and have maximal
width at most the input dimension d can only produce con-
nected decision regions. We assume for the activation func-
tions that σ(R) = R, which is fulfilled by leaky ReLU.

Theorem 3.10 Let the width of the layers of the feedfor-
ward network network satisfy d = n0 ≥ n1 ≥ . . . ≥ nL−1
and let σl : R → R be a continuous, strictly monotoni-
cally increasing function with σl(R) = R for every layer
1 ≤ l ≤ L−1 and all the weight matrices (Wl)

L−1
l=1 have full

rank. Then every decision region Cj is an open connected
subset of Rd for every 1 ≤ j ≤ m.

Proof: From Definition 3.1, it holds for every 1 ≤ j ≤ m

Cj=
{
x ∈ Rd

∣∣ fLj(x)− fLk(x) > 0,∀k 6= j
}

where

fLj(x)− fLk(x)

= 〈(WL):j − (WL):k, fL−1(x)〉+ (bL)j − (bL)k.

Let us define the set

Vj=
{
y
∣∣∣ 〈(WL):j − (WL):k, y〉>(bL)k − (bL)j ,∀k 6= j

}
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then it holds Cj =
{
x ∈ Rd

∣∣ fL−1(x) ∈ Vj} =

f−1L−1(Vj). If Vj is an empty set then we are done, otherwise
one observes that Vj is the intersection of a finite number of
open half-spaces (or the whole space), which is thus an open
and connected set. Moreover, it holds Vj ∩ σ̂L−1(R) = Vj ,
where σ̂L−1 is defined as in (1). It follows from Proposition
3.7 that Cj must be an open set as it is the pre-image of the
open set Vj under the continuous mapping fL−1. To show
that Cj is a connected set, one first observes that

fL−1 = σ̂L−1 ◦ hL−1 ◦ σ̂L−2 ◦ hL−2 . . . ◦ σ̂1 ◦ h1

where hk : Rnk−1 × Rnk is an affine mapping between
layer k − 1 and layer k defined as hk(x) =WT

k x+ bk for
every 1 ≤ k ≤ L − 1, x ∈ Rnk−1 , and σ̂k : Rnk → Rnk

is the activation mapping of layer k defined as in (1). By
Proposition 3.6 it holds that

f−1L−1(Vj) = (h−11 ◦ σ̂
−1
1 ◦ . . . ◦ h

−1
L−1 ◦ σ̂

−1
L−1)(Vj)

Since σk : R → R is a continuous bijection by our as-
sumption, it follows that σ̂k : Rnk → Rnk is also a contin-
uous bijection. Moreover, it holds that Wk has full rank
and nk−1 ≥ nk for every 1 ≤ k ≤ L − 1 and Vj is
a connected set. Thus one can apply Lemma 3.9 subse-
quently for the composed functions (σ̂k ◦ hk) for every
k = L − 1, L − 2, . . . , 1 and obtains that Cj = f−1L−1(Vj)
is a connected set. Thus Cj is an open and connected set for
every 1 ≤ j ≤ m. �

The next theorem holds just for networks with one hidden
layer but allows general activation functions which are con-
tinuous and strictly monotonically increasing, that is leaky
ReLU, ELU, softplus or sigmoid activation functions. Again
the decision regions are connected if the hidden layer has
maximal width smaller than d+ 1.

Theorem 3.11 Let the one hidden layer network satisfy
d = n0 ≥ n1 and let σ1 : R→ R be a continuous, strictly
monotonically increasing function and the hidden layer’s
weight matrix W1 has full rank. Then every decision region
Cj is an open connected subset of Rd for every 1 ≤ j ≤ m.

Proof: We note that in the proof of Theorem 3.10 the Vj is
a finite intersection of open half-spaces and thus a convex
set. Moreover, σ̂1(Rn1) is an open convex set (it is just
an axis-aligned open box), as σ1 is strictly monotonically
increasing. Thus

Cj =
{
x ∈ Rd

∣∣ f1(x) ∈ Vj ∩ σ̂1(Rn1)
}

= f−11

(
Vj ∩ σ̂1(Rn1)

)
.

As both sets are open convex sets, the intersection Vj ∩
σ̂1(Rn1) is again convex and open as well. Thus Vj ∩
σ̂1(Rn1) is a connected set. The rest of the argument fol-
lows then by using Lemma 3.9, noting that by Proposition

3.8 σ̂−11 : σ̂1(Rn1)→ Rn1 is a continuous mapping. �

Note that Theorem 3.10 and Theorem 3.11 make no assump-
tion on the structure of all layers in the network. Thus they
can be applied to neural networks with both fully connected
layers and convolutional layers. Moreover, the results hold
regardless of how the parameters of the network (Wl, bl)

L
l=1

have been attained, trained or otherwise, as long as all the
weight matrices of hidden layers have full rank. This is a
quite weak condition in practice as the set of low rank ma-
trices has just Lebesgue measure zero. Even if the optimal
weight parameters for the data generating distribution would
be low rank (we discuss such an example below), then it
is very unlikely that the trained weight parameters are low
rank, as one has statistical noise by the training sample,
“optimization noise” from the usage of stochastic gradient
descent (SGD) and its variants and finally in practice one of-
ten uses early stopping and thus even if the optimal solution
for the training set is low rank, one will not find it.

Theorem 3.10 covers activation functions like leaky ReLU
but not sigmoid, ELU or softplus. At the moment it is
unclear for us if the result might hold also for the more
general class of activation functions treated in Theorem
3.11. The problem is that then in Lemma 3.9 one has to
compute the pre-image of V ∩ σ̂(Rn). Even though both
sets are connected, the intersection of connected sets need
not be connected. This is avoided in Theorem 3.11 by using
that the initial set Vj and σ̂(RnL−1) are both convex and the
intersection of convex sets is convex and thus connected.

We show below that the result is tight in the sense that we
give an empirical example of a neural network with a single
hidden layer of d+ 1 hidden units which produces discon-
nected regions. Note that our result complements the result
of (Hanin & Sellke, 2017), where they show the universal
approximation property (for ReLU) only if one considers
networks of width at least d+1 for arbitrary depth. Theorem
3.10 and Theorem 3.11 indicate that this result could also
hold for leaky ReLU as approximation of arbitrary functions
implies approximation of arbitrary decisions regions, which
clearly requires that one is able to get disconnected decision
regions. Taking both results together, it seems rather obvi-
ous that as a general guiding principle for the construction
of hidden layers in neural networks one should use, at least
for the first hidden layer, more units than the input dimen-
sion, as it is rather unlikely that the Bayes optimal decision
regions are connected. Indeed, if the true decision regions
are disconnected then using a network of smaller width than
d+1 might still perfectly fit the finite training data but since
the learned decision regions are connected there exists a path
between the true decision regions which then can be used
for potential adversarial manipulation. This is discussed in
the next section where we show empirical evidence for the
existence of such adversarial examples.
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4. Illustration and Discussion
In this section we discuss with analytical examples as well as
trained networks that the result is tight and the conditions of
the theorem cannot be further relaxed. Moreover, we argue
that connected decision regions can be problematic as they
open up the possibility to generate adversarial examples.

4.1. Why pyramidal structure of the network is
necessary to get connected decision regions?

Figure 2. Decision region of the network in (3)(left) and (5)(right).

In Theorem 3.10, if the network does not have pyrami-
dal structure up to the last hidden layer, i.e. the condition
d1 ≥ . . . ≥ dL−1 is not fulfilled, then the statement of the
theorem might not hold as the decision regions can be dis-
connected. We illustrate this via a counter-example below.
Let us consider a non-pyramidal network 2-1-2-2 defined as

WT
3 σ̂2(W

T
2 σ̂1(W

T
1 x+ b1) + b2) + b3 (3)

where σ1(t) = σ2(t) = max {0.5 t, t}, and W1 =[
1
1

]
, b1 = 0,W2 =

[
1 −1

]
, b2 =

[
0
0

]
,W3 =[

2 1
3 2

]
, b3 =

[
0
1

]
. Then one can check that this

network has (see appendix for the full derivation)
C1 =

{
x ∈ R2

∣∣ x1 + x2 − 2 > 0 and x1 + x2 + 4 < 0
}

,
which is a disconnected set as illustrated in Figure 2.

4.2. Why full rank of the weight matrices is necessary
to get connected decision regions?

Similar to Section 4.1, we show that if the weight matrices of
hidden layers are not full rank while the other conditions are
still satisfied, then the decision regions can be disconnected.
The reason is simply that low rank matrices, in particular in
the first layer, reduce the effective dimension of the input.
We illustrate this effect with a small analytical example
and then argue that nevertheless in practice it is extremely
difficult to get low rank weight matrices.
Suppose one has a two-class classification problem on R2

(see Figure 3) with equal class probabilities P (red) =
P (blue), and the conditional distribution is given as

p(x1, x2|blue)=
1

2
, ∀x1 ∈ [−2,−1] ∪ [1, 2], x2 ∈ [−1

2
,
1

2
]

p(x1, x2|red)=1, ∀x1 ∈ [−1, 1], x2 ∈ [−1

2
,
1

2
]. (4)

Figure 3. Left: the training set corresponding to the distribution in
(4). Right: the decision regions of a trained classifier, which are
connected as the learned weight matrix W1 has full rank.

Note that the Bayes optimal decision region for class blue
is disconnected. Moreover, it is easy to verify that a one
hidden layer network with leaky ReLU σ(t) = max{t, αt}
for 0 < α < 1 can perfectly fit the data with

WT
1 =

(
1 0
−1 0

)
, b1=

(
−1
−1

)
,WT

2 =

(
1 1
0 0

)
, b2=

(
0
−2α

)
Note that W1 has low rank. Suppose that the first out-
put unit corresponds to the blue class and second out-
put unit corresponds to the red class. Then it holds
(f2)red(x1, x2) = −2α, (f2)blue(x1, x2) = max{x1 −
1, α(x1 − 1)}+max{−(x1 + 1),−α(x1 + 1)} and thus

(f2)blue(x1, x2)=


(1− α)x1 − (1 + α) x1 ≥ 1

−2α −1 ≤ x1 ≤ 1

−(1− α)x1 − (1 + α) x1 ≤ −1

which implies that (f2)blue(x1, x2) > (f2)red(x1, x2) for
every x1 ∈ (−∞,−1) ∪ (1,+∞) and thus the decision
region for class blue has two disconnected decision regions.
This implies that Theorems 3.10 and 3.11 do indeed not hold
if the weight matrices do not have full rank. Nevertheless in
practice, it is unlikely that one will get such low rank weight
matrices, which we illustrate in Figure 3 that the decision
regions of the trained classifier has indeed connected deci-
sion regions. This is due to statistical noise in the training
set as well as through the noise in the optimization proce-
dure (SGD) and the common practice of early stopping in
training of neural networks.

4.3. Does the result hold for ReLU activation function?

As the conditions of Theorem 3.10 are not fulfilled for
ReLU, one might ask whether the decision regions of a
ReLU network with pyramidal structure and full rank weight
matrices can be potentially disconnected. We show that this
is indeed possible via the following example. Let a two
hidden layer network (2-2-2-2) be defined as

WT
3 σ̂2(W

T
2 σ̂1(W

T
1 x+ b1) + b2) + b3 (5)

where σ1(t) = σ2(t) = max {t, 0} and

WT
1 =

[
1 0
0 1

]
,WT

2 =

√
2

2

[
1 1
−1 1

]
,WT

3 =

[
−1 0
0 −3

]
,
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(a) Training data (b) n1 = 2(122) (c) n1 = 3(72) (d) n1 = 4(45) (e) n1 = 7(12) (f) n1 = 50(0)

Figure 4. Decision region of a one hidden layer network trained with SGD for varying number of hidden units for the toy example given in
(a). As shown by Theorem 3.10 the decision region for n1 = d = 2 is connected, however already for n1 > d = 2 one gets disconnected
decision regions which shows that Theorem 3.10 is tight. The numbers in bracket show the number of misclassified training points.

and b1 = [0, 0]T , b2 = 1√
2
[
√
2 − 1,−3]T , b3 = [1, 0]T .

Then one can derive the decision region for the first class as
(see appendix for the full derivation)

C1 =
{
x ∈ R2

∣∣ x1 < 1, x2 < 1, x1 + x2 < 1
}

∪
{
x ∈ R2

∣∣ x2 > 4, 2x1 − x2 + 4 < 0
}

which is a disconnected set as illustrated in Figure 2.

Finally, one notes in this example that except for the activa-
tion function, all the other conditions of Theorem 3.10 are
still satisfied, that is, the network has pyramidal structure
(2-2-2-2) and all the weight matrices (Wl)

2
l=1 have full rank

by our construction. Thus the statement of Theorem 3.10,
at least under current form, does not hold for ReLU.

4.4. The theorems are tight: disconnected decision
regions for width d+ 1

We consider a binary classification task in R2 where the data
points are generated so that the blue class has disconnected
components on the square [−4, 4] × [−4, 4], see Figure 4
(a) for an illustration. We use a one hidden layer network
with varying number of hidden units, two output units, leaky
ReLU activation function and cross-entropy loss. We then
train this network by using SGD with momentum for 1000
epochs and learning rate 0.1 and reduce the it by a factor of
2 after every 50 epochs. For all the attempts with different
starting points that we have done in our experiment, the
resulting weight matrices always have full rank.

We show the training error and the decision regions of
trained network in Figure 4. The grid size in each case
of Figure 4 has been manually chosen so that one can see
clearly the connected/disconnected components in the de-
cision regions. First, we observe that for two hidden units
(n1 = 2), the network satisfies the condition of Theorem
3.10 and thus can only learn connected regions, which one
can also clearly see in the figure, where one basically gets a
linear separator. However, for three hidden units (n1 = 3),
one can see that the network can produce disconnected de-
cision regions, which shows that both our Theorems 3.10
and 3.11 are tight, in the sense that width d+ 1 is already
sufficient to produce disconnected components, whereas

the results say that for width less than d + 1 the decision
regions have to be connected. As the number of hidden units
increases, we observe that the network produces more easily
disconnected decision regions as expected.

4.5. Relation to adversarial manipulation

We use a single image of digit 1 from the MNIST dataset to
create a new artificial dataset where the underlying data gen-
eration probability measure has a similar one-dimensional
structure as in (4) but now embedded in the pixel space
R28×28. This is achieved by using rotation as the one-
dimensional degree of freedom. We generate 2000 training
images for each red/blue class by rotating the chosen digit 1
with angles ranging from [−5◦, 5◦] for the read class, and
[−20◦,−15◦] ∪ [15◦, 20◦] for the blue class, see Figure 5.

[−20◦,−15◦] [−5◦, 5◦] [15◦, 20◦]

Figure 5. Training examples for our binary digit-1 dataset. The
color (red/blue) denotes the class of corresponding example.

Note that this is a binary classification task where the dataset
has just one effective degree of freedom and the Bayes op-
timal decision regions are disconnected. We train a one
hidden layer network with 784 hidden units which is equal
to the input dimension and leaky ReLU as activation func-
tion with α = 0.1. The training error is zero and the result-
ing weight matrices have full rank, thus the conditions of
Theorem 3.10 are satisfied and the decision region of class
blue should be connected even though the Bayes optimal
decision region is disconnected. This can only happen by
establishing a connection around the other red class. We
test this by sampling a source image from the [−20◦,−15◦]
part of the blue class and a target image from the other part
[15◦, 20◦]. Next, we generate an adversarial image 1 from
the red class using the one step target class method (Kurakin

1This is essentially a small perturbation of an image from the
red class which is classified as blue class
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0.99 (source) 0.99(0.1) 0.99(0.2) 0.99(0.3) 0.99(0.4) 0.99(0.5) 0.99(0.6) 0.99(0.7) 0.99(0.8) 0.99(0.9) 0.99 (adversarial)

0.99 (adversarial) 0.99(0.1) 0.99(0.2) 0.99(0.3) 0.99(0.4) 0.99(0.5) 0.99(0.6) 0.99(0.7) 0.99(0.8) 0.99(0.9) 0.99 (target)

Figure 6. Digit-1 dataset (2 output classes): The trajectory from source image to adversarial image (top row) parameterized by λ (numbers
inside brackets), and from adversarial image to target image (second row). Each number outside bracket shows the confidence that the
corresponding image was predicted to be in blue class. The image with red caption can be seen as an adversarial image of the red class.

0.99 (source) 0.99(0.1) 0.98(0.2) 0.98(0.3) 0.97(0.4) 0.96(0.5) 0.94(0.6) 0.93(0.7) 0.92(0.8) 0.89(0.9) 0.82 (adversarial)

0.82 (adversarial) 0.55(0.1) 0.45(0.2) 0.54(0.3) 0.68(0.4) 0.83(0.5) 0.91(0.6) 0.96(0.7) 0.98(0.8) 0.99(0.9) 0.99 (target)

Figure 7. MNIST dataset (10 output classes): The trajectory from source image to adversarial image (top row) parameterized by λ
(numbers inside brackets), and from adversarial image to target image (second row). Each number outside bracket shows the confidence
that the corresponding image was predicted to be in blue class (digit 5) out of 10 classes.

et al., 2016; 2017) and consider the path between the source
image to the adversarial image and subsequently from the
adversarial image to the target one. For each path, we sim-
ply consider the line segment λs+ (1− λ)t for λ ∈ [0, 1]
between the two endpoint images s and t and sample it very
densely by dividing [0, 1] into 104 equidistant parts. Figure
6 shows the complete path from the source image to the
target image where the color indicates that all the intermedi-
ate images are classified as blue with high confidence (note
that we turned the output of the network into probabilities
by using the softmax function). Moreover, the intermediate
images from Figure 6 look very much like images from
the red class thus could be seen as adversarial samples for
the red class. The point we want to make here is that one
might think that in order to avoid adversarial manipulation
the solution is to use a simple classifier of low capacity. We
think that rather the opposite is true in the sense that only
if the classifier is rich enough to model the true underlying
data generating distribution it will be able to model the true
decision boundaries. In particular, the classifier should be
able to realize disconnected decision regions in order to
avoid paths through the input space which connect different
disconnected regions of the Bayes optimal classifier. Now
one could argue that the problem of our synthetic example
is that the corresponding digits obviously do not fill the
whole image space, nevertheless the classifier has to do a
prediction for all possible images. This could be handled by
introducing a background class, but then it would be even

more important that the classifier can produce disconnected
decision regions which naturally requires a minimal width
of d+ 1 of the network.

In Figure 7, we show another similar experiment on MNIST
dataset, but now for all the 10 image classes. We train a
network with 200 hidden units, leaky ReLU and softmax
cross-entropy loss to zero training error. Once again, one
can see that there exists a continuous path that connects
two different-looking images of digit 5 (blue class) where
every image along this path is classified as blue class with
high confidence. Moreover this path goes through a pre-
constructed adversarial image of the red class (digit 4).

5. Conclusion
We have shown that deep neural networks (with a certain
class of activation functions) need to have in general width
larger than the input dimension in order to learn discon-
nected decision regions. It remains an open problem if our
current requirement σ(R) = R can be removed. While
our result does not resolve the question how to choose the
network architecture in practice, it provides at least a guide-
line how to choose the width of the network. Moreover,
our result and experiments show that too narrow networks
produce high confidence predictions on a path connecting
the true disconnected decision regions which could be used
to attack these networks using adversarial manipulation.
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Proof of Proposition 3.3 Pick some a, b ∈ f(A). Then
there must exist some x, y ∈ A such that f(x) = a and
f(y) = b. Since A is a connected set, it holds by Definition
3.2 that there exists a continuous curve r : [0, 1] → A
such that r(0) = x, r(1) = y. Consider the curve f ◦ r :
[0, 1]→ f(A), then it holds that f(r(0)) = a, f(r(1)) = b.
Moreover, f ◦r is continuous as both f and r are continuous.
Thus it holds that f(A) is a connected set by Definition 3.2.

Proof of Proposition 3.4 Let x, y ∈ U + V , then there
exists a, b ∈ U and c, d ∈ V such that x = a + c, y =
b + d. Since U and V are connected sets, there exist two
continuous curves p : [0, 1] → U and q : [0, 1] → V such
that p(0) = a, p(1) = b and q(0) = c, q(1) = d. Consider
the continuous curve r(t) := p(t) + q(t) then it holds that
r(0) = a + c = x, r(1) = b + d = y and r(t) ∈ U + V
for every t ∈ [0, 1]. This implies that every two elements
in U + V can be connected by a continuous curve and thus
U + V must be a connected set.

Proof of Proposition 3.6 It holds for every A ⊆ Q that

(g ◦ f)−1(A) = {x ∈ U | g(f(x)) ∈ A}
=
{
x ∈ U

∣∣ f(x) ∈ g−1(A)}
=
{
x ∈ U

∣∣ x ∈ f−1(g−1(A))}
= (f−1 ◦ g−1)(A).

Why pyramidal structure of the network is
necessary to get connected decision regions?
In the following, we show how to derive the decision regions
of the network given in Equation (3).

(a) V1 (b) P (c) Q (blue)

−2 2

(d) R

−4 2

(e) S (f) C1 (dashed area)

Figure 8. Construction steps of the decision region for a non-
pyramidal network.

Let V1 =
{
(y1, y2) ∈ R2

∣∣ y1 + y2 − 1 > 0
}

then the deci-
sion region of the first class C1 can be computed recursively:

P := σ̂−12 (V1),

Q := P ∩ range(WT
2 ),

R := (W2W
T
2 )
−1
W2(Q− b2),

S := σ̂−11 (R),

C1 =W1(W
T
1 W1)

−1
(S − b1) + ker(WT

1 ).

The outcome of each step is illustrated in Figure 8. One can
clearly check that the decision region of the first class C1 is
given by

C1 =
{
x ∈ R2

∣∣ x1 + x2 − 2 > 0 and x1 + x2 + 4 < 0
}

which is thus a disconnected set.

Overall, this counter-example shows that pyramidal struc-
ture of the network, at least under the other conditions of
Theorem 3.10, is a necessary condition to get connected
decision regions.

Does the result hold for ReLU activation
function?
In the following, we show how to derive the decision regions
of the network given in Equation (5).

Let us define the set

V1 =
{
y ∈ R2

∣∣ (WT
3 y + b3)1 > (WT

3 y + b3)2
}

=
{
(y1, y2) ∈ R2

∣∣ y1 − 3y2 − 1 < 0
}
.

Note that the inverse mapping of the ReLU function σ(t) =
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(a) V1 (b) P (c) Q

(d) R (e) S (f) C1

Figure 9. Construction of the decision region of the ReLU network given in Equation (5).

max {t, 0} is given as

σ−1(t) =

{
t t > 0

{x ∈ R | x ≤ 0} t = 0.

The decision region of the first class C1 can be computed
recursively as (see Figure 9 for the illustration):

P := V1 ∩ range(σ̂2) = V1 ∩ R2
+

Q := σ̂−12 (P ),

R := (WT
2 )
−1

(Q− b2),
S := R ∩ range(σ̂1) = R ∩ R2

+

C1 := σ̂−11 (S)

By following these steps, one can easily check that

C1 =
{
x ∈ R2

∣∣ x1 < 1, x2 < 1, x1 + x2 < 1
}

∪
{
x ∈ R2

∣∣ x2 > 4, 2x1 − x2 + 4 < 0
}

which is a disconnected set as illustrated in Figure 9.


