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Abstract

We study the task of semi-supervised learning on multilayer graphs by taking into
account both labeled and unlabeled observations together with the information
encoded by each individual graph layer. We propose a regularizer based on the
generalized matrix mean, which is a one-parameter family of matrix means that
includes the arithmetic, geometric and harmonic means as particular cases. We
analyze it in expectation under a Multilayer Stochastic Block Model and verify
numerically that it outperforms state of the art methods. Moreover, we introduce a
matrix-free numerical scheme based on contour integral quadratures and Krylov
subspace solvers that scales to large sparse multilayer graphs.

1 Introduction

The task of graph-based Semi-Supervised Learning (SSL) is to build a classifier that takes into
account both labeled and unlabeled observations, together with the information encoded by a given
graph[5, 29]. A common and successful approach is to take a suitable loss function on the labeled
nodes and a regularizer which provides information encoded by the graph [2, 17, 33, 35, 38]. Whereas
this task is well studied, traditionally these methods assume that the graph is composed by interactions
of one single kind, i.e. only one graph is available.

For the case where multiple graphs, or equivalently, multiple layers are available, the challenge is to
boost the classification performance by merging the information encoded in each graph. The arguably
most popular approach for this task consists of finding some form of convex combination of graph
matrices, where more informative graphs receive a larger weight [1, 15, 16, 25, 30, 31, 34, 36].

Note that a convex combination of graph matrices can be seen as a weighted arithmetic mean of
graph matrices. In the context of multilayer graph clustering, previous studies [21–23] have shown
that weighted arithmetic means are suboptimal under certain benchmark generative graph models,
whereas other matrix means, such as the geometric [22] and harmonic means [21], are able to discover
clustering structures that the arithmetic means overlook.

In this paper we study the task of semi-supervised learning with multilayer graphs with a novel
regularizer based on the power mean Laplacian. The power mean Laplacian is a one-parameter family
of Laplacian matrix means that includes as special cases the arithmetic, geometric and harmonic mean
of Laplacian matrices.We show that in expectation under a Multilayer Stochastic Block Model, our
approach provably correctly classifies unlabeled nodes in settings where state of the art approaches fail.
In particular, a limit case of our method is provably robust against noise, yielding good classification
performance as long as one layer is informative and remaining layers are potentially just noise. We
verify the analysis in expectation with extensive experiments with random graphs, showing that our
approach compares favorably with state of the art methods, yielding a good classification performance
on several relevant settings where state of the art approaches fail.
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name minimum harmonic mean geometric mean arithmetic mean maximum
p p→ −∞ p = −1 p→ 0 p = 1 p→∞

mp(a, b) min{a, b} 2
(
1
a
+ 1

b

)−1 √
ab (a+ b)/2 max{a, b}

Table 1: Particular cases of scalar power means

Moreover, our approach scales to large datasets: even though the computation of the power mean
Laplacian is in general prohibitive for large graphs, we present a matrix-free numerical scheme based
on integral quadratures methods and Krylov subspace solvers which allows us to apply the power
mean Laplacian regularizer to large sparse graphs. Finally, we perform numerical experiments on
real world datasets and verify that our approach is competitive to state of the art approaches.

2 The Power Mean Laplacian

In this section we introduce our multilayer graph regularizer based on the power mean Laplacian.
We define a multilayer graph G with T layers as the set G = {G(1), . . . , G(T )}, with each graph
layer defined as G(t) = (V,W (t)), where V = {v1, . . . , vn} is the node set and W (t) ∈ Rn×n+ is the
corresponding adjacency matrix, which we assume symmetric and nonnegative. We further denote
the layers’ normalized Laplacians as L(t)

sym = I − (D(t))−1/2W (D(t))−1/2, where D(t) is the degree
diagonal matrix with (D(t))ii =

∑n
j=1W

(t)
ij .

The scalar power mean is a one-parameter family of scalar means defined as

mp(x1, . . . , xT ) = ( 1
T

∑T
i=1 x

p
i )

1/p

where x1, . . . , xT are nonnegative scalars and p is a real parameter. Particular choices of p yield
specific means such as the arithmetic, geometric and harmonic means, as illustrated in Table 1.

The Power Mean Laplacian, introduced in [21], is a matrix extension of the scalar power mean
applied to the Laplacians of a multilayer graph and proposed as a more robust way to blend the
information encoded across the layers. It is defined as

Lp =
(

1
T

∑T
i=1(L

(i)
sym)p

)1/p

where A1/p is the unique positive definite solution of the matrix equation Xp = A. For the case
p ≤ 0 a small diagonal shift ε > 0 is added to each Laplacian, i.e. we replace L(i)

sym with L(i)
sym + ε, to

ensure that Lp is well defined as suggested in [3]. In what follows all the proofs hold for an arbitrary
shift. Following [21], we set ε = log10(1 + |p|) + 10−6 for p ≤ 0 in the numerical experiments.

3 Multilayer Semi-Supervised Learning with the Power Mean Laplacian

In this paper we consider the following optimization problem for the task of semi-supervised learning
in multilayer graphs: Given k classes r = 1, . . . , k and membership vectors Y (r) ∈ Rn defined by
Y

(r)
i = 1 if node vi belongs to class r and Y (r)

i = 0 otherwise, we let

f (r) = arg min
f∈Rn

‖f − Y (r)‖2 + λfTLpf . (1)

The final class assignment for an unlabeled node vi is yi = arg max{f (1)
i , . . . , f

(k)
i }. Note that the

solution f of (1), for a particular class r, is such that (I+λLp)f = Y (r). Equation (1) has two terms:
the first term is a loss function based on the labeled nodes whereas the second term is a regularization
term based on the power mean Laplacian Lp, which accounts for the multilayer graph structure. It is
worth noting that the Local-Global approach of [35] is a particular case of our approach when only
one layer (T = 1) is considered. Moreover, not that when p = 1 we obtain a regularizer term based
on the arithmetic mean of Laplacians L1 = 1

T

∑T
i=1 L

(i)
sym. In the following section we analyze our

proposed approach (1) under the Multilayer Stochastic Block Model.
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4 Multilayer Stochastic Block Model

In this section we provide an analysis of semi-supervised learning for multilayer graphs with the
power mean Laplacian as a regularizer under the Multilayer Stochastic Block Model (MSBM). The
MSBM is a generative model for graphs showing certain prescribed clusters/classes structures via
a set of membership parameters p(t)

in and p(t)
out, t = 1, . . . , T . These parameters designate the edge

probabilities: given nodes vi and vj the probability of observing an edge between them on layer t is
p

(t)
in (resp. p(t)

out), if vi and vj belong to the same (resp. different) cluster/class. Note that, unlike the
Labeled Stochastic Block Model [13], the MSBM allows multiple edges between the same pairs of
nodes across the layers. For SSL with one layer under the SBM we refer the reader to [14, 24, 28].

We present an analysis in expectation. We consider k clusters/classes C1, . . . , Ck of equal size
|C| = n/k. We denote with calligraphic letters the layers of a multilayer graph in expectation
E(G) = {E(G(1), . . . , E(G(T ))}, i.e. W(t) is the expected adjacency matrix of the tth-layer. We
assume that our multilayer graphs are non-weighted, i.e. edges are zero or one, and hence we have
W(t)
ij = p

(t)
in , (resp.W(t)

ij = p
(t)
out) for nodes vi, vj belonging to the same (resp. different) cluster/class.

In order to grasp how different methods classify the nodes in multilayer graphs following the MSBM
we analyze two different settings. In the first setting (Section 4.1) all layers have the same class
structure and we study the conditions for different regularizers Lp to correctly predict class labels.
We further show that our approach is robust against the presence of noise layers, in the sense that it
achieves a small classification error when at least one layer is informative and the remaining layers
are potentially just noise. In this setting we distinguish the case where each class has the same
amount of initial labels and the case where different classes have different number of labels. In the
second setting (Section 4.2) we consider the case where each layer taken alone would lead to a large
classification error whereas considering all the layers together can lead to a small classification error.

4.1 Complementary Information Layers

A common assumption in multilayer semi-supervised learning is that at least one layer encodes
relevant information in the label prediction task. The next theorem discusses the classification error
of the expected power mean Laplacian regularizer in this setting.
Theorem 1. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with k classes C1, . . . , Ck of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Assume the same number of
labeled nodes are available per class. Then, the solution of (1) yields zero test error if and only if

mp(ρε) < 1 + ε , (2)

where (ρε)t = 1− (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out) + ε, and t = 1, . . . , T .

This theorem shows that the power mean Laplacian regularizer allows to correctly classify the nodes
if p is such that condition (2) holds. In order to better understand how this condition changes when p
varies, we analyze in the next corollary the limit cases p→ ±∞.
Corollary 1. Let E(G) be an expected multilayer graph as in Theorem 1. Then,

• For p→∞, the test error is zero if and only if p(t)
out < p

(t)
in for all t = 1, . . . , T .

• For p→−∞, the test error is zero if and only there exists a t∈{1, . . . , T} such that p(t)
out < p

(t)
in .

This corollary implies that the limit case p→∞ requires that all layers convey information regarding
the clustering/class structure of the multilayer graph, whereas the case p → −∞ requires that at
least one layer encodes clustering/class information, and hence it is clear that conditions for the limit
p→ −∞ are less restrictive than the conditions for the limit case p→∞. The next Corollary shows
that the smaller the power parameter p is, the less restrictive are the conditions to yield a zero test
error.
Corollary 2. Let E(G) be an expected multilayer graph as in Theorem 1. Let p ≤ q. If Lq yields
zero test error, then Lp yields a zero test error.

The previous results show the effectivity of the power mean Laplacian regularizer in expectation.
We now present a numerical evaluation based on Theorem 1 and Corollaries 1 and 2 on random

3



Classification Error

 0   0.5

-0.1 0 0.1
0

25

50

(a) L−10

-0.1 0 0.1
0

25

50

(b) L−1

-0.1 0 0.1
0

25

50

(c) L0

-0.1 0 0.1
0

25

50

(d) L1

-0.1 0 0.1
0

25

50

(e) L10

-0.1 0 0.1
0

25

50

(f) SMACD

-0.1 0 0.1
0

25

50

(g) AGML

-0.1 0 0.1
0

25

50

(h) TLMV

-0.1 0 0.1
0

25

50

(i) SGMI

-0.1 0 0.1
0

25

50

(j) TSS

Figure 1: Average classification error under the Stochastic Block Model computed from 100 runs.
Top Row: Particular cases with the power mean Laplacian. Bottom Row: State of the art models.

graphs sampled from the SBM. The corresponding results are presented in Fig. 1 for classification
with regularizers L−10, L−1, L0, L1, L10 and λ = 1. We first describe the setting we consider: we
generate random multilayer graphs with two layers (T = 2) and two classes (k = 2) each composed
by 100 nodes (|C| = 100). For each parameter configuration (p

(1)
in , p

(1)
out, p

(2)
in , p

(2)
out) we generate 10

random multilayer graphs and 10 random samples of labeled nodes, yielding a total of 100 runs per
parameter configuration, and report the average test error. Our goal is to evaluate the classification
performance under different SBM parameters and different amounts of labeled nodes. To this end,
we fix the first layer G(1) to be informative of the class structure (p(1)

in − p
(1)
out = 0.08), i.e. one can

achieve a low classification error by taking this layer alone, provided sufficiently many labeled nodes
are given. The second layer will go from non-informative (noisy) configurations (p(2)

in < p
(2)
out, left

half of x-axis) to informative configurations (p(2)
in > p

(2)
out, right half of x-axis), with p(t)

in +p
(t)
out = 0.1

for both layers. Moreover, we consider different amounts of labeled nodes: going from 1% to 50%
(y-axis). The corresponding results are presented in Figs. 1a,1b,1c,1d, and 1e.

In general one can expect a low classification error when both layers G(1) and G(2) are informative
(right half of x-axis). We can see that this is the case for all power mean Laplacian regularizers here
considered (see top row of Fig. 1). In particular, we can see in Fig. 1e that L10 performs well only
when both layers are informative and completely fails when the second layer is not informative,
regardless of the amount of labeled nodes. On the other side we can see in Fig. 1a that L−10 achieves
in general a low classification error, regardless of the configuration of the second layer G(2), i.e. when
G(1) or G(2) are informative. Moreover, we can see that overall the areas with low classification
error (dark blue) increase when the parameter p decreases, verifying the result from Corollary 2. In
the bottom row of Fig. 1 we present the performance of state of the art methods. We can observe
that most of them present a classification performance that resembles the one of the power mean
Laplacian regularizer L1. In general their classification performance drops when the level of noise
increases, i.e. for non-informative configurations of the second layer G(2), and they are outperformed
by the power mean Laplacian regularizer for small values of p.

Unbalanced Class Proportion on Labeled Datasets. In the previous analysis we assumed that
we had the same amount of labeled nodes per class. We consider now the case where the number
of labeled nodes per class is different. This setting was considered in [38], where the goal was to
overcome unbalanced class proportions in labeled nodes. To this end, they propose a Class Mass
Normalization (CMN) strategy, whose performance was also tested in [37]. In the following result
we show that, provided the ground truth classes have the same size, different amounts of labeled
nodes per class affect the conditions in expectation for zero classification error of (1). For simplicity,
we consider here only the case of two classes.
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Theorem 2. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with two classes C1, C2 of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Assume n1, n2 nodes from

C1, C2 are labeled, respectively. Let λ = 1. Then (1) yields zero test error if

mp(ρε) < min

{
n1

n2
,
n2

n1

}
(3)

where (ρε)t = 1− (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out) + ε, and t = 1, . . . , T .

Observe that Theorem 2 provides only a sufficient condition. A necessary and sufficient condition for
zero test error in terms of p, n1 and n2 is given in the supplementary material.

A different objective function can be employed for the case of classes with different number of labels
per class. Let C be the diagonal matrix defined by Cii = n/nr, if node vi has been labeled to belong
to class Cr. Consider the following modification of (1)

arg min
f∈Rn

‖f − CY ‖2 + λfTLpf (4)

The next Theorem shows that using (4) in place of (1) allows us to retrieve the same condition of
Theorem 1 for zero test error in expectation in the setting where the number of labeled nodes per
class are not equal.
Theorem 3. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

k classes C1, . . . , Ck of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Let n1, . . . , nk be the number of

labeled nodes per class. Let C ∈ Rn×n be a diagonal matrix with Cii = n/nr for vi ∈ Cr. The
solution to (4) yields a zero test classification error if and only if

mp(ρε) < 1 + ε , (5)

where (ρε)t = 1− (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out) + ε, and t = 1, . . . , T .

In Figs. 2a, 2b, and 2c. we present a numerical experiment with random graphs of our analysis
in expectation. We consider the following setting: we generate multilayer graphs with two layers
(T = 2) and two classes (k = 2) each composed by 100 nodes (|C| = 100). We fix p(1)

in −p
(1)
out = 0.08

and p(2)
in − p

(2)
out = 0, with p(t)

in + p
(t)
out = 0.1 for both layers. We fix the total amount of labeled nodes

to be n1 + n2 = 50 and let n1, n2 = 1, . . . 49. For each setting we generate 10 multilayer graphs
and 10 sets of labeled nodes, yielding a total of 100 runs per setting, and report the average test
classification error. In Fig. 2a we can see the performance of the power mean Laplacian regularizer
without modifications. We can observe how different proportions of labeled nodes per class affect the
performance. In Fig. 2b, we present the performance of the modified approach (4) and observe that it
yields a better performance against different class label proportions. Finally in Fig. 2c we present
the performance based on Class Mass Normalization 1, where we can see that its effect is slightly
skewed to one class and its overall performance is larger than the proposed approach.

4.2 Information-Independent Layers

In the previous section we considered the case where at least one layer had enough information to
correctly estimate node class labels. In this section we now consider the case where single layers

1We follow the authors’ implementation: http://pages.cs.wisc.edu/~jerryzhu/pub/harmonic_function.m
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Figure 4: Average test error under the SBM.Multilayer graph with 3 layers and 3 classes.Top Row:
Particular cases with the power mean Laplacian. Bottom Row: State of the art models.

taken alone obtain a large classification error, whereas when all the layers are taken together it is
possible to obtain a good classification performance. For this setting we consider multilayer graphs
with 3 layers (T = 3) and three classes (k = 3) C1, C2, C3, each composed by 100 nodes (|C| = 100)
with the following expected adjacency matrix per layer:

W(t)
i,j =

{
pin, vi, vj ∈ Ct or vi, vj ∈ Ct
pout, else

(6)

for t = 1, 2, 3, i.e. layerG(t) is informative of class Ct but not of the remaining classes, and hence any
classification method using one single layer will provide a poor classification performance. In Fig. 4
we present numerical experiments: for each parameter setting (pin, pout) we generate 5 multilayer
graphs together with 5 samples of labeled nodes yielding a total of 25 runs per setting, and report
the average test classification error. Also in this case we observe that the power mean Laplacian
regularizer does identify the global class structure and that it leverages the information provided by
labeled nodes, particularly for smaller values of p. On the other hand, this is not the case for all other
state of the art methods. In fact, we can see that SGMI and TSS performs similarly to L10 which has
the largest classification error. Moreover, we can see that AGML and TLMV perform similarly to
the arithmetic mean of Laplacians L1, which in turn is outperformed by the power mean Laplacian
regularizer L−10. Please see the supplementary material for a more detailed comparison.

5 A Scalable Matrix-free Numerical Method for the System (I + λLp)f = Y

In this section we introduce a matrix-free method for the solution of the system (I + λLp)f = Y
based on contour integrals and Krylov subspace methods. The method exploits the sparsity of
the Laplacians of each layer and is matrix-free, in the sense that it requires only to compute the
matrix-vector product L(i)

sym × vector, without requiring to store the matrices. Thus, when the layers
are sparse, the method scales to large datasets. Observe that this is a critical requirement as Lp is
in general a dense matrix, even for very sparse layers, and thus computing and storing Lp is very
prohibitive for large multilayer graphs. We present a method for negative integer values p < 0,
leaving aside the limit case p → 0 as it requires a particular treatment. The following is a brief
overview of the proposed approach. Further details are available in the supplementary material.

Let A1, . . . , AT be symmetric positive definite matrices, ϕ : C → C defined by ϕ(z) = z1/p and
Lp = T−1/pϕ(Sp), where Sp = Ap1 + · · ·+ApT . The proposed method consists of three main steps:
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Figure 5: Mean execution time of 10 runs for different meth-
ods. L−1(ours) stands for the power mean Laplacian reg-
ularizer together with our proposed matrix-free contour in-
tegral based method. We generate multilayer graphs with
two layers, each with two classes of same size with param-
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[0.5, 1, 2, 4, 8]× 104. Observe that our matrix free approach
for L−1 (solid blue curve) is competitive to state of the art ap-
proaches as TSS[30], outperforming AGML[25], SGMI[15]
and SMACD[11]. For TLMV[36] and SGMI we use our own
implementation.

1. We solve the system (I+λLp)
−1Y via a Krylov method (e.g. PCG or GMRES) with convergence

rate O((κ
2−1
κ2 )h/2) [27], where κ = λmax(Lp)/λmin(Lp). At iteration h, this method projects

the problem onto the Krylov subspace spanned by {Y, λLpY, (λLp)2Y, . . . , (λLp)
hY }, and

efficiently solve the projected problem.
2. The previous step requires the matrix-vector product LpY = T−1/pϕ(Sp)Y which we compute

by approximating the Cauchy integral form of the function ϕ with the trapezoidal rule in the
complex plane [12]. Taking N suitable contour points and coefficients β0, . . . , βN , we have

ϕN (Sp)Y = β0Sp Im
{∑N

i=1 βi(z
2
i I − Sp)−1Y

}
, (7)

which has geometric convergence [12]: ‖ϕ(Sp)Y − ϕN (Sp)Y ‖ = O(e−2π2N/(ln(M/m)+6)),
where m,M are such that M ≥ λmax(Sp) and m ≤ λmin(Sp).

3. The previous step requires to solve linear systems of the form (zI − Sp)−1Y . We solve each of
these systems via a Krylov subspace method, projecting, at each iteration h, onto the subspace
spanned by {Y, SpY, S2

pY, . . . , S
h
pY }. Since Sp =

∑T
i=1A

−|p|
i this problem reduces to comput-

ing |p| linear systems with Ai as coefficient matrix, for i = 1 . . . , T . Provided that A1, . . . , AT
are sparse matrices, this is done efficiently using pcg with incomplete Cholesky preconditioners.

Notice that the method allows a high level of parallelism. In fact, the N (resp. p) linear systems
solvers at step 2 (resp. 3) are independent and can be run in parallel. Moreover, note that the main
task of the method is solving linear systems with Laplacian matrices, which can be solved linearly in
the number of edges in the corresponding adjacency matrix. Hence, the proposed approach scales to
large sparse graphs and is highly parallelizable. A time execution analysis is provided in Fig 5, where
we can see that the time execution of our approach is competitive to the state of the art as TSS[30],
outperforming AGML[25], SGMI[15] and SMACD[11].

6 Experiments on Real Datasets

In this section we compare the performance of the proposed approach with state of the art methods
on real world datasets. We consider the following datasets: 3-sources [18], which consists of news
articles that were covered by news sources BBC, Reuters and Guardian; BBC[9] and BBC Sports[10]
news articles, a dataset of Wikipedia articles with ten different classes [26], the hand written UCI
digits dataset with six different set of features, and citations datasets CiteSeer[19], Cora[20] and
WebKB(Texas)[6]. For each dataset we build the corresponding layer adjacency matrices by taking the
symmetric k-nearest neighbour graph using as similarity measure the Pearson linear correlation, (i.e.
we take the k neighbours with highest correlation), and take the unweighted version of it. Datasets
CiteSeer, Cora and WebKB have only two layers, where the first one is a fixed precomputed citation
layer, and the second one is the corresponding k-nearest neighbour graph built from document
features.

As baseline methods we consider: TSS [30] which identifies an optimal linear combination of
graph Laplacians, SGMI [15] which performs label propagation by sparse integration, TLMV [36]
which is a weighted arithmetic mean of adjacency matrices, CGL [1] which is a convex combi-
nation of the pseudo inverse Laplacian kernel, AGML [25] which is a parameter-free method for
optimal graph layer weights, ZooBP [8] which is a fast approximation of Belief Propagation, and
SMACD [11] which is a tensor factorization method designed for semi-supervised learning. Finally
we set parameters for TSS to (c = 10, c0 = 0.4), SMACD (λ = 0.01)2, TLMV (λ = 1), SGMI

2this is the default value in the code released by the authors: https://github.com/egujr001/SMACD
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3sources
1% 5% 10% 15% 20% 25%

TLMV 29.8 21.5 20.8 20.3 15.5 16.5
CGL 50.2 45.5 36.4 30.6 23.8 19.8

SMACD 91.5 91.1 91.2 90.9 90.7 91.3
AGML 23.9 26.3 33.9 33.3 26.1 22.0
ZooBP 31.0 21.9 21.3 19.8 15.0 15.3

TSS 29.8 23.9 33.1 34.6 34.8 35.0
SGMI 34.4 26.6 25.4 24.4 19.1 17.9
L1 33.5 23.9 23.4 20.1 15.6 14.6
L-1 28.4 20.0 21.8 22.0 17.2 17.9
L-10 40.9 29.1 21.9 19.3 14.8 14.7

BBC
1% 5% 10% 15% 20% 25%

TLMV 29.0 19.3 13.2 11.1 9.3 8.8
CGL 72.5 52.3 36.1 27.4 22.0 17.1

SMACD 74.4 73.5 72.8 72.6 72.5 72.4
AGML 60.0 34.2 18.6 13.1 11.0 9.5
ZooBP 31.1 20.1 15.0 12.2 10.0 9.1

TSS 40.4 26.1 20.9 20.1 19.8 19.7
SGMI 37.6 28.9 24.9 22.8 20.7 19.3
L1 31.3 22.8 17.4 13.5 10.2 8.9
L-1 31.0 17.0 11.5 10.5 9.2 8.7
L-10 51.6 26.9 16.6 12.8 10.3 9.5

BBCS
1% 5% 10% 15% 20% 25%

TLMV 25.6 12.6 10.5 7.5 6.4 5.4
CGL 79.2 51.6 34.9 23.4 16.5 12.7

SMACD 77.8 80.6 82.4 96.4 98.4 98.3
AGML 34.6 17.4 12.1 7.0 6.0 5.4
ZooBP 33.8 13.9 11.3 8.8 7.6 6.2

TSS 23.9 13.2 14.1 12.3 13.1 12.2
SGMI 31.9 19.6 16.6 15.5 14.8 12.1
L1 29.9 15.0 13.5 10.6 8.7 7.2
L-1 23.8 11.6 8.7 6.3 5.8 5.1
L-10 48.7 22.5 14.2 9.1 7.8 6.1

Wikipedia
1% 5% 10% 15% 20% 25%

TLMV 65.7 56.8 46.4 43.1 40.8 39.2
CGL 87.3 83.0 82.5 82.2 83.0 83.0

SMACD 85.4 85.6 85.4 85.3 86.8 90.0
AGML 71.3 66.6 48.1 42.1 38.4 37.3
ZooBP 67.6 58.0 47.0 43.8 41.2 39.8

TSS 87.7 84.7 83.3 81.9 82.3 81.4
SGMI 69.3 84.8 84.5 83.8 83.2 82.8
L1 68.2 61.1 53.6 48.3 44.1 42.3
L-1 59.1 52.3 40.2 36.3 35.1 34.1
L-10 66.9 57.2 43.2 38.7 36.3 34.9

UCI
1% 5% 10% 15% 20% 25%

TLMV 28.9 20.4 16.3 14.4 13.7 12.7
CGL 81.8 64.0 54.6 49.1 46.7 46.7

SMACD 73.6 81.0 90.0 90.0 86.2 81.9
AGML 25.3 17.2 15.2 13.2 12.5 12.0
ZooBP 30.8 21.7 17.6 15.1 14.1 13.0

TSS 24.0 17.6 16.6 15.9 15.8 15.6
SGMI 36.0 44.4 50.9 50.4 50.2 48.8
L1 31.3 23.8 18.7 15.6 14.4 13.2
L-1 30.5 17.1 13.8 12.6 12.3 11.9
L-10 57.0 33.8 23.7 17.6 15.3 13.4

Citeseer
1% 5% 10% 15% 20% 25%

TLMV 51.5 39.4 36.5 33.7 31.6 30.3
CGL 89.3 71.8 58.0 49.8 44.5 40.9

SMACD 90.7 90.4 67.0 65.5 66.8 68.9
AGML 47.3 32.3 29.6 28.2 27.5 27.0
ZooBP 63.6 41.9 38.7 35.8 33.8 32.2

TSS 58.5 49.5 45.9 42.1 39.8 38.4
SGMI 59.4 46.8 44.0 42.3 40.5 39.2
L1 56.3 44.1 41.2 38.5 36.1 34.7
L-1 52.4 39.0 35.6 32.6 30.9 29.5
L-10 68.6 54.6 48.5 43.0 39.7 37.2

Cora
1% 5% 10% 15% 20% 25%

TLMV 46.0 34.1 28.8 25.8 22.5 20.6
CGL 85.5 70.1 56.5 49.1 44.2 40.0

SMACD 75.6 76.7 78.7 78.7 81.0 87.1
AGML 54.7 36.0 25.4 20.7 18.1 16.5
ZooBP 54.7 38.0 32.9 30.2 27.6 26.2

TSS 38.8 27.7 24.1 21.5 20.0 19.1
SGMI 57.3 47.7 43.0 41.8 40.1 38.5
L1 50.7 38.2 33.4 31.2 28.2 25.6
L-1 43.2 31.8 24.5 21.1 18.8 17.2
L-10 62.0 46.3 35.4 29.4 25.2 22.3

WebKB
1% 5% 10% 15% 20% 25%

TLMV 58.6 49.4 45.6 47.2 47.6 48.2
CGL 80.4 82.4 84.4 86.9 82.7 89.2

SMACD 87.3 87.2 87.2 87.4 87.8 87.8
AGML 56.5 50.3 46.8 44.7 47.6 46.8
ZooBP 52.0 45.0 38.7 38.5 36.4 33.5

TSS 60.9 51.0 50.5 47.3 49.2 48.7
SGMI 44.9 39.7 41.9 34.9 40.3 52.5
L1 58.5 49.0 44.8 44.3 44.5 44.4
L-1 49.9 45.5 40.7 39.5 39.9 40.3
L-10 52.3 41.9 38.0 38.1 36.8 39.5

Table 2: Experiments in real datasets. Notation: best performances are marked with bold fonts and
gray background and second best performances with only gray background.

(λ1 = 1, λ2 = 10−3) and λ = 0.1 for L1 and λ = 10 for L−1 and L−10. We do not perform cross
validation in our experimental setting due to the large execution time in some of the methods here
considered. Hence we fix the parameters for each method in all experiments.

We fix nearest neighbourhood size to k = 10 and generate 10 samples of labeled nodes, where the
percentage of labeled nodes per class is in the range {1%, 5%, 10%, 15%, 20%, 25%}. The average
test errors are presented in table 2, where the best (resp. second best ) performances are marked
with bold fonts and gray background (resp. with only gray background). We can see that the first and
second best positions are in general taken by the power mean Laplacian regularizers L1, L−1, L−10,
being clear for all datasets except with 3-sources. Moreover we can see that in 77% of all cases L−1

presents either the best or the second best performance, further verifying that our proposed approach
based on the power mean Laplacian for semi-supervised learning in multilayer graph is a competitive
alternative to state of the art methods3.

3Communications with the authors of [11] could not clarify the bad performance of SMACD.
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Appendices
This section contains all the proofs of results mentioned in the main paper, together with a detailed
description of the proposed numerical scheme. It is organized as follows:
• Section A contains auxiliary results,
• Section B contains the proof of Theorem 1,
• Section C contains the proof of Corollary 1,
• Section D contains the proof of Corollary 2,
• Section E contains general version of Theorem 2
• Section F contains the proof of Theorem 2,
• Section G contains the proof of Theorem 3.
• Section H contains a detailed exposition of the numerical scheme presented in Section 5.
• Section I we present a numerical analysis for the case of three layers and three classes as in Sec. 4.2
• Section J presents a numerical analysis of the effect of the regularization parameter λ

A Auxiliary Results

We first present some results that will be useful.

The following theorem states the monotonicity of the scalar power mean.
Theorem 4 ([4], Ch. 3, Thm. 1). Let p < q then mp(a, b) ≤ mq(a, b) with equality if and only if
a = b.

The following lemma shows the effect of the matrix power mean when matrices have a common
eigenvector.
Lemma 1 ([21]). Let u be an eigenvector ofA1, . . . , AT with corresponding eigenvalues λ1, . . . , λT .
Then u is an eigenvector of Mp(A1, . . . , AT ) with eigenvalue mp(λ1, . . . , λT ).

The following Lemma states the eigenvalues and eigenvectors of expected adjacency matrices
according to the Stochastic Block Model here considered.
Lemma 2. Let C1, . . . , Ck be clusters of equal size |C| = n/k. LetW ∈ Rn×n be defined as

W = (pin − pout)

k∑
i=1

1Ci1
T
Ci + pout11

T (8)

and let χ1, . . . ,χk ∈ Rn be defined as

χ1 = 1, χr =

r∑
j=1

1Cj − r1Cr (9)

for r = 2, . . . , k. Then, χ1, . . . ,χk are orthogonal eigenvectors ofW , with eigenvalues

λ1 = |C| (pin + (k − 1)pout), λr = |C| (pin − pout) (10)

Proof. Please note that from the definition that the matrixW is equal to pin in the block diagonal
and pout elsewhere. We first consider the following matrix vector products that can be easily verified:

W1 = |C| (pin + (k − 1)pout)1 (11)
W1Ci = |C| (pin1Ci + pout1Ci) (12)

Moreover, we can see that

W
(
1Cj − 1Ci

)
= |C|

((
pin1Cj + pout1Cj

)
−
(
pin1Ci + pout1Ci

))
= |C|

(
pin

(
1Cj − 1Ci

)
+ pout

(
1Cj − 1Ci

))
= |C|

(
pin

(
1Cj − 1Ci

)
− pout

(
1Ci − 1Cj

))
= |C| (pin − pout)

(
1Cj − 1Ci

)
11



Now we show that χ2, . . . ,χk are eigenvectors ofW .

Wχr =W

 r∑
j=1

1Cj − r1Cr


=W

r∑
j=1

(1Cj − 1Cr )

=

r∑
j=1

W
(
1Cj − 1Cr

)
=

r∑
j=1

|C| (pin − pout)
(
1Cj − 1Cr

)
= |C| (pin − pout)

r∑
j=1

(
1Cj − 1Cr

)

= |C| (pin − pout)

 r∑
j=1

1Cj − r1Cr


= |C| (pin − pout)χr
= λrχr

Furthermore, we can see that eigenvectors χ2, . . . ,χk are orthogonal. Let 2 ≤ r < s ≤ k, then

χTr χs =

 r∑
j1=1

1Cj1 − r1Cr

T  s∑
j2=1

1Cj2 − s1Cs


=

r∑
j1=1

s∑
j2=1

1TCj11Cj2 − s
r∑

j1=1

1TCj11Cs − r
s∑

j2=1

1TCj21Cr + rs1TCr1Cs

=

r∑
j1=1

s∑
j2=1

1TCj11Cj2 − r
s∑

j2=1

1TCj21Cr

=

r∑
j1=1

s∑
j2=1

1TCj11Cj2 − r1
T
Cr1Cr

=

r∑
j1=1

s∑
j2=1

(
1TCj11Cj2

)
− r |C|

=

r∑
j1=1

(
1TCj11Cj1

)
− r |C|

=

r∑
j1=1

|C| − r |C|

= r |C| − r |C|
= 0

where in the third step we used that fact that 1TCr1Cs = 0 as r < s, and 1TCj1
1Cs = 0 as j1 < s.

Finally, we can see that for 2 ≤ r ≤ k

χT1 χr = 1T

 r∑
j=1

1Cj − r1Cr


=

r∑
j=1

(
1T1Cj

)
− r1T1Cr

12



= r |C| − r |C|
= 0

and hence χ1, . . . ,χk are orthogonal eigenvectors of the matrixW .

The following Lemma shows the eigenvectors and eigenvalues of the power mean Laplacian in
expectation under the considered Stochastic Block Model.
Lemma 3. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with k classes C1, . . . , Ck of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Then the eigenvalues of the
power mean Laplacian Lp are

λ1(Lp) = ε, λi(Lp) = mp(ρε), λj(Lp) = 1 + ε (13)

with eigenvectors

χ1 = 1, χi =

i∑
j=1

1Cj − i1Ci

where (ρε)t = 1 − (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out) + ε, t = 1, . . . , T , i = 2, . . . , k, and

j = k + 1, . . . , |V |,

Proof. From Lemma 2 we know that χ1, . . . ,χk are eigenvectors ofW(1), . . . ,W(T ). In particular,
we have seen that

λ
(t)
1 = |C| (p(t)

in + (k − 1)p
(t)
out), λ

(t)
i = |C| (p(t)

in − p
(t)
out)

for i = 2, . . . , k. Further, as matricesW(1), . . . ,W(T ) share all their eigenvectors, they are simulta-
neously diagonalizable, i.e. there exists a non-singular matrix Σ such that Σ−1W(t)Σ = Λ(t), where
Λ(t) are diagonal matrices Λ(t) = diag(λ

(t)
1 , . . . , λ

(t)
k , 0, . . . , 0).

As we assume that all clusters are of the same size |C|, the expected layer graphs are regular graphs
with degrees d(1), . . . , d(T ). Hence, the normalized Laplacians of the expected layer graphs can be
expressed as

L(t)
sym = Σ(I − 1

d(t)
Λ(t))Σ−1

Thus, we can observe that

λ
(t)
1 (L(t)

sym) = 0, λ
(t)
i (L(t)

sym) = 1− ρ(t), λ
(t)
j (L(t)

sym) = 1,

for i = 2, . . . , k, and j = k + 1, . . . , |V |, where

ρ(t) = (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out)

for t = 1, . . . , T . By obtaining the power mean Laplacian on diagonally shifted matrices,

Lp = Mp(L(1)
sym + εI, . . . ,L(1)

sym + εI)

we have by Lemma 1

λ1(Lp) = mp(λ
(1)
1 + ε, . . . , λ

(T )
1 + ε) = ε

λi(Lp) = mp(1− ρ(1) + ε, . . . , 1− ρ(T ) + ε) = mp(ρε)

λj(Lp) = mp(λ
(1)
j + ε, . . . , λ

(T )
j + ε) = 1 + ε

(14)

where (ρε)t = 1 − (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out) + ε, and t = 1, . . . , T , i = 2, . . . , k, and

j = k + 1, . . . , |V |,
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The following Lemma describes the general form of the solution matrix

F = (f (1), . . . , f (k))

where the columns of F are obtained from the following optimization problem

f (r) = arg min
f∈Rn

‖f − CY (r)‖2 + λfTLpf

Observe that this setting contains as a particular case the problem described in Eq. (1).
Lemma 4. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with k classes C1, . . . , Ck of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Let ρε be defined as in

Lemma 3. Let n1, . . . , nk be the number of labeled nodes per class. Let C ∈ Rn×n be a diagonal
matrix with Cii = cr for vi ∈ Cr. Let l(vi) be the label of node vi, i.e. l(vi) = r if and only if
vi ∈ Cr. Let the solution matrix F = (f (1), . . . , f (k)) where

f (r) = arg min
f∈Rn

‖f − CY (r)‖2 + µfTLpf

Then the solution matrix F is such that:
• If r < l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− l(vi))
1∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

1

‖χj‖2


• If r > l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r) 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


• If r = l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r)2 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


where α = 1

1+µε −
1

1+µ(1+ε) , and β = 1
1+µmp(ρε) −

1
1+µ(1+ε) .

Proof. Let U ∈ Rn×n be an orthonormal matrix such that U = (u1, u2, . . . , un), with ui =
χi/ ‖χi‖ for i = 1, . . . , k, where χ1, . . . ,χk are eigenvectors of the power mean Laplacian as
described in Lemma 3.

The power mean Laplacian Lp is a symmetric positive semidefinite matrix (see Lemma 3) and
hence we can express Lp as UΛUT where Λ is a diagonal matrix with entries Λii = λi(Lp), with
i = 1, . . . , n. Hence, we can see that

(I + µLp)−1 = (I + UΛUT )−1 = (U(I + Λ)UT )−1 = U(I + Λ)−1UT = UΩUT

where Ω is a diagonal matrix with entries Ωii = 1
1+µλi

, with i = 1, . . . , n.

From Lemma 3 we know that λk+1 = · · · = λn = 1 + ε =: ω̂, and hence it follows that Ωii = 1
1+µω̂

for i = k + 1, . . . , n. Moreover, we can express Ω as the sum of two diagonal matrices, i.e.

Ω = ωI + Θ

where ω = 1
1+µω̂ and Θ = diag (Ω11 − ω, . . . ,Ωkk − ω, 0, . . . , 0). Observe that Θ11 = Ω11 − ω =

1
1+µε −

1
1+µ(1+ε) =: α and Θjj = Ωjj − ω = 1

1+µmp(ρε) −
1

1+µ(1+ε) =: β, for j = 2, . . . , k.
Recall that we are interested in the equation

F = (I + µLp)−1CY = UΩUTCY ∈ Rn×k,
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where each column of Y = [y(1), . . . , y(k)] is a class indicator of labeled nodes, i.e.

y
(j)
i =

{
1 if l(vi) = j

0 else
(15)

Hence, each column of Y can be expressed as

y(j) =
∑

vi∈V |l(vi)=j

ei (16)

where ei ∈ Rn and (ei)i = 1 and zero else. With this in mind, we now study the matrix-vector
product UΩUT ei. Recall that UΘUT is a k-rank matrix. Hence we have

UΩUT ei = U(ωI + Θ)UT ei

= ωei + UΘUT ei

= ωei +

 k∑
j=1

Θjjuju
T
j

 ei

= ωei +

 k∑
j=1

1

‖χj‖2
Θjjχjχ

T
j

 ei

= ωei +
1

n
Θ11χ1 +

 k∑
j=2

1

‖χj‖2
Θjjχjχ

T
j

 ei

= ωei +
1

n
αχ1 + β

 k∑
j=2

1

‖χj‖2
χjχ

T
j

 ei

where in the last steps we used the fact that χT1 ei = 1T ei = 1, and define α = Θ11 and β = Θjj

due to the fact that Θjj are all equal for j = 2, . . . , k.

The remaining terms χjχTj ei depend on the cluster to which the corresponding node vi belongs to.

We first study the vector product χTr ei. Observe that

χTr ei =

 r∑
j=1

1Cj − r1Cr

T

ei =

r∑
j=1

(
1TCjei

)
− r1TCrei

Recall that l(vi) is the label of node vi, i.e. l(vi) = r if and only if vi ∈ Cr. Then, we have

r∑
j=1

(
1TCjei

)
− r1TCrei =


0 for r < l(vi)

1− l(vi) for r = l(vi)

1 for r > l(vi)

(17)

Therefore,  k∑
j=2

1

‖χj‖2
χjχ

T
j

 ei = (1− l(vi))
χl(vi)∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

χj

‖χj‖2

All in all we have

UΩUT ei = ωei +
1

n
αχ1 + β

(1− l(vi))
χl(vi)∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

χj

‖χj‖2


Moreover, the solution matrix F can now be described column-wise as follows
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f (r) = (I + µLp)−1Cy(r)

= cr

 ∑
vi∈V |l(vi)=r

UΩUT ei


= cr

 ∑
vi∈V |l(vi)=r

ωei

+
1

n
crnrαχ1 + crnrβ

(1− l(vi))
χl(vi)∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

χj

‖χj‖2


= ωcry

(r) + crnr

 1

n
αχ1 + β

(1− r) χr

‖χr‖2
+

k∑
j=r+1

χj

‖χj‖2


We now study the columns of matrix F . For this, observe that the ith entry of the column correspond-
ing to the class r, is obtained by f (r)

i = 〈ei, f (r)〉, and hence have

〈ei, f (r)〉 =〈ei, ωcry(r) + crnr

 1

n
αχ1 + β

(1− r) χr

‖χr‖2
+

k∑
j=r+1

χj

‖χj‖2

〉
=cr

nr
n
α+ crnrβ〈ei,

(1− r) χr

‖χr‖2
cr +

k∑
j=r+1

χj

‖χj‖2

〉
where 〈ei, ωcry(r)〉 = 0 for unlabeled nodes. Having this, we now proceed to study three different
cases of the remaining inner product. We do this by considering the following cases and making use
of Eq. (17):

First case: f (r)
i with r < l(vi). We first analyze the following term

〈ei,

(1− r) χr

‖χr‖2
+

k∑
j=r+1

χj

‖χj‖2

〉 = 〈ei, (1− r)
χr

‖χr‖2
〉+ 〈ei,

k∑
j=r+1

χj

‖χj‖2
〉

(by first case of Eq.17) = 〈ei,
k∑

j=r+1

χj

‖χj‖2
〉

(by cases of Eq.17) = (1− l(vi))
1∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

1

‖χj‖2

Thus, we have

f
(r)
i = cr

nr
n
α+ crnrβ

(1− l(vi))
1∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

1

‖χj‖2


Second case: f (r)

i with r > l(vi). We first analyze the following term

〈ei,

(1− r) χr

‖χr‖2
+

k∑
j=r+1

χj

‖χj‖2

〉 = 〈ei, (1− r)
χr

‖χr‖2
〉+ 〈ei,

k∑
j=r+1

χj

‖χj‖2
〉

(by third case of Eq.17) = (1− r) 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2
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Thus, we have

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r) 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


Third case: f (r)

i with r = l(vi). We first analyze the following term

〈ei,

(1− r) χr

‖χr‖2
+

k∑
j=r+1

χj

‖χj‖2

〉 = 〈ei, (1− r)
χr

‖χr‖2
〉+ 〈ei,

k∑
j=r+1

χj

‖χj‖2
〉

(by second case of Eq.17) = (1− r)2 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2

Thus, we have

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r)2 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


These three cases are the desired conditions.

B Proof Of Theorem 1

Theorem 5. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with k classes C1, . . . , Ck of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Let the same number of
nodes per class be labeled. Then, a zero test classification error is achieved if and only if

mp(ρε) < 1 + ε ,

where (ρε)t = 1− (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out) + ε, and t = 1, . . . , T .

Proof. The proof of this theorem builds on top of Lemma 4, where the entries of the solution matrix
F = (f (1), . . . , f (k)) are described, where

f (r) = arg min
f∈Rn

‖f − CY (r)‖2 + µfTLpf

Let l(vi) be the label of node vi, i.e. l(vi) = r if and only if vi ∈ Cr. According to Lemma 4 the
entries of matrix F for unlabeled nodes are such that
• If r < l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− l(vi))
1∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

1

‖χj‖2


• If r > l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r) 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


• If r = l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r)2 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


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where α = 1
1+µε −

1
1+µ(1+ε) , and β = 1

1+µmp(ρε) −
1

1+µ(1+ε) .

Observe that the case here considered corresponds to the case where the amount of labeled data per
class is the same, i.e. n1 = · · · = nk, and where the matrix C is the identity, i.e. c1 = · · · cr = 1.

Moreover, the estimated label assignment for unlabeled nodes goes by the following rule

l̂(vi) = arg max{f (1)
i , . . . , f

(k)
i }

Hence, we need to find conditions so that the following inequality holds

f
(j)
i < f

(l(vi))
i ∀ j 6= l(vi)

Hence, we consider the following two cases:

Case 1: f (r)
i < f

(l(vi))
i for r > l(vi).

Let r∗ = l(vi), and r = r∗ + ∆. Then, we have

f
(r)
i < f

(l(vi))
i ⇔

f
(r)
i < f

(r∗)
i ⇔

β

(1− r) 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2

 < β

(1− r∗)2 1

‖χr∗‖2
+

k∑
j=r∗+1

1

‖χj‖2

⇔
0 < β

(1− r∗)2 1

‖χr∗‖2
− (1− r) 1

‖χr‖2
+

k∑
j=r∗+1

1

‖χj‖2
−

k∑
j=r+1

1

‖χj‖2

⇔
0 < β

(1− r∗)2 1

‖χr∗‖2
+ (r − 1)

1

‖χr‖2
+

k∑
j=r∗+1

1

‖χj‖2
−

k∑
j=r∗+∆+1

1

‖χj‖2

⇔
0 < β

(1− r∗)2 1

‖χr∗‖2
+ (r − 1)

1

‖χr‖2
+

r∗+∆∑
j=r∗+1

1

‖χj‖2

⇔
0 < β

Case 2: f (r)
i < f

(l(vi))
i for r < l(vi).

Let r∗ = l(vi), and r∗ = r + ∆. Then, we have

f
(r)
i < f

(l(vi))
i ⇔

f
(r)
i < f

(r∗)
i ⇔

β

(1− r∗) 1

‖χr∗‖2
+

k∑
j=r∗+1

1

‖χj‖2

 < β

(1− r∗)2 1

‖χr∗‖2
+

k∑
j=r∗+1

1

‖χj‖2

⇔
0 < β

(
(1− r∗)2 1

‖χr∗‖2
− (1− r∗) 1

‖χr∗‖2

)

0 < β

(
(1− r∗)2 1

‖χr∗‖2
+ (r∗ − 1)

1

‖χr∗‖2

)
⇔

0 < β

All in all, from the two considered cases we can see that

f
(j)
i < f

(l(vi))
i ∀ j 6= l(vi)⇐⇒ 0 < β

In fact,

0 < β ⇔

18



0 <
1

1 + µmp(ρε)
− 1

1 + µ(1 + ε)
⇔

1

1 + µ(1 + ε)
<

1

1 + µmp(ρε)
⇔

1 + µmp(ρε) < 1 + µ(1 + ε)⇔
mp(ρε) < 1 + ε

which is the desired condition.

C Proof of Corollary 1

Corollary 3. Let E(G) be an expected multilayer graph as in Theorem 1. Then,

• For p→∞, the classification error is zero if and only if p(t)
out < p

(t)
in for all t = 1, . . . , T .

• For p→−∞, the classification error is zero if and only there exists a t∈{1, . . . , T} s.t. p(t)
out < p

(t)
in .

Proof. Observe that the limit cases of the scalar power means are

lim
p→−∞

mp(x1, . . . , xT ) = min{x1, . . . , xT }

lim
p→+∞

mp(x1, . . . , xT ) = max{x1, . . . , xT }

Applying this to condition

mp(ρε) < 1 + ε ,

where (ρε)t = 1− (p
(t)
in − p

(t)
out)/(p

(t)
in + (k− 1)p

(t)
out) + ε, and t = 1, . . . , T yields the desired result.

D Proof of Corollary 2

Corollary 4. Let E(G) be an expected multilayer graph as in Theorem 1. Let p ≤ q. If Lq has a
zero-classification error, then Lp has a zero-classification error.

Proof. By Theorem 4 we have that if p ≤ q then mp(x1, . . . , xT ) ≤ mp(x1, . . . , xT ). Therefore,
applying this to our case we can see that

mp(ρε) ≤ mq(ρε) < 1 + ε

A zero test classification error with parameter q is achieved if and only if mq(ρε) < 1 + ε, hence we
can see that zero test classification error with parameter p is achieved if it is achieved with parameter
q and p ≤ q.

E General version of Theorem 2

Theorem 6. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with two classes C1, C2 of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Let n1, n2 nodes from classes
C1, C2 be labeled, respectively. Let µ = 1. Then, a zero test classification error is achieved if and
only if

mp(ρε) < min

{
(n1 + n2)((1 + ε)2 + 1)− 2n2

2n2 + (n1 + n2)ε
,

(n1 + n2)((1 + ε)2 + 1)− 2n1

2n1 + (n1 + n2)ε

}
where (ρε)l = 1− (p

(l)
in − p

(l)
out)/(p

(l)
in + (k − 1)p

(l)
out) + ε, and l = 1, . . . , T .
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Proof. The proof of this theorem builds on top of Lemma 4, where the entries of the solution matrix
F = (f (1), . . . , f (k)) are described, where

f (r) = arg min
f∈Rn

‖f − CY (r)‖2 + µfTLpf

Let l(vi) be the label of node vi, i.e. l(vi) = r if and only if vi ∈ Cr. According to Lemma 4 the
entries of matrix F for unlabeled nodes are such that
• If r < l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− l(vi))
1∥∥χl(vi)∥∥2 +

k∑
j=l(vi)+1

1

‖χj‖2


• If r > l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r) 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


• If r = l(vi), then

f
(r)
i = cr

nr
n
α+ crnrβ

(1− r)2 1

‖χr‖2
+

k∑
j=r+1

1

‖χj‖2


where α = 1

1+µε −
1

1+µ(1+ε) , and β = 1
1+µmp(ρε) −

1
1+µ(1+ε) .

Observe that the case here considered corresponds to the case with two classes, i.e. k = 2 with equal
size classes C1 and C2 where the amount of labeled data per class is n1 and n2, respectively, with the
matrix C as the identity, i.e. c1 = c2 = 1, and regularization parameter µ = 1.

Moreover, the estimated label assignment for unlabeled nodes goes by the following rule

l̂(vi) = arg max{f (1)
i , f

(2)
i }

Hence, we need to find conditions so that the following inequality holds

f
(j)
i < f

(l(vi))
i ∀ j 6= l(vi)

Let l(vi) = 1⇔ vi ∈ C1, and l(vi) = 2⇔ vi ∈ C2. A quick computation following Lemma 4 yields

• f (1)
i = n1

n α+ n1β( 1
‖χ2‖2

) for vi ∈ C1, i.e. l(vi) = 1

• f (1)
i = n1

n α− n1β( 1
‖χ2‖2

) for vi ∈ C2, i.e. l(vi) = 2

• f (2)
i = n2

n α− n2β( 1
‖χ2‖2

) for vi ∈ C1, i.e. l(vi) = 1

• f (2)
i = n2

n α+ n2β( 1
‖χ2‖2

) for vi ∈ C2, i.e. l(vi) = 2

Observing that ‖χ2‖2 = n these conditions can be rephrase as follows

f (1) =
n1

n
((α+ β)1C + (α− β)1C)

f (2) =
n2

n
((α− β)1C + (α+ β)1C)

Hence, the conditions for correct label assignment of unlabeled nodes are

n1 (α+ β) > n2 (α− β) and n2 (α+ β) > n1 (α− β)

Let Ω11 = 1
1+ε ,Ω22 = 1

1+mp(ρε) , and ω = 1
1+(1+ε) . Then, α = Ω11 − ω, and β = Ω22 − ω.
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By studying the first condition we observe

n1 (α+ β) > n2 (α− β)⇔
n1 (Ω11 − ω + Ω22 − ω) > n2 (Ω11 − ω − (Ω22 − ω))⇔

n1 (Ω11 + Ω22 − 2ω) > n2(Ω11 − Ω22)⇔
(n1 − n2)Ω11 + (n1 + n2)Ω22 > 2n1ω ⇔

Ω22 >
1

n1 + n2
(2n1ω − (n1 − n2)Ω11)⇔

1

1 +mp(ρε)
>

1

n1 + n2

(
2n1

1

1 + (1 + ε)
− (n1 − n2)Ω11

)
⇔

1

1 +mp(ρε)
>

1

n1 + n2

(
2n1

1

2 + ε
− (n1 − n2)

1

1 + ε

)
⇔

1

1 +mp(ρε)
>

1

n1 + n2

(
2n2 + (n1 + n2)ε

(2 + ε)(1 + ε)

)
⇔

1 +mp(ρε) < (n1 + n2)

(
(2 + ε)(1 + ε)

2n2 + (n1 + n2)ε

)
⇔

mp(ρε) < (n1 + n2)

(
(2 + ε)(1 + ε)

2n2 + (n1 + n2)ε

)
− 1⇔

mp(ρε) < (n1 + n2)

(
(2 + ε)(1 + ε)− (2n2 + (n1 + n2)ε)

2n2 + (n1 + n2)ε

)
⇔

mp(ρε) <
(n1 + n2)((2 + ε)(1 + ε)− ε)− 2n2

2n2 + (n1 + n2)ε
⇔

mp(ρε) <
(n1 + n2)((1 + ε)2 + 1)− 2n2

2n2 + (n1 + n2)ε
⇔

The corresponding condition for C2 can be obtained in a similar way, yielding

mp(ρε) <
(n1 + n2)((1 + ε)2 + 1)− 2n1

2n1 + (n1 + n2)ε

Hence, both conditions hold if and only if

mp(ρε) = mp(ρε) < min

{
(n1 + n2)((1 + ε)2 + 1)− 2n2

2n2 + (n1 + n2)ε
,

(n1 + n2)((1 + ε)2 + 1)− 2n1

2n1 + (n1 + n2)ε

}

F Proof of Theorem 2

Theorem 7. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with two classes C1, C2 of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Let n1, n2 nodes from clusters
C1, C2 be labeled, respectively. Let µ = 1. Then, a zero test classification error is achieved if

mp(ρε) < min

{
n1

n2
,
n2

n1

}
where (ρε)l = 1− (p

(l)
in − p

(l)
out)/(p

(l)
in + (k − 1)p

(l)
out) + ε, and l = 1, . . . , T .

Proof. We first analyze the first condition of the right hand side of Theorem 6. Let g(ε) =
(n1+n2)((1+ε)2+1)−2n2

2n2+(n1+n2)ε . Then,

g(0) =
2(n1 + n2)− 2n2

2n2
=
n1

n2
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Moreover, it is clear that g is monotone, as it is quadratic on ε on the numerator and linear on the
denominator, and hence g(0) < g(ε).

A similar procedure with the second condition of the right hand side of Theorem 6 leads to the
condition n2

n1
, leading to the desired result.

G Proof of Theorem 3

Theorem 8. Let E(G) be the expected multilayer graph with T layers following the multilayer

SBM with k classes C1, . . . , Ck of equal size and parameters
(
p

(t)
in , p

(t)
out

)T
t=1

. Let n1, . . . , nk be the

number of nodes per class be labeled. Let C ∈ Rn be a cost vector where with Ci = n/nr for
vi ∈ Cr. Then, a zero test classification error is achieved if and only if

mp(ρε) < 1 + ε ,

where (ρε)l = 1− (p
(l)
in − p

(l)
out)/(p

(l)
in + (k − 1)p

(l)
out) + ε, and l = 1, . . . , T .

Proof. The proof is similar to the one of Theorem 1 (see Section B). The only change is in the terms
cr
nr

n . Since we have by definition that cr = n
nr

we have that cr nr

n = 1, leading to the conditions
obtained by Theorem 1.

H A scalable matrix-free method for the linear system (I + λLp)f = Y

Computing the generalized matrix mean of T positive definite matrices A1, . . . , AT requires to
compute T + 1 matrix functions: Ap1, . . . , A

p
T and (

∑
iA

p
i )

1/p. Typically, the matrices Api are full
even though each Ai is a sparse matrix and so, computing Lp explicitly is unfeasible if the Ai’s have
large dimensions. Given a vector y and a negative integer p, here we propose a matrix-free method
for solving the linear system (I + λLp)

−1y. The method exploits the sparsity of the Laplacians of
each layer and is matrix-free in the sense that it requires only to compute the matrix-vector product
Ai × vector, without requiring to store the matrices Ai themselves nor to compute any matrix
function Api explicitly. Thus, when the layers are sparse, the method scales to large datasets. Below
we give further details about the method presented in the short version of the paper. We present the
method for a general set of positive definite matrices A1, . . . , AT , and for a general vector y, for the
sake of generality.

Let Sp = Ap1 + · · ·+ApT , ϕ : C→ C be the complex function ϕ(z) = z1/p and let Lp be the matrix
function Lp = T−1/pϕ(Sp). The proposed method essentially transforms the original problem into
a series of subproblems which thus allow us to solve the linear system (I + λLp)

−1y by solving
several different linear systems with Ai as coefficient matrices. The method consists of three main
nested inner–steps which we present below.

1. First, we solve the linear system (I + λLp)
−1y by a Krylov method (GMRES in our case

[27]). At each iteration, this method projects the problem into the Krylov subspace spanned by
{y, λLpy, (λLp)2y, . . . , (λLp)

hy}. If κ = λmax(Lp)/λmin(Lp), then the method converges as

O

((κ2 − 1

κ2

)h/2)
.

Thus, if Lp is well conditioned, a relatively small h is required. In order to build the appropriate
Krylov subspace, at each iteration we need to efficiently perform one matrix–vector product Lpy.

2. Second, in order to compute Lpy = T−1/pϕ(Sp)y we use the Cauchy integral form of the
function ϕ, transformed via a conformal map, to approximate ϕ(Sp) via the trapezoidal rule, as
proposed in [12]. Let m,M > 0 be such that the interval [m,M ] contains the whole spectrum of Sp
and let t1, . . . , tN be N equally spaced contour points to be used in the trapezoidal rule. As ϕ has a
singularity at z = 0 but just a brunch cut on (−∞, 0), we can approximate ϕ(Sp)y via [12]

ϕN (Sp)y =
−8K(mM)1/4

πNk
Sp Im

{
N∑
i=1

ϕ(z2
i )cidi

zi(k−1 − si)2
(z2
i I − Sp)−1y

}

22



where Im denotes the imaginary part, k =
(
(M/m)1/4 − 1

)
/
(
(M/m)1/4 + 1

)
, K is the value of

the complete elliptic integral of the first kind, evaluated at ke2, si = sn(ti) is the Jacobi elliptic sine
function evaluated on the i-th contour point ti, and

zi = (mM)1/4

(
k−1 + si
k−1 − si

)
, ci =

√
1− s2

i , di =
√

1− k2s2
i ,

for i = 1, . . . , N . This approximation converges geometrically as the number of points increases.
Precisely, it holds

‖ϕ(Sp)y − ϕN (Sp)y‖ = O(e−2π2N/(ln(M/m)+6)) .

Thus, the computation of ϕ(Sp)y is reduced to N linear systems (z2
i I − Sp)−1y. Note that these

systems are independent and thus they can be solved in parallel.

3. Finally, in order to solve the linear system (zI − Sp)−1y we employ again a Krylov method. In
order to build the Krylov space for (zI −Sp) and y we need to efficiently perform one multiplication
Sp times a vector per iteration. As Sp =

∑T
i=1A

p
i =

∑T
i=1(A−1

i )|p|, this problem reduces to solving
q linear systems with Ai as coefficient matrix, for i = 1, . . . , T . As the matrices Ai are assumed
sparse and positive definite, we can very efficiently solve each of these systems via the Preconditioned
Conjugate Gradient method with an incomplete Cholesky preconditioner.

The pseudocode for the proposed algorithm is presented in Algorithms 1–3.

Input: A1, . . . , AT , p,y, λ
1 Compute preconditioners P1, . . . , PT for A1, . . . , AT
2 Compute estimates for m and M such that eigenvalues(Sp) ⊆ [m,M ]
3 Choose number of contour points N
4 Compute contour coefficients zi, si,K, k
5 Solve (I + λLp)

−1y with GMRES, using Alg.2 as subroutine
Output: u = (I + λLp)

−1y

Algorithm 1: Solve (I + λLp)
−1y

Input: A1, . . . , AT , p,y, N,m,M , contour
coefficients zi, si, ci, di, k,K

1 u← Spy, using Alg.3
2 for i = 1, . . . , N do
3 u← solve(ziI − Sp,y) with GMRES, using

Alg.3 as subroutine

4 u← (z2i )1/pcidi
zi(k−1−si)2u

5 uk+1 = ‖vk+1‖1−qq |vk+1|q−2vk+1

6 end
7 u← 1

T 1/p

−8K(mM)1/4

πNk Im(u)

Output: u = Lpy

Algorithm 2: Multiply Lp times a vector

Input: A1, . . . , AT , P1, . . . , PT ,y

1 for k = 1, . . . , T do
2 u← u + solve(A

|p|
i ,y) using CG

preconditioned with Pi
3 end

Output: u = Spy

Algorithm 3: Multiply Sp times a vector

H.1 Implementation details and computational complexity

Few implementation details are in order:

The preconditioners Pi can be computed using an incomplete Cholesky factorization. In our test we
observe that a 1e-4 threshold is enough to ensure convergence of Alg.3 to 1e-8 precision in just 2 or
3 iterations. As in our case the Ai are Laplacians, another excellent preconditioner can be obtained
using a Combinatorial Multi Grid method (CMG). In our experiments, the CMG preconditioner
performed similarly (but slightly worse) than the incomplete Cholesky.

A precise estimate of M in Alg.1 step 2 can be obtained using a Krylov eigensolver with Alg.3 as
subroutine. As for m, since each Api is positive definite and p is a negative integer, a good estimate
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Figure 6: Experiments with three Layers and three classes as in Section 4.2 and Figure.4.

can be obtained by exploiting the Weyl’s inequality (see e.g. [32])

m = λmax(A1)p + · · ·+ λmax(AT )p ≤ λmin(Sp) .

The number of contour points N can be chosen using the geometric convergence of ϕN . In our
experiments, we chose a precision τ =1e-8 and we set

N = |(ln(M/m) + 6) ln(τ)/2π2| .

The contour points have been calculated using the code from [7].

Concerning the computational cost of the method, the following analysis shows that it is proportional
to the number of edges in each layer, i.e. Alg.1 scales to large sparse datasets. Let c(Ai) be the cost
of multiplying c(Ai) times a vector (which is proportional to the number of nonzeros in Ai, i.e. the
number of edges in the layer i whenAi is the normalized Laplacian of the i-th layer). LetK1,K2,K3

be the number of iterations of GMRES,GMRES and PCG in lines 5, 3 and 2 of Algorithms 1, 2
and 3, respectively. Each instance of solve(A

|p|
i ,y) in Alg.3 requires K3p c(Ai) operations per

step. So The cost of Alg.3 is roughly pK3

∑T
i=1 c(Ai). This implies that the cost of Alg.2 is

NK2K3p
∑T
i=1 c(Ai). Therefore, the cost of solving the linear system (I + λLp)

−1y with Alg.1 is

K1NK2K3p
(
c(A1) + · · ·+ c(AT )

)
,

showing that the method scales as the number of nonzeros in each layer, as claimed. It is important
to notice that the Algorithm allows for a high level of parallelism. In fact, the computation of the
preconditioners Pi at step 1 of Alg.1, the for at step 2 of Alg.2 and the for at step 1 of Alg.3 can all
be run in parallel.

I Analysis on Three Layers with Three Classes

In this section we give a more detailed exposition of experiments presented in Section 4.2. We
consider the cases where pin − pout ∈ {0.03, 0.04, . . . , 0.1} which are depicted in Fig.6. In the
x-axis we have the amount of labeled nodes and in the y- we have the classification error. We can see
that in general there is a trend between the performance of our proposed method (colorful curves)
and state of the art methods (black curves). We can see that the larger the gap pin − pout the larger
the difference is between our proposed method and state of the art methods. Moreover, one can see
that the smaller the value of p the better the performance of our proposed method. Moreover, there is
a set of state of the art methods that do not improve their performance with larger amounts of labeled
nodes. Yet, one can observe that there are three methods from the state of the art that perform close
to our methods: TLMV, ZooBP and AGML, which performs similarly to our method L1 (i.e. the
arithmetic mean of Laplacians).
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Figure 7: Mean test classification error under MSBM for different values of λ. Details in Sec. J.

J Analysis on Effect of Regularization Parameter

In this section we present a numerical evaluation on the effect of the regularization parameter λ under
the multilayer stochastic block model and on real world datasets. The corresponding results are
depicted in Fig. 7 and Fig. .

Experiments under Multilayer Stochastic Block Model. We analyze the effect of the regular-
ization parameter λ under the Multilayer Stochastic Block Model. The experimental setting is as
follows: We fix the parameters of the first layer G(1) and second layer G(2) to p(1)

in = 0.09, p
(1)
out =

0.01, p
(2)
in = 0.05, p

(2)
out = 0.05. We consider values of λ ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103},

different amount of labeled nodes {1%, . . . , 50%}. We sample five random multilayer graphs with
the corresponding parameters and 5 random samples of labeled nodes with a fixed percentage, and
present the average classification error. In Fig. 7 we can see that in general the larger the value of λ
the smaller the classification error. In particular we can see that the performance does not present any
relevant changes with λ ≤ 10−1.

Experiments with real world datasets. We analyze the effect of the regularization parameter λ
with real world datasets considered in Section 6. For each dataset we build the corresponding layer
adjacency matrices by the taking symmetric k-nearest neighbour graph and take as similarity measure
the Pearson linear correlation, (i.e. we take the k neighbours with highest correlation), and take the
unweighted version of it.

We fix nearest neighbourhood size to k = 10 and generate 10 samples of labeled nodes, where the
percentage of labeled nodes per class is in the range {1%, 2%, . . . , 25%}. The average test errors are
presented in Fig. 8, for power mean Laplacian regularizers L−1, L−2, L−5, and L−10. We can see
that in general the best performance, i.e. smallest mean test classificaton error corresponds to values
of λ = 10, 102, 103, verifying the choice of λ = 10 presented in Section 6. Moreover, we can see
that the mean test error in general decreases with larger amounts of labeled data, which verifies our
previous experiments on multilayer graphs following the Multilayer Stochastic Block Model.
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Figure 8: Mean test classification error on real world datasets for different values of λ. Details in
Sec. J.
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