Research Project

HESSIAN BACKPROPAGATION FOR BATCHNORM

Paul Fischer
University of Tiibingen
paul.fischer@Quni-tuebingen.de

ABSTRACT

We compute the Hessian backpropagation (HBP) equations for the popular Batch-
norm layer (Ioffe & Szegedy, 2015) in order to efficiently formulate the matrix-
free multiplication with the Hessian. It is known that performing this operation in
generic automatic differentiation frameworks can be quite slow. We propose that,
by leveraging the knowledge about the Hessian’s structure as outlined in Dangel
& Hennig (2019), efficiency can be improved with this structural knowledge.

On this document: This document summarizes the work of a research internship carried
out in Philipp Hennig’s Methods of Machine Learning group in the winter term 2019/2020.

1 INTRODUCTION

First-order methods such as Stochastic Gradient Descent are currently the most popular methods
when it comes to choosing the optimizer for training deep neural networks. Second-order methods
have several advantages over first-order methods such as better scaling to large mini-batch sizes
and they take fewer updates for convergence (Zhang et al., 2017). However, with this approach one
has to compute the Hessian which involves high computational costs. Based on the work of Zhang
et al. (2017) and Martens (2010), the approach of Hessian-free methods is used which involves not
computing the curvature matrix - the Hessian - explicitly but only the product of the curvature matrix
and a vector (Dangel & Hennig, 2019). Especially for Batch Normalization layers, computing the
Hessian-vector product becomes extremely slow (Zhang et al., 2017).

The goal of this work is to manually compute the module Hessian of the BN layer in order to formu-
late an efficient Hessian-free multiplication. First, the forward pass of the BN layer is explained such
that it becomes clear why the first and second-order derivatives are not straightforward to compute.
Afterwards it is explained what is necessary to compute for using the Hessian-free approach and
also explicitly computed.

2 FORWARD PASS OF THE BATCH NORMALIZATION LAYER

Often the exact notation in computations is unnecessarily complicated. For this work, the exact
index notation is necessary in order to compute the exact first and second-order derivatives of the
BN layer. The basic idea of Batch Normalization is to normalize the elements of the batch such that
the empirical mean is O and the standard deviation is 1. The layer output is a linear transformation of
the points. Let z; € R”, i = 1,..., N be a vector where N is the size of the batch. The layer output
z; depends on different characteristic values of the batch such as the mean y and the variance o2.
The forward pass of the layer is computed as follows:

1 N
Hj = in,‘yﬁ .]: 17"'7D
i=1

=|

ql\.')
I
2| =

N
Il
-

(zij —pi)? j=1,..,D.

Research Project

=T T N, j=1,...D

Ti 5 =)
\Joi+e
J
zij = Vi + B

Here, 7, 3 € RP are learnable parameters where is called weight and 3 bias.

3 COMPUTING THE FIRST AND SECOND ORDER DERIVATIVES OF THE
BACKWARD PASS

Backpropagating the gradient and curvature information of the loss with respect to the input re-
quires computing the partial first-order derivative of the layer output with respect to the input
9zi,j /o2y, - the Jacobian - and the second-order derivative of the layer output with respect to the
input 9°2i.;/9x, ,6z., . - the Hessian. The HBP equation can equation can be written as follows
(Dangel & Hennig, 2019):

0z; E(z) 0zpg i

8xk l@xm n ;q &L‘k 1 (921 jazp q aIm n Z aIk lal’mm 621’]. (])
The first term of the equation propagates the curvature information which involves computing the
Jacobian and the transposed Jacobian of the layer output with respect to the layer input and the
second term, called Residual, introduces second-order effects of the module itself which we are
looking for and involves computing the Hessian of the layer output with respect to the layer input.
Since the Hessian-free method is used, we only need to compute the Hessian-vector product (HVP),
that is

0?E(z) 0zi; O0*E(z) 0zp,
mzm (3xk713xm,n> Umin = mzn l;q Oy 02 j02p g 0T p

2)

As one can see here, the HVP requires computing the Jacobian-vector product (JVP) and the product
with the Residual term, the Residual-vector product (RVP).

COMPUTATION OF THE FIRST ORDER DERIVATIVE: THE JACOBIAN

To compute the first-order derivative of the output z; ; with respect to the input x, ; SymPy was used
(Meurer et al., 2017). The resulting Jacobian is a four-dimensional tensor. The ¢jkl-th entry of the
Jacobian can be computed by using the chain rule:

8Zi,] 821,_] 8$m n 8jm,n 80 a,us 802 8i‘m’n
0z Z = Ol <Z Ot ankl i 2 dog (Z Ops Oy axk"l ! O
_ Viﬂéﬂ (NG o — 1 — & j#r;)

N,/o?-i—s

where d;; is the Kronecker delta. Next we want to show that the Jacobian is symmetric. This a
desired property since in equation 1 we only have to compute the Jacobian once and not the Jacobian
and the transpose Jacobian and therefore in equation 2 the JVP and transpose JVP are the same. The

Jacobian is symmetric if the equation 9%i.i/oz,,, = 92,1/, ; is satisfied:
Ozij _
Orpy N of +e

! " . 0z
——————0;; (N6 — 1 — Zp 1 Zi) = -
Ny/oZ+e 5 (Now i) Ox;

J

Research Project

Therefore the Jacobian is symmetric. Eventually, we do not need to compute the Jacobian matrix
explicitly but rather the JVP which is defined as) _, ; (9%i.4/0xy.) vg,1. Computing the JVP gives:

0z; Y4 ..
Z 3 Sy = A8y (N O — 1 — &4k j) U
Tt ki NyJo% +e
i))
= —F— (Nvi,j =) vy~ Eig Y %Um)
N 0]2 +ec k k

COMPUTATION OF THE SECOND ORDER DERIVATIVE: THE HESSIAN

The module Hessian of the BN layer 9”#:.5/0x 02, is again computed with SymPy (Meurer et al.,
2017) which gives us the following expression for the ijkImn-th entry:

8221‘,]‘ 7j5j15j7L 1 n 1 R 1 .
e = wo g\ (o) o (s) 2= (G-) 21

Ty Lii Tk Tm.j

Testing for positive definiteness, that is checking for Zk)hm)n vm,mangi,j/azk,l3xm,,,vk,l > 0, gives
that the Hessian is indefinite. Since the module Hessian for BN is not diagonal, there is no easy way
to make it positive semi-definite, which is desired for optimization. The Hessian can now be used
to compute the residual and therefore the residual-vector product where the kI-th entry is defined as

2 P . . .
> mn (Zij 9 Zw/azk,,azm,nézia U, and computing this term gives us

0?2 0%y)
Z Z . 5Zij Um,n = 6Zk l Z L, 1Um, 1
o (o 0k 10T, p, N(al +e)
+ N Z 02 Z T, 1Vm,1
K m
- jk;l Z 5Zm,lvm,l
m
1.
+ e Z5Zu va,l (3)
3 m
— Vgl Z 25,1024,
i
1 .
tw D #1020 Y Vm
i m
+ 3i‘k,l im,lvm,l ii,lazi,l .
N m 7

4 CONCLUSION

The goal of this work was to compute the module Hessian and the Residual-vector product for the
Batch Normalization layer in order to provide an efficient formulation of the HPB equation. By
looking closer at equation 3, one can see that there are several values that occur more than once and
therefore only have to be computed once. A benchmark comparison using a numpy implementation
against automatic differentiation with the Autograd package by Maclaurin et al. (2015) showed that
the computations for the Hessian of the BN layer are significantly faster than automatic differenti-
ation which can be seen in Appendix F figure 1. This results can now be used to include them into
BackPACK (Dangel et al., 2020) which provides Hessian-free second-order extensions to current
deep-learning software.

Research Project

REFERENCES

Felix Dangel and Philipp Hennig. A Modular Approach to Block-diagonal Hessian Approximations for Second-
order Optimization Methods. arXiv preprint arXiv:1902.01813, 2019.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into backprop. In Inter-
national Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=BJ1rF24twB.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients in numpy. In /CML
2015 AutoML Workshop, volume 238, 2015.

James Martens. Deep learning via Hessian-free optimization. In ICML, volume 27, pp. 735-742, 2010.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondfej Certik, Sergey B. Kirpichev, Matthew Rocklin,
AMIT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger,
Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa,
Matthew J. Curry, Andy R. Terrel, gtépén Roucka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert
Cimrman, and Anthony Scopatz. Sympy: symbolic computing in python. PeerJ Computer Science, 3:
e103, January 2017. ISSN 2376-5992. doi: 10.7717/peerj-cs.103. URL https://doi.org/10.7717/
peerj-cs.103.

Huishuai Zhang, Caiming Xiong, James Bradbury, and Richard Socher. Block-diagonal hessian-free optimiza-
tion for training neural networks. arXiv preprint arXiv:1712.07296, 2017.

APPENDIX A: DERIVING THE ijkl-TH ENTRY OF THE JACOBIAN

62’,&',] —Z 6ZL] 8ij n

Oz, = Olm,n Dapg
- aZz N ai'm n amrn n ai‘m,n
Z < D (Z D1ty 833;” Zq: 902 Gsck L >
_ azi,j Z al'm n + a33'77%,71 Z ('90 aMS 803 + 8iﬂmu,n
8$m n Gu 8%% 1 7 80'3 a,us 8xk 1 8@‘;@71 8%‘;%1

APPENDIX B: PROPERTIES OF KRONECKER DELTAS

The Kronecker delta d; ; is defined as

1, i=j
bij =19 .
7 {0, i #j

Note that §; ; = 6;,;. To simplify the expression of the derivatives, we need some computational
properties of the Kronecker delta:

> dija; = a;
j

> Sikdhy = 0
k

https://openreview.net/forum?id=BJlrF24twB
https://openreview.net/forum?id=BJlrF24twB
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

Research Project

APPENDIX C: COMPUTING THE EXPLICIT ijkl-th ENTRY OF THE JACOBIAN

s 25, 6465,
0z 5100y — Etrbin (i — 1) 5y (2050 — 2B (w5 —)

= (
Oy ! /sz +e QN(CT]? +e)3/2
d;
0iklji — K (@iy — 15)950(Tny — 1)

T /O.J2_+E N(o5 +¢)3/2

= — 5, (NGig — 1 — 4 i)

N,/a?-i—e

APPENDIX D: CODE TO VERIFY THE EXACT COMPUTATION OF THE JACOBIAN

import autograd.numpy as np
from autograd import jacobian

define our input for which we want to test

test_input = np.array ([[0.00629718, 0.09731993],
[0.08979499, 0.07512464],
[0.06931812, 0.09813456]1])

define the forward pass
eps = 0.0

mean
def mu(x):
return np.mean(x, axis=0)

variance
def sigma_sq(x):
return np.var(x, axis=0)

z—score
def x_hat(x):
N, D = x.shape
return (x—mu(x))/(np.sqrt(sigma_sq(x) + eps))

linear transformation

def y(x):
N,D = x.shape
fix gamma and beta just to test
gamma, beta = np.ones(D), np.zeros (D)
return gammaxx_hat(x) + beta

autograd Jacobian
jac_.y = jacobian(y)

define kronecker delta for the derivative
def kron_delta(i,j):
if(i==j):
return 1
else:
return 0

Research Project

def my_jacobian(x):
N,D = x.shape
fix gamma as before
gamma = np.ones (D)
var = sigma_sq(x)
x_hats = x_hat(x)
using for—loops just to check for correctness
der = np.zeros ((N,D,N,D))
for i in range(N):
for j in range(D):
for k in range(N):
for 1 in range(D):
factor = gammalj]xkron_delta(j,1)/
(N % np.sqrt(var[j] + eps))

der[i,j,k,1] = factor * (N % kron_delta (i, k)

-1

— x_hats[i][j] * x_hats[k][j])

return der

APPENDIX E: CODE TO VERIFY THE EXACT COMPUTATION OF THE HESSIAN

compute the Hessian with autograd
hess = jacobian(jac.y)

compute the explicit Hessian
def my_hessian(x):
var = sigma_sq(x)
x_hats = x_hat(x)
N.,D = x.shape
gamma = np.ones (D)
beta = np.zeros (D)
result = np.zeros ((N,D,N,D,N,D))
again for loops just for verification
for i in range(N):
for j in range(D):
for k in range(N):
for 1 in range(D):
for m in range (N):
for n in range(D):

factor = (gammal[j] % kron_delta(j,1)

* kron_delta(j,n))/(N
(var[j] + eps))

sum_1 = (kron_delta(i,k) — 1/N)
* x_hats[m][j]
sum_2 = (kron_delta(i,m) — 1/N)

* x_hats[k][]]

sum_3 = (kron_delta(k,m) — 1/N)
* x_hats[i][]j]

sum_4 = (3/N) % x_hats[i][j] =

x_hats[k][j] * x_hats[m][j]

result[i,j,k,1,m,n] = factor x
(— sum_1
— sum_2
— sum_3
+ sum_4)
return result

APPENDIX F: BENCHMARK AUTOGRAD HESSIAN VS. MY IMPLEMENTATION

Research Project

import perfplot
perfplot.show(
setup=lambda n: np.random.rand (2, n),
kernels=[
lambda a: hess(a),
lambda a: my_hessian(a)
1.
labels=["autograd Hessian”, “explicit Hessian”],
n_range=[k for k in range(l, 11)],
xlabel="dimension D in a (2xD) matrix”,

relative_to=1, # plot the timings relative to one
of the measurements
flops=lambda n: 3xn, # FLOPS plots

More optional arguments with their default values:

title=None,

logx="auto”, # set to True or False to force scaling
logy="auto”,

equality _check=numpy. allclose , # set to None to disable
“correctness” assertion

automatic_order=True,

colors=None,

target_time_per_measurement=1.0,

time_unit="s”, # set to one of

(Pauto”, ”s”, "ms”, “us”, or "ns”) to force plot units
#

#

#

—— autograd Hessian
2.04 explicit Hessian
1.5 A
0
w
E
£ 1.0 A
=5
4
0.5 4
0.0 1

2 4 6 8 10
dimension D in a (2xD) matrix

Figure 1: Benchmark autograd package vs. explicit implementation

	Introduction
	Forward pass of the batch normalization layer
	Computing the first and second order derivatives of the backward pass
	Conclusion

