Advanced Mathematical Methods WS 2021/22

4 Mathematical Statistics

Dr. Julie Schnaitmann

Department of Statistics, Econometrics and Empirical Economics

> EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Wirtschafts- und Sozialwissenschaftliche Fakultät

Outline: Mathematical Statistics

- 4.1 Random Variables
- 4.2 pdf and cdf
- 4.3 Expectation, Variance and Moments
- 4.4 Quantile
- 4.5 Specific probability distributions

Readings

 A. Papoulis and A. U. Pillai. Probability, Random Variables and Stochastic Processes.
 Mc Graw Hill, fourth edition, 2002, Chapters 1-4

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

- Discrete RVs I: Concept of random variables, probability mass function, expected value, variance https://www.youtube.com/watch?v=3MOahpLxj6A
- Continuous RVs: probability density function, cumulative distribution function, expected value, variance https://www.youtube.com/watch?v=mHfn_7ym6to
- Discrete RVs II: Functions of RV, conditional probabilities, specific distribution, total expectation theorem, joint probabilities

https://www.youtube.com/watch?v=-qCEoqpwjf4

4.1 Random Variables

A random variable X takes on real numbers according to some distribution.

There are two types of random variables:

- 1 discrete random variables
 - e.g. coin toss, number of baskets scored out of *n* trials
- 2 continuous random variables
 - e.g. financial returns

4.1 Random Variables

Random sample

 $\{X_1, X_2, \ldots, X_n\}$ is called a random sample if

- 1) all draws X_i are independent
- 2 and drawn from the same distribution, i.e. they are identically distributed

 \Rightarrow the draws are independently and identically distributed in short iid

4.2 Cumulative Distribution Functions

Probability distribution function: discrete case

$$f_X(x_i) = P(X = x_i)$$

requirements:

•
$$0 \leq P(X = x_i) \leq 1$$

•
$$\sum_{x_i} f_X(x_i) = 1$$

4.2 Cumulative Distribution Functions

(Probability) Density function: continuous case

 $f_X(x)$ is not a probability as P(X = x) = 0

requirements:

•
$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x \ge 0$$

• $\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$

4.2 Cumulative Distribution Functions

Definition: Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is defined to be the function $F_X(x) = P(X \le x)$, for $x \in \mathbb{R}$.

discrete: $F_X(x_i) = \sum_{X \le x_i} f_X(x_i) = P(X \le x_i)$

continuous:

$$F_X(x) = \int\limits_{-\infty}^{x} f_X(t) \,\mathrm{d}t$$

4.2 Cumulative Distribution Functions Properties

1)
$$F_X(+\infty) = 1; F_X(-\infty) = 0$$

2)
$$F_X(x)$$
 is a nondecreasing function of x :
if $x_1 < x_2$, $F_X(x_1) \le F_X(x_2)$
note: the event $\{X \le x_1\}$ is a subset of $\{X \le x_2\}$

3) if
$$F_X(x_0) = 0$$
, then $F_X(x) = 0 \quad \forall \quad x \leq x_0$

4.2 Cumulative Distribution Functions Properties

4)
$$P(X > x) = 1 - F_X(x)$$

events $\{X \le x\}$ and $\{X > x\}$ are mutually exclusive and $\{X \le x\} \cup \{X > x\} = \Omega$

5)
$$F_X(x)$$
 is continuous from the right:
 $\lim_{x\to a^+} F_X(x) = F_X(a)$

6)
$$P(x_1 \le X \le x_2) = F_X(x_2) - F_X(x_1)$$

4.3 Expectation, Variance and Moments

Expectations of a random variable

$$E[X] = \begin{cases} \sum_{x_i} x_i f_X(x_i) & \text{if } x \text{ is discrete} \\ \infty \\ \int \\ -\infty \end{cases} x f_X(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

If g(X) a measurable function of x, then:

$$E[g(X)] = \begin{cases} \sum_{x_i} g(x_i) f_X(x_i) & \text{if } x \text{ is discrete} \\ \infty \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

4.3 Expectation, Variance and Moments Calculation rules

- E[a] = a
- $E[bX] = b \cdot E[X]$
- linear transformation: E[a + bX] = a + bE[X]
- $E[g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(X)]$

4.3 Expectation, Variance and Moments

Variance of a random variable

Let $g(X) = (X - E[X])^2$

$$Var[X] = \sigma^{2} = E[(X - E[X])^{2}]$$
$$= \begin{cases} \sum_{x_{i}} (x_{i} - E[X])^{2} f_{X}(x_{i}) & \text{if } x \text{ is discrete} \\ \\ \int_{-\infty}^{\infty} (x - E[X])^{2} f_{X}(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

4.3 Expectation, Variance and Moments Calculation rules

- *Var*[*a*] = 0
- Var[X + a] = Var[X]
- $Var[bX] = b^2 Var[X]$
- $Var[a + bX] = b^2 Var[X]$

important result:

$$Var[X] = E[X^2] - E[X]^2$$

4.3 Expectation, Variance and Moments

Standardization of a random variable X

Let

$$g(X) = \frac{X - \mu}{\sigma} = Z$$
$$Z = \frac{X - \mu}{\sigma} = \frac{-\mu}{\sigma} + \frac{1}{\sigma}X$$

 $\Rightarrow E[Z] = 0$ and Var[Z] = 1

4.3 Expectation, Variance and Moments Chebychev Inequality

For any random variable X with finite expected value μ and finite variance $\sigma^2 > 0$ and a positive constant k

$$P(\mu - k\sigma \le X \le \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

4.3 Expectation, Variance and Moments Skewness and Kurtosis

Central moments of a random variable:

$$\mu_r = E[(X - \mu)^r]$$

as r grows, μ_r tends to explode

Solution: normalization

• skewness coefficient:
$$\gamma = \frac{E[(X - \mu)^3]}{\sigma^3}$$

• kurtosis: $\kappa = \frac{E[(X - \mu)^4]}{\sigma^4}$

often reported as excess kurtosis $\kappa-3$

4.4 Quantile

Quantile

q% of the probability mass of a random variable is left of x(q) .

Example: Risk measure Value-at-risk (VaR)

$$q = P(X \le x(q)) = F(x(q))$$

4.5 Specific probability distributions The normal distribution

X is a Gaussian or normal random variable with parameters μ and σ^2 if its density function is given by

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

denoted $X \sim \textit{N}(\mu, \sigma^2)$

Linear transformation is also normally distributed:

If
$$X \sim N(\mu, \sigma^2)$$
, then $a + bX \sim N(a + b\mu, b^2\sigma^2)$.

4.5 Specific probability distributions

Standardization of X leads to standard normal distribution:

$$a = -\frac{\mu}{\sigma} , \quad b = \frac{1}{\sigma}$$
$$z = \frac{x - \mu}{\sigma} \sim N(0, 1)$$
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$$

Thus, if $X \sim N(\mu, \sigma)$, then $f(x) = \frac{1}{\sigma} \Phi\left(\frac{x-\mu}{\sigma}\right)$.

4.5 Specific probability distributions The χ^2 distribution:

X is said to be $\chi^2(n)$ with n degrees of freedom if

$$f_X(x) = \begin{cases} \frac{x^{\frac{n}{2}-1}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

If $z \sim N(0,1)$, then $x = z^2 \sim \chi^2(1)$.

If
$$z_i$$
 are iid $N(0,1)$, then $\sum\limits_{i=1}^n z_i^2 \sim \chi^2(n).$