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Abstract We present our calculus of higher-level rules, extended with propositional
quantification within rules. This makes it possible to present general schemas for
introduction and elimination rules for arbitrary propositional operators and to define
what it means that introductions and eliminations are in harmony with each other. This
definition does not presuppose any logical system, but is formulated in terms of rules
themselves. We therefore speak of a foundational (rather than reductive) account of
proof-theoretic harmony. With every set of introduction rules a canonical elimination
rule, and with every set of elimination rules a canonical introduction rule is associated
in such a way that the canonical rule is in harmony with the set of rules it is associated
with. An example given by Hazen and Pelletier is used to demonstrate that there are
significant connectives, which are characterized by their elimination rules, and whose
introduction rule is the canonical introduction rule associated with these elimination
rules. Due to the availabiliy of higher-level rules and propositional quantification,
the means of expression of the framework developed are sufficient to ensure that the
construction of canonical elimination or introduction rules is always possible and does

not lead out of this framework!.

The full text of this paper is published under the title "Higher-level rules, propo-
sitional quantification, and the foundational approach to proof-theoretic harmony” in
Studia Logica (Special issue, ed. Andrzej Indrzejczak, commemorating the 80th anniver-
sary of Gentzen's and Jaskowski's groundbreaking works on assumption based calculi).
This work was carried out within the French-German ANR-DFG project "Hypothetical
Reasoning — Its Proof-Theoretic Analysis” (HYPOTHESES) (DFG Schr 275/16-2).
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1 INTRODUCTION

Both Gentzen's calculus of natural deduction ([7]) and Jaskowski's cal-
culus of suppositions ([9]) are based on what may be called the dynamic
view of assumptions. According to the traditional static view, assump-
tions are suppositions on which all subsequent formulas in a derivation
depend. According to the dynamic view assumptions made (or ‘intro-
duced’) can be discharged (or ‘eliminated’) at the application of certain
rules. The dynamic view of assumptions makes it possible to give im-
plication a proof-theoretic meaning based on the idea that asserting
an implication means the same as deriving its consequent from its an-
tecedent.

This paper deals with the systematics of introduction and elimination
rules in natural deduction and their relationship often described as
‘harmony’ ([5]) and is therefore related to Gentzen's approach. However,
it does so by using the idea of rules of higher levels, which extends the
dynamic view of assumptions by not only allowing that assumptions
be discharged but also that assumptions be introduced in the course
(and not only at the top) of a derivation, where these assumptions are
not necessarily formulas, but can be rules as well. This idea is here
extended to include propositional quantification within rules, i.e. the
idea that rules may universally quantify over propositions.

The idea to study propositional quantification occurs already in Jas-
kowski's paper on suppositions ([9]), but not in Gentzen's work on natural
deduction. Jaskowski studies propositional quantifiers before he passes
on to first-order ones. However, unlike Jaskowski, we do not use propo-
sitional quantification and propositional eigenvariables in rules in order
to define propositional quantifiers, but in order to define propositional
connectives. Thus one of our central claims is that propositional quantifi-
cation is useful and indeed necessary to study propositional connectives
from a general proof-theoretic perspective. This claim comes along with
the view that introduction rules are not given priority over elimination
rules, as in Gentzen's work, but that introductions and eliminations are
treated on par. In fact, it will be the elimination-based approach where
the idea of propositional quantification in rules develops its full power.

In ([14)) a notion of proof-theoretic harmony was proposed. There
the meaning of a connective according to given introduction rules was
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described by a formula of second-order intuitionistic propositional logic
PL2, and likewise for eliminaton rules. When the two formulas obtained
were equivalent, introduction and elimination rules were said to be in
harmony. This approach was called reductive, since it took the system
PL2 for granted, which means that it did not apply to operators such as
conjunction, disjunction or implication, as they are already an ingredient
of PL22. Now we follow a foundational approach in that we shall define
a notion of harmony between introduction and elimination rules which
is exclusively defined in terms of the rules used rather than in terms of
certain formulas of an external system.

Following the idea presented in [13], we shall define a purely struc-
tural calculus of rules, which is considered more elementary than any
logical system, where these rules may now contain propositional quan-
tification to express generality. If we just want to express, for example,
that for any A and B, AAB can be inferred from A and B, we do not
necessarily need propositional quantification. We can just use A and B
as schematic letters in the rule schema

A B
ANB .

However, if we want to express that =A can be inferred whenever, for
any B, A entails B, we need some propositional variable-binding device.
In the notation to be developed, we write such a rule two-dimensionally
as

o),

=-A

or linearly as

Formally this means that, in order to infer —A, it is sufficient to derive
p from A and possibly further assumptions, where p must not occur free
in A or any other assumption on which p depends.

Since conjunction and disjunction are definable in PL2, only implication and proposi-
tional quantification are actually needed.
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When developing a general schema for elimination rules given certain
introduction rules, no quantification is needed. If the introduction rules
do not contain any quantification, neither does the general elimina-
tion rule, as quantification from outside can be expressed by schematic
variables. However, when developing a general schema for introduction
rules given certain elimination rules, we need this sort of quantifica-
tion. Even without such a general schema, when defining harmony for
arbitrary introduction and elimination rules, the availability of propo-
sitional quantification is crucial. Propositional quantification is a very
elementary device in rule application, as it essentially relies on the
proper handling of variables. However, it gives us powerful new struc-
tural means of expression.

When using second-order quantification, we are exposed to the ob-
jection of employing impredicative notions. It should be noted that our
formulas do not contain any quantifiers, as quantification occurs only in
rules and not in formulas. Of course, the quantified propositional vari-
ables run over propositional formulas which may contain connectives
which are defined by using these rules. However, if one calls this way
of defining a propositional connective impredicative, then it is impred-
icativity of a harmless sort. Then even the standard rule for disjunction
elimination

A B

AVB C C
C

would be impredicative, as the schematic letter C runs over arbitrary
formulas, and thus in particular over AVB itself. This sort of impred-
icativity is harmless, as we are using variables only in a schematic
sense, corresponding to what Carnap in [2] called “specific" (in con-
tradistinction to “numeric”) generality. The handling of quantified rules
is described by the proper handling of variables in derivations.

2 HIGHER-LEVEL RULES WITH PROPOSITIONAL QUANTIFICATION

Our calculus of higher-level rules is essentially a pure calculus of
suppositions, where the suppositions are of an extended form. Unlike
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the presentation in [13], where rules were identified with the schema
of their application, we here provide a more elementary approach in
which rules are expressions labelling their application in a derivation,
and are not just extracted from a certain inference figure. The general
form of a rule is

I'i=_8)),....0I,=_ B, =_A, 1
(T1=5 B (Tn = Bo) = (1)
where n > 0 and qi,...,G,, p are (possibly empty) lists of proposi-

tional variables. The variables occurring as indices to the rule arrow =
are bound in the premisses and the conclusion of the rule, so that the
usual restrictions concerning substitutions apply. The intended mean-
ing of a rule of form (1) is the following: For any ': Suppose, for each
i (1 < i< n), we have derived B; from T';, where this derivation is
schematic in G;; then we may pass over to A. That the derivation of B
from T; is schematic in q; is expressed by an eigenvariable condition.
That the rule can be applied for any p’ is expressed by allowing for ar-
bitrary substitutions of lists of formulas for 7. According to this reading
the variables occurring as indices to the rule arrow = function as uni-
versal quantifiers. If such variables are present, we speak of quantified
(higher-level) rules, or of (higher-level) rules with quantification. For-
mally the intended meaning of a rule is explained by giving a schema
according to which a rule of the form (1) is applied in a derivation. Note
that when higher-level rules are available as assumptions, there is no
need for a formal system to contain primitive rules of inference, as the
assumption rules already provide the means to generate formulas from
others. For example,

—q2 =0
D
LCZ (g2, D, = (]
58
(= A 92 q1.((q2.D2 = 1) =¢, G2) =pgir P

is a derivation of A from the assumptions B1, g2, D> and the assump-
tion rule g1,((q2.D2 = r) =g, q2) =pq,r p. Where at the appli-
cation of this latter assumption rule the assumption rule g2, D> = C
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is discharged (as indicated by the numeral). Therefore, as it does not
use any primitive rules of inference, this derivation is purely struc-
tural in our sense. For primitive rules of inference we also use a two-
dimensional notation, which is often better readable than the ‘official’
one-dimensional notation. Instead of

(T1=_ B1).....(Th=_, By)) = A
a1 p

n

where " comprises all variables free in (ITy =_, By),..., (T, =_,
q1 dn
Bn) = A we also write:

I r,
81 — Bn —
q qn

i
where the parentheses can be omitted when g, is empty. Our proviso
concerning the variables 7 means in effect that at the inference line all

A

variables free above or below become bound. In other words, we only
consider primitive inference rules without free variables. This convention
is fully appropriate and sufficient for our aims.

One crucial philosophical point of our dealing with rules is the fact
that rules are always applied in a derivation. They never occur as
items that are asserted. Only formulas can be asserted. This applicative
behavior is what makes rules a most fundamental entity, whose usage
can be explained without recurring to logic and therefore can serve in
a foundational approach to logic.

3 INTRODUCTIONS AND ELIMINATIONS

Using this extended notion of inference rules we can propose general
notions of introduction and elimination rules. Introductions and elimina-
tions are considered independent kinds rules which are not expected to
stand in any particular relation to each other. An introduction rule for
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an n-ary propositional operator ¢, where p" represents its arguments
p1,--.,Pn, has the general form

(1) (m)
B/ B,/ _,
1q mq

1 — m 2
() 2

’

and an elimination rule is of the form

5. la)
c(p) \Bilg Bel
i " B)

We define a canonical elimination rule given arbitrary introduction
rules, and a canonical introduction rule given arbitrary elimination
rules, which play a special role. The canonical elimination rule for
given introduction rules is the uniform general elimination rule pro-
posed in [13]. The canonical introduction rule for given elimination rules
is a uniform general introduction rule. If the following list of introduction
rules is associated with c:

A =, P
! P q1 (P)
(4)
Ak = __ C(E}) )
P dk

or two-dimensionally:

o |7)

- 5L
Q
~

C

11
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where r is a fresh variable not occurring in 7, 1, - . ., gx. If the following
list of elimination rules is associated with with c:

C(?),A% =_ C1
1P
(/)
N
c AN, = ., Ce
(r) k P ko
then the canonical introduction rule has the form
ANy=_,G),....(N =, Co) =_c(P), (8)
a1 qr p

or two-dimensionally:

(AQ) (A;,
G-
q1

Ck')q—k3
()

4 HARMONY

Harmony is now defined in such a way that both a 'no-gain’ and a ‘no-
loss’ criterion is fulfilled. ‘No-gain" means that an introduction followed
by an elimination does not give us anything new, i.e., such a sequence of
steps can be removed. This criterion may also be called ‘local reduction’
and is related to Belnap's criterion of convervativeness ([1]). ‘No-loss'
means that the consequences of eliminations suffice to restitute their
major premiss. This criterion is also called ‘criterion of recovery’, and
is related to Belnap’s criterion of uniqueness and Dummett's notion
of stability ([4]). Formally, given introductions and eliminations of the
forms 4 and 7, respectively, 'no-gain’ says that we can derive C; from
any A,-,A} without using primitive rules of inference, i.e. that

AL AGE sty G forall i, j
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holds as a purely structural derivability assertion. ‘No-loss' says that
c-introduction rules alone suffice to establish c(p’), given the conse-
quences of the eliminations, ie.,

(A% :}q_{ C1>, C (AL/ :>q_ﬁ Ck’) F {/—rules}d?) :

These criteria are defined for any set of introductions and eliminations
given. It can then be shown that the canonical elimination rule 5/6 is
in harmony with its associated introductions 4, and that the canonical
introduction rule 8/9 is in harmony with its associated eliminations 7.
To avoid any misinterpretation of this result, it should be repeated that
the notion of harmony itself is not based on the construction of general
canonical elimination or general canonical introduction rules, but rather
on the independent schemas 2 and 3. This makes our approach different
from other approaches which base harmony on the canonical form of
rules (normally elimination rules?).

5 EXAMPLE

It is crucial that we use propositional quantification. The canonical
introduction rule cannot be formulated if no propositional quantification
is derivable (or more precisely, it could then only be formulated for very
simple cases of elimination rules). The fact that the consideration of a
general canonical introduction rule for given elimination rules is not
just a theoretical possibility dealt with for reasons of symmetry, but has
an intrinsic value, is demonstrated by using an example provided by
Hazen and Pelletier ([8]). It defines a theoretically significant (namely
expressively complete) ternary connective v in terms of its elimination
rules, while its harmonious introduction is the canonical introduction
rule. % has the meaning (p1Vp2) < (p3 < —p2), a formula, of which
Dosen in [3] could show that it represents a Sheffer (i.e., expressively

Such as the programme described by Read as ‘general-elimination-harmony/, see [12,
11, 6].

13
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complete) connective for intuitionistic propositional logic. Its elimination
rules derived by Hazen and Pelletier from this meaning are

Pz)
*(p1,p2.p3) P (q g x(p1.p2p3) p2 p3
P3 q

(Pzrm) p2=qq p1 P2
*(p1.p2.p3) 9 1, & roor

r

while its introduction rule given by Hazen and Pelletier is nothing but
the canonical introduction rule in our sense:

p1.(p2=4q) (sz) ((P2,P3=>qQ)V(P2=>qq):>P3),(P1=>f),(P2=>f)
p3 qa g r

* (p1,p2,p3)

6 NEGATIVE RESULTS

Though for every list of given introduction rules there is a canonical
elimination rule, and for every list of given elimination rules there is
a canonical introduction rule, this canonical rule is always of a level
higher than the maximum level of its corresponding introduction or
elimination rules. This is due to the fact that the premisses of introduc-
tions become dischargeable assumptions in the canonical elimination,
and the premisses of eliminations become dischargeable assumptions
in the canonical introduction. For example, the connective % with the
introduction rules

P

P2 P3
*(p1,p2,p3) *(p1,p2.p3)
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of maximum level 2 receives a canonical elimination rule

p1 = p2 p3
*(p1,p2.p3) q q
q

of level 3, and the connective o with the elimination rule

P1
O(P1,P2,P3) p2
p3

of level 2 receives a canonical introduction rule

p1 = p2

p3
o(p1,p2.p3)

of level 3. In [10] it is shown that this behavior cannot be avoided, ie.
that there are no harmonious elimination rules for x and no harmonious
introduction rules for o of lower level.

7 GENERAL CONCLUSION

As soon as higher-level rules and propositional quantification are avail-
able, the generation of canonical eliminations and introductions from
given introductions and eliminations, respectively, does not generate
novel sorts of rules. This is a remarkable closure property with respect
to the expressive power of introduction and elimination rules.
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