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Peter Schroeder-Heister The Calculus of
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Abstract. We present our calculus of higher-level rules, extended with propositional

quantification within rules. This makes it possible to present general schemas for intro-

duction and elimination rules for arbitrary propositional operators and to define what it

means that introductions and eliminations are in harmony with each other. This definition

does not presuppose any logical system, but is formulated in terms of rules themselves.

We therefore speak of a foundational (rather than reductive) account of proof-theoretic

harmony. With every set of introduction rules a canonical elimination rule, and with ev-

ery set of elimination rules a canonical introduction rule is associated in such a way that

the canonical rule is in harmony with the set of rules it is associated with. An example

given by Hazen and Pelletier is used to demonstrate that there are significant connec-

tives, which are characterized by their elimination rules, and whose introduction rule is

the canonical introduction rule associated with these elimination rules. Due to the avail-

abiliy of higher-level rules and propositional quantification, the means of expression of the

framework developed are sufficient to ensure that the construction of canonical elimination

or introduction rules is always possible and does not lead out of this framework.

Keywords: Proof-theoretic semantics, Assumptions, Higher-level rules, Propositional qu-

antification, Harmony.

1. Introduction

Both Gentzen’s (1934/35) [11] calculus of natural deduction and Jaśkowski’s
(1934) [15] calculus of suppositions are based on what may be called the
dynamic view of assumptions. According to the traditional static view, as-
sumptions are suppositions on which all subsequent formulas in a derivation
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2 P. Schroeder-Heister

depend. According to the dynamic view assumptions made (or ‘introduced’)
can be discharged (or ‘eliminated’) at the application of certain rules. The
dynamic view of assumptions makes it possible to give implication a proof-
theoretic meaning based on the idea that asserting an implication means the
same as deriving its consequent from its antecedent.

This paper deals with the systematics of introduction and elimination
rules in natural deduction and their relationship often described as ‘har-
mony’ (Dummett, 1973 [5]) and is therefore related to Gentzen’s approach.
However, it does so by using the idea of rules of higher levels, which extends
the dynamic view of assumptions by not only allowing that assumptions
be discharged but also that assumptions be introduced in the course (and
not only at the top) of a derivation, where these assumptions are not nec-
essarily formulas, but can be rules as well. This idea is here extended to
include propositional quantification within rules, i.e. the idea that rules may
universally quantify over propositions.

The idea to study propositional quantification occurs already in Jaś-
kowski’s (1934) [15] paper on suppositions, but not in Gentzen’s work on
natural deduction. Jaśkowski studies propositional quantifiers before he
passes on to first-order ones. However, unlike Jaśkowski, we do not use
propositional quantification and propositional eigenvariables in rules in or-
der to define propositional quantifiers, but in order to define propositional
connectives. Thus one of our central claims is that propositional quantifica-
tion is useful and indeed necessary to study propositional connectives from
a general proof-theoretic perspective. This claim comes along with the view
that introduction rules are not given priority over elimination rules, as in
Gentzen’s work, but that introductions and eliminations are treated on par.
In fact, it will be the elimination-based approach where the idea of proposi-
tional quantification in rules develops its full power.

In Schroeder-Heister (2014b) [37] a notion of proof-theoretic harmony
was proposed. There the meaning of a connective according to given in-
troduction rules was described by a formula of second-order intuitionistic
propositional logic PL2, and likewise for eliminaton rules. When the two
formulas obtained were equivalent, introduction and elimination rules were
said to be in harmony. This approach was called reductive, since it took the
system PL2 for granted, which means that it did not apply to operators such
as conjunction, disjunction or implication, as they are already an ingredient
of PL21. Now we follow a foundational approach in that we shall define

1Since conjunction and disjunction are definable in PL2, only implication and propo-
sitional quantification are actually needed.
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a notion of harmony between introduction and elimination rules which is
exclusively defined in terms of the rules used rather than in terms of certain
formulas of an external system.

Following the idea presented in Schroeder-Heister (1984b) [31], we shall
define a purely structural calculus of rules, which is considered more elemen-
tary than any logical system, where these rules may now contain proposi-
tional quantification to express generality. If we just want to express, for
example, that for any A and B, A∧B can be inferred from A and B, we do
not necessarily need propositional quantification. We can just use A and B
as schematic letters in the rule schema

A B

A∧B .

However, if we want to express that ¬A can be inferred whenever, for any
B, A entails B, we need some propositional variable-binding device. In the
notation to be developed, we write such a rule two-dimensionally as

(
A

p

)
p

¬A

or linearly as
(A ⇒p p) ⇒ ¬A .

Formally this means that, in order to infer ¬A, it is sufficient to derive p
from A and possibly further assumptions, where p must not occur free in A
or any other assumption on which p depends.

When developing a general schema for elimination rules given certain
introduction rules, no quantification is needed. If the introduction rules do
not contain any quantification, neither does the general elimination rule, as
quantification from outside can be expressed by schematic variables. How-
ever, when developing a general schema for introduction rules given certain
elimination rules, we need this sort of quantification. Even without such
a general schema, when defining harmony for arbitrary introduction and
elimination rules, the availability of propositional quantification is crucial.
Propositional quantification is a very elementary device in rule application,
as it essentially relies on the proper handling of variables. However, it gives
us powerful new structural means of expression.

When using second-order quantification, we are exposed to the objection
of employing impredicative notions. It should be noted that our formulas
do not contain any quantifiers, as quantification occurs only in rules and
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not in formulas. Of course, the quantified propositional variables run over
propositional formulas which may contain connectives which are defined by
using these rules. However, if one calls this way of defining a propositional
connective impredicative, then it is impredicativity of a harmless sort. Then
even the standard rule for disjunction elimination

A∨B

A

C

B

C

C

would be impredicative, as the schematic letter C runs over arbitrary formu-
las, and thus in particular over A∨B itself. This sort of impredicativity is
harmless, as we are using variables only in a schematic sense, corresponding
to what Carnap (1931) [2] called “specific” (in contradistinction to “nu-
meric”) generality. The handling of quantified rules is described by the
proper handling of variables in derivations.

In Section 2 we describe our calculus of rules as a system of natural
deduction. It is essentially a pure calculus of suppositions, where the sup-
positions are of an extended form. As the presentation in Schroeder-Heister
(1984b) [31], where rules were identified with the schema of their application,
is difficult to read, we here provide a more elementary approach in which
rules are expressions labelling their application in a derivation, and are not
just extracted from a certain inference figure. One crucial point of our deal-
ing with rules is the fact that rules are always applied in a derivation. They
never occur as items that are asserted. Only formulas can be asserted. This
applicative behavior is what makes rules a most fundamental entity, whose
usage can be explained without recurring to logic and therefore can serve in
a foundational approach to logic.

Section 3 proposes general notions of introduction and elimination rules.
Introductions and eliminations are considered independent rules which are
not expected to stand in any particular relation to each other. However, we
define a canonical elimination rule given arbitrary introduction rules, and
a canonical introduction rule given arbitrary elimination rules, which play
a special role. The canonical elimination rule for given introduction rules is
the uniform general elimination rule proposed in Schroeder-Heister (1984b)
[31]. The canonical introduction rule for given elimination rules is a uniform
general introduction rule.

In Section 4 we give a definition of harmony in terms of rules only. It is
defined for any set of introductions and eliminations given. It can then be
shown that the canonical elimination rule is in harmony with its associated
introductions, and that the canonical introduction rule is in harmony with
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its associated eliminations. It is, however, crucial that our notion of harmony
is not based on the construction of general canonical elimination or general
canonical introduction rules. This makes our approach different from other
approaches which base harmony on the canonical form of rules (normally
elimination rules2).

The fact that the consideration of a general canonical introduction rule
for given elimination rules is not just a theoretical possibility dealt with for
reasons of symmetry, but has an intrinsic value, is demonstrated in Section 5
by using an example provided by Hazen and Pelletier (2014) [14]. It defines a
theoretically significant (namely expressively complete) ternary connective
in terms of its elimination rules, while its harmonious introduction is the
canonical introduction rule.

In the final Section 6 we discuss the merits of the foundational approach
proposed and outline some possible directions of further work.

2. The calculus of higher-level rules

The expressions of the languages we shall consider are built up using
• propositional variables, denoted by p, q, r, . . . (with and without indices),
• logical constants, which are

– the standard propositional connectives → , ∧ , ∨ ,⊥, �,
– further propositional connectives of various arities, denoted by c and

by other symbols introduced ad hoc,
• the rule arrow ⇒,
• auxiliary symbols such as commas and parentheses.

Formulas are formed in the usual way from propositional variables and
propositional connectives. They are denoted by A,B, C, . . ., with and with-
out indices. A list A1, . . . , An of formulas is also denoted by

−→
A , a list

p1, . . . , pn of variables by −→p .When we use standard connectives, conjunction
and disjunction are supposed to bind stronger than implication. By A[p/B]
we denote the substitution of B for p in A, and by A[p1, . . . , pn/B1, . . . , Bn]
the simultaneous substitution of B1, . . . , Bn for p1, . . . , pn, respectively, in A.
If −→p is p1, . . . , pn and

−→
B is B1, . . . , Bn, we also write A[−→p /

−→
B ], where, when

using this notation, we always assume that −→p and
−→
B match in length. An

n-ary connective c with arguments A1, . . . , An is written as c(A1, . . . , An).
Rules and their levels are defined as follows.

2Such as the programme described by Read as ‘general-elimination-harmony’, see Read
(2010, 2014) [27, 28], Francez & Dyckhoff (2012) [10].
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Definition 1.

• Every formula A is a rule of level 0.

• For every formula A and every (possibly empty) list of propositional
variables p1, . . . , pm (m ≥ 0), the expression ⇒p1, . . . , pm A is a rule of
level 0. The variables p1, . . . , pm are bound in A. If m is 0, i.e., if the
list of variables is empty, then ⇒ A is identified with A.

• If R1 . . . , Rn are rules (n ≥ 1), whose maximal level is �, A a formula
and p1, . . . , pm (m ≥ 0) a (possibly empty) list of propositional variables,
then (R1, . . . , Rn ⇒p1, . . . , pm A) is a rule of level � + 1. The variables
p1, . . . , pm are bound in R1, . . . , Rn, A. If m is 0, i.e., if the list of variables
is empty, we write (R1, . . . , Rn ⇒ A).

Outer parentheses are omitted, if no misreading of rules can occur. Rules
are denoted by R and R′, with and without indices. Finite lists of rules
are denoted by Γ, Δ, . . ., with and without primes and indices. We can thus
write rules in the form Δ ⇒p1, . . . , pm A. Obviously, the general form of a
rule is

(Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn) ⇒−→p A , (I)

where n ≥ 0 and −→q1 , . . . ,−→qm,−→p are (possibly empty) lists of propositional
variables. The variables occurring as indices to the rule arrow ⇒ are bound
in the premisses and the conclusion of the rule, so that the usual restrictions
concerning substitutions apply.3 When substituting a formula A for a vari-
able p in a rule R, we always presuppose that A can be freely substituted
for p in R, i.e., that A does not contain any variable q such that p occurs in
R in the range of a rule arrow with index q.

The intended meaning of a rule of form (I) is the following: For any−→p : Suppose, for each i (1 ≤ i ≤ m), we have derived Bi from Γi, where
this derivation is schematic in −→qi ; then we may pass over to A. That the
derivation of Bi from Γi is schematic in −→qi will be expressed by an eigenvari-
able condition. That the rule can be applied for any −→p will be expressed
by allowing for arbitrary substitutions of lists of formulas for −→p . Accord-
ing to this reading the variables occurring as indices to the rule arrow ⇒
function as universal quantifiers. If such variables are present, we speak of
quantified (higher-level) rules, or of (higher-level) rules with quantification.

3This notation, according to which indices to the rule arrow bind variables, is due to
Lorenzen (1955) [17], corresponding to the notation for universally quantified implications
in Principia Mathematica (Whitehead & Russell (1910) [40], Vol. I, Intro., Ch.I), where
it was adopted from Peano.
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Formally the intended meaning of a rule will be explained by giving a schema
according to which a rule of the form (I) is applied in a derivation.

First we define structural derivations which are derivations generated
without any primitive rule of inference. They are defined for any language,
whether it contains logical constants or not (in the latter case propositional
variables are the only formulas). In such a derivation a rule of form (I) can
be applied as an assumption rule, i.e., by using it as an assumption on which
the subsequent derivation depends. In standard natural deduction, there is
just a single purely structural way of assuming something, namely by setting
a formula

A

as an assumption to start with. In our framework, assumptions are always
rules. Thus, we would write the assumption of A as

A
A

expressing that we are introducing the rule A as an assumption, by means
of which we can infer A. Obviously, this is just a notational variant of just
writing A. However, unlike standard natural deduction, we can extend this
notation to arbitrarily complex rules as assumptions. For example,

...
B1 . . .

...
Bn

B1, . . . , Bn ⇒ A
A

expresses that we are introducing the rule B1, . . . , Bn ⇒ A as an assumption
rule, by applying it to B1, . . . , Bn in order to obtain A. Here we are intro-
ducing an assumption not at the top, but in the course of a derivation, after
having derived its premisses B1, . . . , Bn. More complicated rules allow one,
by introducing them as assumptions, to discharge previously introduced as-
sumption rules, so that subsequent formulas no longer depend on it. In the
simplest case a level-0 rule, i.e. a formula, is discharged, as in the following
example:

...
B1

[C]1
C
...

B2
1 B1, (C ⇒ B2) ⇒ A

A .

Here the level-2 rule B1, (C ⇒ B2) ⇒ A is introduced as an assumption
allowing one to pass over from B1 and B2 to A, whereby the level-0 rule
C is discharged, which is indicated by the square brackets around C and
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the numeral 1, telling at which step C is discharged. In the following more
complicated case, a level-1 rule is discharged:

...
B1

...
D1

...
D2 [D1, D2 ⇒ C]1

C
...

B2
1 B1, ((D1, D2 ⇒ C) ⇒ B2) ⇒ A

A .

Here the level-3 rule B1, ((D1, D2 ⇒ C) ⇒ B2) ⇒ A is introduced as an as-
sumption allowing one to pass over from B1 and B2 to A, whereby a previous
application of the level-1 rule D1, D2 ⇒ C is discharged, as indicated by the
numeral 1. This level-1 rule D1, D2 ⇒ C had been used to pass over from
D1 and D2 to C.4

Using quantification we further generalize this idea. The derivations
stated so far were given for particular formulas A, B1, B2, . . .. Consider-
ing them as schematic letters for arbitrary formulas, the above derivations
become derivation schemas. However, in this sense we just have quantifica-
tion from outside, similar to the understanding of a mathematical equation
x+y = y+x as its universal closure. By attaching variables to the rule arrow
⇒, we can consider specific ways of generalizing derivations. For example,

...
B1

...
D1

...
D2 [D1, D2 ⇒ C]1

C
...

B2
1 q1, ((s1, s2 ⇒ r) ⇒ q2) ⇒pq1q2rs1s2 p

A

gives us a derivation, in which the rule q1, ((s1, s2 ⇒ r) ⇒ q2) ⇒pq1q2rs1s2 p
is introduced as an assumption. The variables p, q1, q2, r, s1, s2, which are
attached as an index to the rule arrow, are understood universally. This
means that they must be replaced with specific formulas, when the rule is
applied. Here they are replaced with A, B1, B2, C,D1, D2, respectively. Now
we further generalize this idea by considering index variables to rule arrows

4What is discharged are always specific applications of a rule rather than the rule
itself, which is similar to standard natural deduction, where formula occurrences rather
than formulas themselves are discharged. However, when the context is clear, we often
speak more sloppily of rules as being discharged.
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within the left side of another rule:

...
B1

...
q2

...
D2

[q2, D2 ⇒ C]1
C
...
q2

1 q1, ((q2, D2 ⇒ r) ⇒q2 q2) ⇒pq1r p
A .

Here the assumption rule q1, ((q2, D2 ⇒ r) ⇒q2 q2) ⇒pq1r p is universally
quantified only with respect to p, q1, r. These variables are replaced with
A,B1, C, respectively. Furthermore, the index q2 to the rule arrow of the
second premiss (q2, D2 ⇒ r) ⇒q2 q2 of this rule indicates that q2 is an eigen-
variable, which is not allowed to occur in any assumption beyond q2, D2 ⇒ C
in the right branch of the derivation. An example in which all rule arrows
of a level-3 assumption rule are quantified (i.e., receive an index), is the
following:

...
B1

...
q2

...
D2

[q2, D2 ⇒r r]1
C
...
q2

1 q1, ((q2, D2 ⇒r r) ⇒q2 q2) ⇒pq1 p
A .

Here the rule q1, ((q2, D2 ⇒r r) ⇒q2 q2) ⇒pq1 p, which is introduced as
an assumption, is quantified with respect to p and q1. These variables are
replaced with A and B1, respectively. In the application of this rule, the
variable q2 is functioning as an eigenvariable, which is not allowed to occur
in any open assumption above the second premiss q2 apart from q2, D2 ⇒r r.
This latter assumption, which was introduced and applied by substituting
C for r, is discharged as this step.

The following definition of a derivation makes this fully precise.

Definition 2. For a level-0 rule A (i.e. a formula),

A
A

is a derivation of A depending on {A}.
For a level-0 rule ⇒−→p A and any list

−→
C of formulas,

⇒−→p A

A[−→p /
−→
C ]
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10 P. Schroeder-Heister

is a derivation of A[−→p /
−→
C ] depending on {⇒−→p A}.

Now consider a level-(� + 1) rule (Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn) ⇒−→p A.

Suppose that, for each i (1 ≤ i ≤ n) and each
−→
C , a derivation

Γi[−→p /
−→
C ]

...
Bi[−→p /

−→
C ]

of Bi[−→p /
−→
C ] depending on a set Σ of rules is given, where Σ may contain

some or all of the rules in Γi[−→p /
−→
C ]. Suppose furthermore that the variables

in −→qi do not occur in any element of Σ apart from the elements of Γi[−→p /
−→
C ].

Then

[ Γ1[−→p /
−→
C ] ]k

...
B1[−→p /

−→
C ] . . .

[ Γn[−→p /
−→
C ] ]k

...
Bn[−→p /

−→
C ]

k (Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn) ⇒−→p A

A[−→p /
−→
C ]

(II)
is a derivation of A[−→p /

−→
C ] depending on Σ′

1∪ . . .∪Σ′
n, where Σ′

i results from
Σi by deleting any number of elements of Γi[−→p /

−→
C ]. The elements deleted

(‘discharged’) are put into square brackets, and the brackets are linked with
a fresh number k to the inference line at which they are discharged.

A derivation of A from Σ is a derivation of A depending on a subset of Σ.
If there is a derivation of A from Σ, then A is derivable from Σ, symbolically:
Σ�A.

This notion of derivation and derivability is only based on the intended
meaning of rules and not relative to a particular language and to given
primitive rules of inference. In this sense one might speak of structural
derivations and structural derivability.

If certain rules are distinguished as primitive rules of inference in a formal
system K, then derivability in K is defined as follows.

Definition 3. A derivation of A from Σ in K is a (structural) derivation
of A from some set Σ ∪ Σ′, such that Σ′ only contains primitive rules of K.
For derivability in K, we write, as usual, Σ�KA.

For primitive rules we also use a two-dimensional notation, which is often
better readable than the ‘official’ one-dimensional one. Instead of

(Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn) ⇒−→p A,

1194



The Calculus of Higher-Level Rules, Propositional Quantification,. . . 11

where −→p comprises all variables free in (Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn) ⇒ A,

we also write: (
Γ1

B1

)
−→q1

. . .

(
Γn

Bn

)
−→qn

A ,

where the parentheses can be omitted when −→qn is empty. Our proviso con-
cerning the variables −→p means in effect that at the inference line all vari-
ables free above or below become bound. In other words, we only consider
primitive inference rules without free variables. This convention is fully
appropriate and sufficient for the context of this paper. Note that in our
two-dimensional notation for rules there is no need to use any square brack-
ets to indicate that assumptions can be discharged, since all assumptions
displayed may be discharged.

An example of a formal system is intuitionistic propositional logic PL,
which has the following primitive rules of inference:

(∧ I) p, q ⇒pq p∧q (∧E) p∧q ⇒pq p p∧q ⇒pq q
(∨ I) p ⇒pq p∨q q ⇒pq p∨q (∨E) p∨q, (p ⇒ r), (q ⇒ r) ⇒pqr r
(→ I) (p ⇒ q) ⇒pq p→ q (→E) (p→ q), p ⇒pq q
(⊥ I) (none) (⊥E) ⊥ ⇒p p
(� I) ⇒ � (�E) (none) ,

where for absurdity introduction and triviality elimination we could have
used instead the rules

(⊥ I)′ (⇒p p) ⇒ ⊥ (�E)′ �, p ⇒p p .

In two-dimensional notation these rules look more common:

(∧ I)
p q

p∧q
(∧E) p∧q

p
p∧q
q

(∨ I)
p

p∨q

q

p∨q
(∨E) p∨q

p
r

q
r

r

(→ I)

p
q

p→ q
(→E)

p→ q p
q

(⊥ I) (none) (⊥E) ⊥
p

(� I) � (�E) (none)
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12 P. Schroeder-Heister

with the alternative forms

(⊥ I)′

(
p

)
p

⊥
(�E)′ � p

p

of absurdity introduction and triviality elimination.
We have defined derivations from rules as assumptions. We have not

defined, what it means to derive a rule. What is derived are always for-
mulas. Rules only occur as labels on the right side of inference lines. It is
possible to extend the calculus such as to allow for the explicit introduction
of rules as statements that can be derived. We do not follow this idea here
(see Schroeder-Heister, 1987 [32]), but define the derivability of a rule as a
metalinguistic abbreviation. This is a conceptual decision, as we want to
base our system on the applicative behavior of rules and not on some more
general notion of implication (see the discussion in Section 6).

Definition 4. A rule of the form (I) is derivable, if

(Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn)�A . (III)

More generally, a rule Γ ⇒−→p A is derivable from a set Σ of rules, if Σ, Γ�A,

provided that no variable of −→p is free in Σ. (If a variable of −→p is free in Σ,
we could instead require that Σ, Γ[−→p /−→q ]�A[−→p /−→q ] for an appropriate list
of fresh variables −→q .)

When a rule R is derivable from Σ, we also write, as a metalinguistic
abbreviation, Σ�R.

Obviously, (III) establishes that the conclusion of the rule (I) is derivable
from its premisses. Conversely, we obtain (III) by using (I) as an additional
assumption, i.e. we can show

((Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn) ⇒−→p A), (Γ1 ⇒−→q1

B1), . . . , (Γn ⇒−→qn

Bn)�A

(IV)
Thus (IV) can be seen as expressing the reflexivity statement between rules:
From each rule R this very same rule R can be derived: R�R. Using this
notation, we can also prove transitivity in the sense that Σ�R and Σ, R�A
implies Σ�A. We skip the proofs of these two facts here and note them as
results5

5For the case without quantifiers, the proofs of reflexivity and transitivity can be found
in Schroeder-Heister (1984b) [31].
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Lemma 1. For any formula A, rule R and set of rules Σ:
(i) R�R

(ii) If Σ�R and Σ, R�A then Σ�A.

Corresponding to the notation for the derivability of rules, we use, as a
notational convention,

Γ ⇒−→p R

to stand for
Γ, Δ ⇒−→p −→q A

if R has the form Δ ⇒−→q A, provided that the lists of variables −→p and −→q
are disjoint.

3. Introduction and elimination rules

We now present a general schema for introduction rules for n-ary propo-
sitional connectives, as well as a general schema for elimination rules for
such connectives. These schemas are not related to each other, but are in-
dependent. They represent what, in an intuitively plausible way, should
count as introduction and elimination rules. Afterwards, we shall define
the canonical elimination rule corresponding to arbitrary introduction rules,
and, conversely, the canonical introduction rule corresponding to arbitrary
elimination rules. The canonical elimination rule is what in Schroeder-
Heister (1984b) [31] was called the generalized elimination rule for n-ary
propositional connectives. The canonical elimination rule is related to given
introduction rules in a harmonious way, and the canonical introduction rule
is related to given elimination rules in a harmonious way. The notion of
harmony is defined independently of the relationship between introductions
and canonical eliminations or between eliminations and canonical introduc-
tions, even though these relationships represent a particularly important
kind of harmony. This makes our approach to harmony differ from common
approaches that define harmony (usually of eliminations in relation to in-
troductions) through the canonical form of rules (normally some schema for
generalized elimination rules). Unlike previous publications, we now define
harmony directly in terms of the rules used to define a connective rather than
via a translation into a logical system of second-order intuitionistic proposi-
tional logic. In this sense the current approach is foundational rather than
reductive. As explained in the discussion in Section 6, this is considered to
be a substantial gain from the conceptual point of view. We shall deal with
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14 P. Schroeder-Heister

propositional operators only, i.e. with n-ary connectives defined by means of
rules that use propositional quantification of the form ⇒−→p .

Suppose c is an n-ary connective. We write c(−→p ) for c(p1, . . . , pn). Then
an introduction rule for c has the following form:

(c I) (Γ1 ⇒−→q1

B1), . . . , (Γm ⇒−→qm

Bm) ⇒−→p −→q c(−→p ) . (V)

Here −→q contains all propositional variables free in (Γ1 ⇒−→q1

B1), . . . , (Γm

⇒−→qm

Bm) apart from those in −→p . This notation is supposed to cover the

case where, for some or all i, Γi and/or −→qi are lacking. As a limiting case, m
can be 0, in which case the rule has no premisses such as the introduction
rule (� I) for triviality. To avoid notational overhead, we often write (V) as

Δ ⇒−→p −→q c(−→p )

where, according to our conventions, Δ stands for a list of rules. In two-
dimensional notation, the rule (V) is written as

(
Γ1

B1

)
−→q1

. . .

(
Γm

Bm

)
−→qm

c(−→p ) .

(VI)

For the sake of simplicity, we assume that above the inference line no con-
nective is allowed to occur, which means in particular that B1, . . . , Bm are
propositional variables. One might consider definitional chains according
to which a connective can rely on other connectives for which rules have
been given beforehand, for example in the definition of negation in terms of
absurdity:

p

⊥
¬p ,

or, in even more advanced settings, an introduction rule in which c(−→p )
depends on itself in a self-referential way — cases, which we do not discuss
here (see Section 6).

The idea behind the schema (V)/(VI) is obvious: The introduction rule
for c should allow one to infer c(−→p ) from a given list of premisses in a uniform
way. The introduction rules (∧ I), (∨ I), (→ I), (⊥ I)′ and (� I) are all of the
form (V). As one often wants to associate not exactly one, but two or more,
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or, as a limiting case, even no introduction rule with c, we speak of the list
of introduction rules associated with c or of the c-introductions:

⎧⎪⎪⎨
⎪⎪⎩

Δ1 ⇒−→p −→q1

c(−→p )
...

Δk ⇒−→p −→qk

c(−→p ) .

(VII)

Here k can be any number ≥ 0. If k = 0, this list is empty, which covers the
case of (⊥ I).

Given a list of introduction rules of the form (VII), the canonical elimi-
nation rule for c is the following rule:

c(−→p ), (Δ1 ⇒−→q1

r), . . . , (Δk ⇒−→qk

r) ⇒−→p r
r (VIII)

where r is a fresh variable not occurring in −→p ,−→q1 , . . . ,−→qk . In two-dimensional
notation this rule reads as

c(−→p )

(
Δ1

r

)
−→q1

. . .

(
Δk

r

)
−→qk

r .
(IX)

The canonical elimination rule for c says that everything that can be derived
from each introduction premiss of c(−→p ) can be derived from c(−→p ) itself. It
is a single rule of a special form which is harmonious with the given c-
introductions in the sense to be specified in Section 4. For example, (∨E) is
the canonical elimination rule for disjunction given (∨ I) as its introduction
rules, (⊥E) is the canonical elimination rule for absurdity given the empty
list (⊥ I) as its introduction, and (�E)′ is the canonical elimination rule for
triviality given (� I) as its introduction. The canonical elimination rules for
conjunction and implication with (∧ I) and (→ I) as their introductions are
given by their higher-level forms

p∧q
p , q

r
r and

p→ q
p ⇒ q

r
r , respectively.

The canonical elimination rule for absurdity corresponding to the introduc-
tion rule (⊥ I)′ has the form

⊥
⇒p p

r
r .
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16 P. Schroeder-Heister

Next we define the general form of an elimination rule for c as follows:

c(−→p ), (Γ1 ⇒−→q1

B1), . . . , (Γ� ⇒−→q�

B�) ⇒−→p −→q C (X)

where −→q comprises all variables beyond −→p which are free in Γ1, . . . ,Γ�, B1,
. . . , B�, C. In two-dimensional notation, this rule reads as:

c(−→p )

(
Γ1

B1

)
−→q1

. . .

(
Γ�

B�

)
−→q�

C .

(XI)

As with the introduction rules, we confine ourselves to the case where this
rule contains besides the displayed occurrence of c no other occurrence of a
connective, which in particular means that B1, . . . , B�, C must be proposi-
tional variables. The idea behind this general schema is that an elimination
rule for c states that together with certain additional premisses, whose form
is not restricted, a certain conclusion can be drawn from c(−→p ). As a limiting
case, we allow for the possibility that � is 0, i.e. that there are no additional
(‘minor’) premisses. Obviously, the elimination rules (∧E), (∨E), (→E),
(⊥E) and (�E)′ are all of the form (XI). The canonical elimination rule
(IX) is of this form as well. Note, however, that our schema (XI) is more
general than the canonical elimination rule, as B1, . . . , B� need not be equal
and can differ from C. It is thus able to cover, e.g., the elimination rules
(∧E) for conjunction and (→E) for implication, whereas, of the standard
connectives, the canonical rule (IX) only covers disjunction, absurdity and
triviality (with the redundant form (�E)′).

To avoid notational overhead, we write (X) also as

c(−→p ) ⇒−→p R

where R stands for (Γ1 ⇒−→q1

B1), . . . , (Γ� ⇒−→q�

B�) ⇒−→q C, in accordance

with the notational conventions made at the end of Section 2. As one often
wants to associate not exactly one, but two or more, or, as a limiting case,
even no elimination rule with c, we speak of the list of elimination rules
associated with c or of the c-eliminations

⎧⎪⎪⎨
⎪⎪⎩

c(−→p ) ⇒−→p R1

...
c(−→p ) ⇒−→p Rk .

(XII)
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Here k can be any number ≥ 0. If k = 0, this list is empty, which covers
the case of triviality elimination (�E). With respect to this notation for
elimination rules, the rules Ri are sometimes referred to as the conclusions
of the elimination rules for c.

Given a list of elimination rules of the form (XII), the canonical intro-
duction rule for c is the following rule:

R1, . . . , Rk ⇒−→p c(−→p ) . (XIII)

If Ri has the form Γi ⇒−→qi

Bi we obtain, in two-dimensional notation, the

following schema: (
Δ1

B1

)
−→q1

. . .

(
Δk

Bk

)
−→qk

c(−→p ) .

(XIV)

The canonical introduction rule for c says that the conclusions of all elimi-
nations taken together suffice to derive c(−→p ). It is a single rule of a special
form which is harmonious with the given c-introductions in a sense to be
specified in Section 4. In any case it is a legitimate introduction rule for c
following the schema (V)/(VI).

For example, (∧ I) is the canonical introduction rule for conjunction given
(∧E) as its elimination rules. Similarly, (→ I) is the canonical introduction
rule for implication given modus ponens (→E) as its elimination rule. Also
(⊥ I)′ is the canonical introduction rule for absurdity given (⊥E) as its elim-
ination rule, and (� I) is the canonical introduction rule for triviality assum-
ing that its list of eliminations (�E) is empty. The canonical introduction
rule for disjunction given (∨E) as its elimination rule has the form(

(p ⇒ r), (q ⇒ r)
r

)
r

p∨q .
As another example, let the elimination rules for a 3-place connective � be
given as

�(p1, p2, p3)
p1

r

p2

r

r

�(p1, p2, p3)
p3 ,

(XV)

then the corresponding harmonious introduction rule according to (XIV) is(
(p1 ⇒ r), (p2 ⇒ r)

r

)
r p3

�(p1, p2, p3) .

(XVI)
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18 P. Schroeder-Heister

As well as disjunction, this example shows that in order to formulate the
canonical introduction rule to given elimination rules, we need the machin-
ery of rules with quantified variables, even though in these cases the given
elimination rules do not contain quantified variables beyond p1, . . . , pn. This
is a crucial point. In order to generate introduction rules from elimination
rules in a canonical way, propositional quantification at the rule level is
indispensable.

We fix our conventions by a formal definition.

Definition 5. Suppose c is an n-ary connective.
Every rule of the form (V), in two-dimensional notation (VI), is called

an introduction rule for c.
Given a list of introduction rules for c of the form (VII), the rule (VIII),

in two-dimensional notation (IX), is called the canonical elimination rule
corresponding to this list of introduction rules.

Every rule of the form (X), in two-dimensional notation (XI), is called
an elimination rule for c.

Given a list of elimination rules for c of the form (XII), the rule (XIII),
in two-dimensional notation (XIV), is called the canonical introduction rule
corresponding to this list of elimination rules.

4. Harmony

We have defined what an introduction and an elimination rule should look
like. We have not said anything about the possible relationship between
them, in particular the relation of a perfect fit called “harmony”. For exam-
ple, the introduction rule

p
p • q

and the elimination rule
p • q

q

of a binary tonk -like operator • (see Prior, 1960 [26]) are instances of our
schema for introductions (VI) and eliminations (XI), respectively. However,
there is no harmonious relationship between these rules in the sense that the
elimination rule can be considered to be appropriate for the given introduc-
tion rule, since, by first introducing • and then eliminating it, we are able
to derive any B from any A, which trivializes the system.

Similarly, the introduction rule
p q

p � q
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and the elimination rule
p � q

p

of a binary operator � are instances of our schema for introductions (VI) and
eliminations (XI), respectively. However, there is no harmonious relationship
between these rules in the sense that the introduction rule can be considered
to be appropriate for the given elimination rule, since from the result of
eliminating � we cannot introduce � again. This means that potential
information contained in the proposition A � B is irretrievably lost when
eliminating �, if A is different from B. Each of these two connectives misses
out on one of the two criteria we shall consider to be the basic ingredients
of harmony. The first we call the criterion of reduction, the second one
the criterion of recovery. Rougly speaking, the reduction criterion says that
an introduction followed by an elimination is redundant, and the recovery
criterion says that eliminations followed by introductions can restore what
we started with.

We shall say that given introduction and given elimination rules are in
harmony with each other, when these two criteria are met. In particular,
this will be the case for the canonical elimination rule in relation to given
introduction rules, as well as for the canonical introduction rule in relation
to given elimination rules. However, we do not define harmony by reference
to the canonical elimination or introduction rules, but demonstrate that
these canonical rules satisfy our notion of harmony. In other words, the
idea of a canonical elimination rule for given introduction rules, or of a
canonical introduction rule for given elimination rules is not needed to define
harmony. Thus our approach differs from many approaches discussed in the
literature, where harmony is defined by using canonical rules, where usually
canonical elimination rules are considered (see footnote 2). It also differs
from approaches such as Prawitz’s that justify inference rules via a notion
of validity (see the discussion in Section 6 on that point).

As to the criterion of reduction, when eliminating c, we should not be
able obtain more than what we needed to introduce c. This corresponds to
Prawitz’s (1965) [23] idea of a reduction step: The introduction of c followed
by its elimination can be seen as a detour that should be eliminable. In
our framework, we describe this as follows. Suppose that for c a list of
introduction rules of the form (VII) and a list of elimination rules of the
form (XII) are given. Then we require that from Δi we can derive Rj for all
i, j:

Δi �Rj for all i, j (1 ≤ i ≤ m, 1 ≤ j ≤ k) , (XVII)

i.e., from every sufficient condition for c we must be able to derive every
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20 P. Schroeder-Heister

consequence of c. Note that, in (XVII), � refers to derivability without any
primitive rule, i.e., Rj must be derived from the rules in Δi alone.

Definition 6. A pair, consisting of a list of introduction rules of the form
(VII) and a list of elimination rules of the form (XII), satisfies the criterion
of reduction, if (XVII) holds.

As to the criterion of recovery, when eliminating c, we should not loose
any information. This means that the consequences of c should suffice to
get back to c. This does not necessarily mean that we should be able to
obtain from the consequences R1, . . . , Rk of c the premisses Δi of one of
the introduction rules for c. As the introduction rules for c are alternative
possibilities to arrive at c(p1, . . . , pn), each of them can be stronger than
their conclusion c(p1, . . . , pn). For example, in the case of disjunction, the
premisses of each introduction rule for p1∨p2, namely p1 and p2, are each
stronger than p1∨p2. Instead we require that the introduction rules for c
allow us to restore c(−→p ) from the consequences which c(−→p ) has according
to its elimination rules. Formally this means that from R1, . . . , Rk (the
consequences of c(−→p )) and (Δ1 ⇒−→p −→q1

c(−→p )), . . . , (Δm ⇒−→p −→qm

c(−→p )) (the

introduction rules for c), we must be able to derive c(−→p ):

R1, . . . , Rk, (Δ1 ⇒−→p −→q1

c(−→p )), . . . , (Δm ⇒−→p −→qm

c(−→p ))� c(−→p ) . (XVIII)

Again, in (XVIII), � refers to derivability without any primitive rule, i.e.
the right side of (XVIII) should be derivable from the rules stated on its left
side. This is due to the fact that we have put the introduction rules for c as
assumptions on the left side of the turnstile.

Definition 7. A pair, consisting of a list of introduction rules of the form
(VII) and a list of elimination rules of the form (XII), satisfies the criterion
of recovery, if (XVIII) holds.

In the literature these two criteria, or criteria related to them, run un-
der different names. As examples we mention Belnap (1962) [1], Zucker
and Tragesser (1978) [41] and Dummett (1991) [6]. The reduction criterion
corresponds to “conservativeness” in the sense of Belnap. However, our cri-
terion is a weaker, and more local, condition, which does not say anything
about the global conservativeness of certain rules6. Zucker and Tragesser

6As a local condition, our reduction criterion applies to non-wellfounded phenomena,
something that would be ruled out by Belnap’s global conservativeness requirement. See
Section 6.
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speak of “validity”, Dummett speaks of “harmony”. The second criterion
corresponds to Belnap’s requirement of “uniqueness”, because getting from
the consequences of c back to c can be seen as deriving an identical copy c′

of c from c, which is exactly what uniqueness says7. Zucker and Tragesser
speak of “implicit definability”, which is, of course, related to uniqueness (see
Došen & Schroeder-Heister, 1988 [4]). Dummett uses the term “stability”.

We speak of harmony, when both criteria are met. Our terminology
differs from Dummett’s (1976, 1991) [5, 6], who tends to use “harmony”
for rules satisfying only the first criterion (or some global extension of it,
corresponding to conservativeness). For us “harmony” denotes the perfect
match between introductions and eliminations.

Definition 8. A pair, consisting of a list of introduction rules of the form
(VII) and a list of elimination rules of the form (XII), is in harmony, if it
satisfies both the criterion of reduction and the criterion of recovery, i.e., if
(XVII) and (XVIII) hold.

We also say that the elimination rules are in harmony with the introduc-
tion rules or vice versa, or that we have harmonious elimination rules given
certain introduction rules or vice versa.

It is almost trivial that the standard connectives with the usual intro-
duction and elimination rules are in harmony with each other.

Lemma 2. The pairs consisting of (∧ I) and (∧E), (∨ I) and (∨E), (→ I)
and (→E), (⊥ I)′ [or (⊥ I)] and (⊥E), (� I) and (�E)′ [or (�E)] are in
harmony.

Proof. For conjunction we have to verify

p1, p2 � p1 p1, p2 � p2 p1, p2, (p1, p2 ⇒ p1∧p2)� p1∧p2 ,

for implication

p1 ⇒ p2, p1 � p2 p1 ⇒ p2, ((p1 ⇒ p2) ⇒ p1 → p2)� p1 → p2 ,

for disjunction

pi, (p1 ⇒ r), (p2 ⇒ r)� r (i = 1, 2)
((p1 ⇒ r), (p2 ⇒ r) ⇒r r), (p1 ⇒ p1∨p2), (p2 ⇒ p1∨p2)� p1∨p2 ,

7However, in contexts not considered here, in which the premisses of introductions
or the conclusions of eliminations may contain logical constants, recovery can be weaker
than uniqueness. Recovery is related to what Naibo and Petrolo (2014) [18] discuss as
“deducibility of identicals”.
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for absurdity with (⊥ I)′

(⇒p p)� p (⇒p p), ((⇒p p) ⇒ ⊥)�⊥ ,

for absurdity with (⊥ I)

[vacuous] (⇒p p)�⊥ ,

for triviality with (�E)′

p� p (p ⇒p p), (⇒ �)��

and for triviality with (�E)

[vacuous] (⇒ �)�� . �

Given introduction rules of the form (VII) for c, we can easily verify
that the canonical elimination rule (VIII) for c is in harmony with the in-
troduction rules. Conversely, given elimination rules of the form (XII) for c,
the canonical introduction rule (XIII) for c is in harmony with the elimina-
tion rules.

Lemma 3. (i) The pair consisting of a list of c-introduction rules of the form
(VII) and the corresponding canonical c-elimination rule is in harmony.

(ii) The pair consisting of a list of c-elimination rules of the form (XII)
and the corresponding canonical c-introduction rule is in harmony.

Proof. For (i) we must show

Δi, (Δ1 ⇒−→q1

r), . . . , (Δm ⇒−→qm

r)� r (1 ≤ i ≤ m)

((Δ1 ⇒−→q1

r), . . . , (Δm ⇒−→qm

r) ⇒r r), (Δ1 ⇒−→q1
−→p c(−→p )), . . . ,

(Δm ⇒−→q1
−→p c(−→p ))� c(−→p ) .

For (ii) we must show

Ri �Ri (1 ≤ i ≤ k)
R1, . . . , Rk, (R1 ⇒−→p c(−→p )), . . . , (Rk ⇒−→p c(−→p ))� c(−→p ) .

These assertions follow immediately from Lemma 1. �
We do not claim that harmony, or, what would be sufficient, satisfaction

of the criterion of reduction implies normalization. The latter is a global
property affecting the derivations of a whole system, whose normalization
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depends on the particular formulation of introduction and elimination rules
and would normally need additional reductions such as permutative ones.
Our criterion of reduction, as a more local property, secures normalization
only in certain circumstances. However, if we take introduction rules to-
gether with the canonical elimination rule, then we can prove normaliza-
tion8, and similarly, if we take elimination rules together with the canonical
introduction rule9. The uniqueness of connectives follows immediately from
the satisfaction of the criterion of recovery.

5. A non-trivial example of harmony due to Hazen and Pel-
letier

In their contribution to this issue, Hazen and Pelletier (2014) [14, Section 3.4]
give introduction and elimination rules for a ternary connective � using
what in our terminology are higher-level rules with propositional quantifica-
tion. In our formalism their rules for � can, in two-dimensional notation,
be stated as follows:

�-introduction rule

p1, (p2 ⇒q q)
p3

(
p2, p3

q

)
q

(
(p2, p3 ⇒q q), ((p2 ⇒q q) ⇒ p3), (p1 ⇒ r), (p2 ⇒ r)

r

)
r

�(p1, p2, p3)

�-elimination rules

�(p1, p2, p3) p1

(
p2

q

)
q

p3

�(p1, p2, p3) p2 p3

q

�(p1, p2, p3)

(
p2, p3

q

)
q

p2 ⇒q q

p3

p1

r

p2

r

r

8Without propositional variables this is spelled out in all detail in Schroeder-Heister
(1981) [29] (in German).

9To spell out this normalization theorem would be an interesting exercise.
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It is obvious that the �-introduction rule is the canonical introduction
rule corresponding to the �-elimination rules. According to Lemma 3 this
means that �-introduction and �-elimination rules are in harmony with
each other.

From our perspective, this is a significant example of a connective that
is characterized by its elimination rules, and whose introduction rule is the
canonical one complementing the elimination rules in order to achieve har-
mony. It shows that the characterization of connectives by means of elim-
ination rules is not just a theoretical possibility discussed for reasons of
symmetry but useful in certain cases. At the same time it shows how im-
portant higher-level rules and propositional quantification at the rule level
are, because without them, neither the elimination rules themselves nor the
canonical introduction rule could be formulated. The significance of � de-
rives from the fact that �(p1, p2, p3) is equivalent to (p1∨p2) ↔ (p3 ↔ ¬p2),
a formula, of which Došen (1985) [3] could show that it represents a Sheffer
(i.e., expressively complete) connective for intuitionistic propositional logic.
Using propositional quantification at the rule level, Hazen and Pelletier have
given an explicit definition of this Sheffer connective in terms of harmonious
introduction and elimination rules.

6. Discussion

We have presented an approach to harmony, according to which the rela-
tionship between introduction and elimination rules is described without
reference to any logical vocabulary. Instead we have used an extended
concept of rule, namely rules of higher-levels with propositional quantifi-
cation. In the terminology proposed in Schroeder-Heister (2014b) [37] this
is a foundational approach to harmony in contradistinction to the reductive
approach followed there, where a logical system (second-order intuitionistic
propositional logic) is taken for granted and harmony is explained in terms
of formulas of that system. In particular, our notion of harmony covers
the standard connectives (Lemma 2), which cannot be achieved if they are
taken for granted. Many other examples of connectives (such as those given
in Schroeder-Heister, 2014b [37]) could be considered and dealt with in the
framework put forward here. Furthermore, we formulated a canonical elim-
ination rule corresponding to any list of introduction rules and a canonical
introduction rule corresponding to any list of elimination rules. We could
then show that we always achieve harmony by adding the canonical elimi-
nation to any list of introductions, or by adding the canonical introduction
to any list of eliminations (Lemma 3).
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If the introduction rules do not contain quantification in their premisses
we can always formulate a harmonious canonical elimination rule without
having to resort to propositional quantification, by just using schematic vari-
ables. However, when proceeding the other way round, we need to use ex-
plicit propositional quantification, as schematic letters in elimination rules
become quantified variables in the premisses of the canonical introduction.
Thus propositional quantification in rules is indispensable, if we start from
eliminations and want to generate appropriate introductions. That starting
from eliminations is not just a theoretical option is shown by the example
of Hazen and Pelletier (Section 5), which presents a significant connective
characterized in terms of elimination rules.

The usage of propositional quantification in rules, which goes beyond
the idea of rules of higher levels, also gives us a certain closure property
for the expressive means for defining connectives. This can be seen as fol-
lows. Suppose we start with introduction rules of level 1 or 2, i.e. rules
which do not discharge any assumption (such as disjunction introduction)
or enable the discharge of formulas as assumptions (such as implication in-
troduction). Then the corresponding canonical elimination rule is of level
2 or 3, respectively, i.e., the level increases by one. For example, while dis-
junction introduction (∨ I) is a level-1 rule, the canonical rule of disjunction
elimination (∨E) is a level-2 rule. Analogously, while the introduction rules

p1

p2(� I)
�(p1, p2, p3)

p3

�(p1, p2, p3)

for a ternary connective �10are of maximum level 2, the canonical elimination
rule corresponding to �-introduction, which has the form

�(p1, p2, p3)
p1 ⇒ p2

r
p3

r
(� E) r ,

is a rule of level 3. Once we are considering level-3 elimination rules, there
is no reason to disallow level-3 introduction rules, which would then lead
to level-4 canonical elimination rules etc. Thus we need the full range of
rules of all finite levels to formulate the systematics of introductions and
corresponding canonical eliminations.

In Olkhovikov and Schroeder-Heister (2014a) [19] it is shown that this
rise of level cannot be avoided, i.e. that there is no harmonious elimination

10Note that � is different from Hazen and Pelletier’s connective � discussed in Section 5.
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rule for � of level lower than 3, and in Olkhovikov and Schroeder-Heister
(2014b) [20] it is proved that this result extends to any higher level, i.e. that
for each level n there is an example of level-n introduction rules without
harmonious elimination rules of level n or below. Now let us start with an
elimination rule of level 2 such as

◦(p1, p2, p3)
p1

p2
(◦ E) p3

for a ternary connective ◦. Then its harmonious introduction rule
p1 ⇒ p2

p3(◦ I) ◦(p1, p2, p3)

is a level-3 rule, where again this level rise cannot be avoided, neither for ◦
nor for certain other connectives with eliminations of a given higher level n
(Olkhovikov and Schroeder-Heister, 2014a, 2014b [19, 20]). Moreover, the
canonical introduction rule needs to use propositional quantification, if the
given elimination rules use schematic variables, for example the canonical in-
troduction rule (XVI) for the connective � with the elimination rules (XV).
Once we are considering level-3 introduction rules with schematic variables,
there is no reason to disallow level-3 elimination rules, which would then
lead to canonical introduction rules of level 4 with quantification, and so on.
Therefore, if we allow for the means of expression that we need to formulate
canonical elimination or canonical introduction rules to be used also in the
(non-canonical) rules we start with, we need the full range of higher-level
rules with propositional quantification. Rules with propositional quantifi-
cation are not a strange system, but result as a very natural extension of
standard rules and lie at the heart of rule-based systems already at the propo-
sitional level. From this point of view Jaśkowski (1934) [15] had the right
intuition when he considered propositional quantification in his assumption
calculus even before he considered first-order quantification.

We have called our approach foundational, as it analyzes the general
systematics of introduction and elimination rules in terms of (quantified)
higher-level rules rather than in terms of formulas. However, it might be
questioned whether our foundational approach is so much different from a
reductive approach that uses formulas of second-order intuitionistic propo-
sitional logic PL2 instead. There is an obvious translation from rules into
formulas built up by using conjunction, implication and propositional quan-
tification. For example, the rule

((p, q ⇒ r), p, q) ⇒pqr r
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is translated into the formula

∀pqr(((p∧q→ r)∧p∧q)→ r) ,

and the rule
((p, s ⇒q q) ⇒ r) ⇒rs r

is translated into the formula

∀rs((∀q(p∧s→ q)→ r)→ r) .

From these examples the reader can easily construct a general definition of
the translation. If R∗ is the translation of the rule R, it can be shown that
whenever

R1, . . . , Rn �A

holds in the calculus of quantified higher-level rules, then

R∗
1, . . . , R

∗
n �PL2 A∗

and vice versa. This is due to the fact that the calculus of higher-level rules
and PL2 have corresponding inference principles, in particular the applica-
tion of rules as corresponding to modus ponens. Thus we can easily model
everything for which we used quantified higher-level rules by using PL2. In
this sense the calculus of rules and PL2 correspond to each other. However,
there is still a reason why the foundational approach based on (quantified
higher-level) rules is more basic than PL2. In our schema for the appli-
cation of rules (II), which lies at the heart of the foundational approach,
we just rely on the applicative behavior of rules, i.e., on the idea that rules
can only be applied (by passing from premisses to conclusion) rather than
established. We later on defined what it means to derive a rule, but only
as a metalinguistic abbreviation, not as a formal step. In a derivation rules
can be applied, i.e., stand next to an inference line, but what is obtained at
each inference step is a formula, i.e. an entity which does not contain the
rule arrow ⇒. In contradistinction to this idea, the calculus PL2 uses the
idea that implications can be applied via modus ponens, and established via
implication introduction. It therefore uses a more elaborate notion of impli-
cation than the sort of implication which is represented by the rule arrow
⇒. It is the idea of our foundational approach to single out the applicative
aspect of rules as that aspect of implication which is most basic, and which
is lost when one starts with full implication with introduction and elimina-
tion rules. Something similar holds for quantification. The quantification

1211



28 P. Schroeder-Heister

in rules is part of their applicative behavior, whereas the PL2 rules for the
universal quantifier comprise both introductions and eliminations. Thus, in
a sense, our foundational rule-based approach singles out the elimination as-
pect of implication and universal quantification, which is logically expressed
by elimination rules. Something similar can be said of conjunction, which
in the rule context is handled by singling out comma-separated formulas,
which corresponds to conjunction elimination. If we take implication to
be the most fundamental connective and the rule arrow as representing the
modus ponens aspect of implication, the slogan of our foundational approach
should be: In Defence of Modus Ponens. The logic of rules is the logic of
modus ponens governed implication.11

We finish by mentioning some possible directions of further work:
1. Our approach can be applied to circular and non-wellfounded phenom-

ena. The definitions of the criteria of reduction and recovery, and of
harmony can, for example, be applied if we allowed for self-referential
introduction and elimination rules. For example, the introduction and
elimination rules for the (nullary) connective �(

�

p

)
p

�

� �

p

are in harmony with each other, since both reduction and recovery crite-
ria are met. This reaffirms the fact that our criteria are local rather than
global criteria, as globally, these rules lead to a contradiction. It will
be interesting to generalize our notion of harmony in a systematic way
beyond the well-founded case (considered here for reasons of simplicity)
to analyze, for example, paradoxical reasoning. Self-referential defini-
tions of constants with canonical elimination rules have, for example,
been considered by Hallnäs (1991) [12], Hallnäs and Schroeder-Heister
(1991/92) [13] and Read (2010) [27].

2. We have used propositional quantification in rules in order to charac-
terize propositional connectives. The next step would be to also con-
sider introduction and elimination rules for propositional and first-order

11Therefore we do not think that modus ponens can be replaced throughout with its
indirect variant proposed by Dyckhoff (1988) [7], Tennant (1992, 2002) [38, 39], Lopez-
Escobar (1999) [16] and von Plato (2001) [22], or by the canonical (higher-level) elimination
rule proposed in Schroeder-Heister (1984b) [31] (see the discussion in Schroeder-Heister,
2014a [36]). Even though these approaches have their proof-theoretic merits in many
contexts, they cannot supersede modus ponens as the most basic and primitive aspect of
implication, a conclusion also reached by Dyckhoff (2009, 2014) [8, 9].
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quantifiers. We have refrained from this here, as it would have opened
up a new field only marginally relevant to the point we wanted to make.
Considering arbitrary quantifiers in formulas means to enter the area of
generalized quantifiers, which requires a more sophisticated way of deal-
ing with schematic variables. Without propositional quantification, for
an approach based on a generalized canonical elimination rule, this idea
is worked out in Schroeder-Heister (1984a) [30].

3. Here we have only dealt with intuitionistic logic. This logic is most clearly
related to modus ponens based implication and thus to the concept of
rule. In classical, linear and many variants of substructural logics one
might prefer to work in a sequent-style rather than a natural deduction
framework. Some ideas towards a harmony principle in that realm have
been presented in Schroeder-Heister (2013) [35].

4. The idea of harmony should be investigated in relation to monotone and
partial inductive definitions (see Hallnäs, 1991 [12]). These approaches
are based on introduction rules for atomic formulas or predicates as in-
ductive clauses, using explicitly or implicitly a canonical elimination rule.
It might be interesting to develop a notion of elimination clauses together
with an appropriate notion of harmony, or at least develop a dual ap-
proach based on elimination clauses together with the canonical intro-
duction rule. It will be interesting to see if such an approach makes any
sense computationally, as is the case with the inductive one (e.g., in the
form of logic programming). Some very rough ideas towards dualizing
inductive introduction clauses have been described in Schroeder-Heister
(2011, in German) [34].

5. Our criteria of reduction and recovery and our notion of harmony are
restricted to introduction and elimination rules of a particular form. In
proof-theoretic semantics there is a tradition coined by Prawitz (1973,
1974) [24, 25] and continued by Dummett (1991) [6] that develops a no-
tion of validity, which is defined with respect to introduction inferences,
but can be applied to any derivation or rule, i.e. it is not tied to inference
rules of a specific form. For example, according to Prawitz’s notion of
validity, the rule

p→ (q→ r)

q→ (p→ r)

is valid, though it does not have the form of an elimination rule (see
Schroeder-Heister, 2006 [33]). It should be investigated, how this notion
of validity relates to our notion of harmony. One might conjecture that
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all valid rules can be derived if we supplement all introduction rules with
harmonious elimination rules, i.e., that harmonious introductions and
eliminations deductively capture everything that is valid. This means
that all valid rules are derivable in intuitionistic logic, which represents
a kind of completeness conjecture. Such a completeness conjecture has
been put forward by Prawitz (1973, and several later publications) [24],
but has recently be challenged by Piecha et al. (2014) [21].
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Aussagenverknüpfungen, Doctoral dissertation, Universität Bonn [see author’s home-

page].

[30] Schroeder-Heister, P. (1984a) Generalized rules for quantifiers and the complete-

ness of the intuitionistic operators ∧, ∨, → , ⊥, ∀, ∃, in M. M. Richter, E. Börger,

W. Oberschelp, B. Schinzel, and W. Thomas, (eds.), Computation and Proof The-

ory. Proceedings of the Logic Colloquium held in Aachen, July 18-23, 1983, Part II.

(Lecture Notes in Mathematics Vol. 1104), Springer, Berlin, pp. 399–426.

[31] Schroeder-Heister, P. (1984b) A natural extension of natural deduction, Journal

of Symbolic Logic 49:1284–1300.

[32] Schroeder-Heister, P. (1987) Structural Frameworks with Higher-Level Rules, Ha-

bil. thesis, Universität Konstanz [see author’s homepage].

1215



32 P. Schroeder-Heister

[33] Schroeder-Heister, P. (2006) Validity concepts in proof-theoretic semantics, Syn-

these 148:525–571.

[34] Schroeder-Heister, P. (2011) Schluß und Umkehrschluß: Ein Beitrag zur Defi-

nitionstheorie, in C. F. Gethmann (ed.), Lebenswelt und Wissenschaft. Kolloquien-
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