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Readings

• Knut Sydsaeter and Peter Hammond. Essential Mathematics

for Economic Analysis.
Prentice Hall, third edition, 2008 Chapters 15-16

• Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne

Strøm. Further Mathematics for Economic Analysis.
Prentice Hall, 2008 Chapter 1
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Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

• Lecture 1: Vectors, Matrices
https://www.youtube.com/watch?v=ZK3O402wf1c

• Lecture 3: Multiplication and Inverse Matrices
https://www.youtube.com/watch?v=QVKj3LADCnA

• Lecture 9: Independence, basis and dimension
https://www.youtube.com/watch?v=yjBerM5jWsc

• Lecture 18: Properties of determinants
https://www.youtube.com/watch?v=srxexLishgY
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1.1 Vectors
Vector operations

multiplication of an n-dimensional vector v with a scalar c ∈ R:

c · v
(n×1)

=

 c · v1
...

c · vn


sum of two n−dimensional vectors v und w :

v
(n×1)

+ w
(n×1)

=

 v1 + w1

...
vn + wn


The di�erence between two n−dimensional Vectors v and w is
obtained by v − w = v + (−1)w .
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1.1 Vectors
Vector operations

Inner product (Scalar product) v ,w ∈ Rn:

v
′

(1×n)
w

(n×1)
=

n∑
i=1

viwi

(1×1)

Orthogonality of two vectors: v ,w ∈ Rn:

v
′

(1×n)
w

(n×1)
=

n∑
i=1

viwi

(1×1)

= 0
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1.2 Matrices
Matrix operations

Multiplication with a scalar:

C = k · A ⇔ cij = k · aij ∀ i , j .

Addition (Subtraction) of matrices:
for two matrices A and B with the same dimensions

C = A± B ⇔ cij = aij ± bij ∀ i , j .
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1.2 Matrices
Matrix multiplication

C = A · B

with

ckl =
m∑
i=1

aki · bil

Note: Conformity and dimensionality.

C
(n×p)

= A · B
(n ×m) (m︸ ︷︷ ︸

conformity

× p

︸ ︷︷ ︸
dimensionality

)
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1.2 Matrices
Rules of matrix multiplication

Given conformity, it holds that:

• (A · B) · C = A · (B · C ) (associative law)

• (A+ B) · C = A · C + B · C (distributive law from the
right)

• A · (B + C ) = A ·B +A · C (distributive law from the left)

Power of a matrix: For a quadratic matrix A we calculate the
non-negative integer power as follows:

A
n = AA · · ·A︸ ︷︷ ︸

ntimes

with n > 0

special case: A0 = I .
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1.2 Matrices
Kronecker product

A is m × n and B is p × q, then the Kronecker product A⊗ B is
the mp × nq block matrix

A⊗ B =


a11B . . . a1nB
a21B . . . a2nB
...

. . .
...

am1B . . . amnB
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1.2 Matrices

Idempotent matrix:
A quadratic matrix A is idempotent if: A2 ≡ AA = A.

Trace of a quadratic matrix:

tr(A) ≡
n∑

i=1

aii
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1.3 Inverse of a quadratic matrix

The inverse of a matrix A, expressed by A−1, has the following
characteristics:

A · A−1 = A
−1 · A = I

Note:

1.) The matrix A has to be quadratic (due to conformity).
Otherwise it is not invertible.

2.) The inverse doesn't have to exist for every single quadratic
matrix.

3.) If there is an inverse, we call the quadratic matrix non-

singular or regular, otherwise we call it singular.
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1.3 Inverse of a quadratic matrix

4.) If there is an inverse, then it is unambiguous.

Characteristics (for non-singular matrices A,B):

• (A−1)−1 = A

• (AB)−1 = B
−1
A

−1

• (A′)−1 = (A−1)′
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1.4 The determinant
What is a determinant? Some intuition and why it is important!

The determinant ...

... is a single number that contains information about a square
matrix A.

... tells us whether the matrix A is singular.

... turns up in most formulas in linear algebra, e.g. for the
calculation of inverses or the determination of the rank of the
matrix.

... is informative w.r.t. eigenvalues and whether the matrix can
be positive, negative or inde�nite.

1. Linear Algebra 14/34



1.4 The determinant
How to calculate the determinant - Sarrus' Rule

For a 2× 2 matrix

A =

(
a
11

a
12

a
21

a
22

)
the determinant is de�ned as follows:

det(A) = | A | = a11 a22 − a12 a21
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1.4 The determinant

An important application:

In general we can show that the determinant of a quadratic matrix
with linearly dependent columns (or rows) has a zero
determinant.

=⇒ The determinant criterion gives us information about the linear
dependency (or independency) of the rows (or rather columns) of a
matrix as well as about the existence of its inverse.

=⇒ If det(A) = 0 the matrix is singular, whereas if det(A) ̸= 0 it is
invertible!

1. Linear Algebra 16/34



1.4 The determinant

An important application:

In general we can show that the determinant of a quadratic matrix
with linearly dependent columns (or rows) has a zero
determinant.

=⇒ The determinant criterion gives us information about the linear
dependency (or independency) of the rows (or rather columns) of a
matrix as well as about the existence of its inverse.

=⇒ If det(A) = 0 the matrix is singular, whereas if det(A) ̸= 0 it is
invertible!

1. Linear Algebra 16/34



1.4 The determinant

An important application:

In general we can show that the determinant of a quadratic matrix
with linearly dependent columns (or rows) has a zero
determinant.

=⇒ The determinant criterion gives us information about the linear
dependency (or independency) of the rows (or rather columns) of a
matrix as well as about the existence of its inverse.

=⇒ If det(A) = 0 the matrix is singular, whereas if det(A) ̸= 0 it is
invertible!

1. Linear Algebra 16/34



1.4 The determinant
How to calculate the determinant - Cofactor expansion

Calculation of the determinant for general n × n matrices:
Cofactor expansion across a row i :

det(A) =
n∑

j=1

(−1)i+j aij | Aij |

Alternatively: Cofactor expansion down a column j :

det(A) =
n∑

i=1

(−1)i+jaij | Aij |

Note: The product (−1)i+j | Aij | is called cofactor and Aij is the
minor.
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1.4 The determinant

The determinant of the (3× 3)-matrix A is de�ned as

det(A) = a11· | A11 | − a12· | A12 | + a13· | A13 |

(cofactor formula)
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1.4 The determinant

Illustration:

A

(3×3)

=

 a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33


Determining the submatrices:

Elimination of the 1st row and the 1st column of A yields the
submatrix A11 of dimension (2× 2):

A

(3×3)

=

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =⇒ A11

(2×2)

=

(
a22 a23
a32 a33

)
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1.4 The determinant

Elimination of the 1st row and the 2nd column of A yields the
submatrix A12 of dimension (2× 2):

A

(3×3)

=

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =⇒ A12

(2×2)

=

(
a21 a23
a31 a33

)

Elimination of the 1st row and the 3rd column of A yields the
submatrix A13 of dimension (2× 2):

A

(3×3)

=

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =⇒ A13

(2×2)

=

(
a21 a22
a31 a32

)

The determinants |Aij | of the submatrices Aij are called
subdeterminants; They can be calculated using the Sarrus' Rule

(if of order of 3 or lower)
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1.4 The determinant
How to calculate the determinant - Sarrus' Rule revisited

Extension of the 3× 3 matrix A for the application of the Sarrus'

Rule:

A
⋆ =

a
11

a
12

a
13

a
11

a
12

a
21

a
22

a
23

a
21

a
22

a
31

a
32

a
33

a
31

a
32



det(A) = a11 a22 a33 + a12 a23 a31 + a13 a21 a32

− a13 a22 a31 − a11 a23 a32 − a12 a21 a33
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1.4 The determinant
Properties of determinants

for A and B with dimension n × n:

1.) The exchange of two rows or two columns of a matrix leads to
a change in the sign of the determinant.

2.) The determinant doesn't change its value if we add the
multiple of a row (column) to another row (column) within a
matrix. Elimination does not change the determinant.

3.) The determinants of a matrix and its transpose are equal:

det(A) = det(A′)

4.) Multiplying all components of a n × n matrix with the same
factor k leads to a change in the value of the determinant by
the factor kn: Determinant is linear in each row.

det(kA) = kn det(A)
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1.4 The determinant
Properties of determinants

5.) The determinant of every identity matrix is equal to 1; the
determinant of every zero matrix is equal to 0.

6.) The determinant of the product of A and B equals the
product of the determinants of A and B:

det(A · B) = det(A) · det(B)

7.) From 6.) follows for a regular matrix A that:

det(A−1) =
1

det(A)

8.) In general: det(A+ B) ̸= det(A) + det(B).

1. Linear Algebra 23/34



1.4 The determinant
Properties of determinants

5.) The determinant of every identity matrix is equal to 1; the
determinant of every zero matrix is equal to 0.

6.) The determinant of the product of A and B equals the
product of the determinants of A and B:

det(A · B) = det(A) · det(B)

7.) From 6.) follows for a regular matrix A that:

det(A−1) =
1

det(A)

8.) In general: det(A+ B) ̸= det(A) + det(B).

1. Linear Algebra 23/34



1.4 The determinant
Properties of determinants

5.) The determinant of every identity matrix is equal to 1; the
determinant of every zero matrix is equal to 0.

6.) The determinant of the product of A and B equals the
product of the determinants of A and B:

det(A · B) = det(A) · det(B)

7.) From 6.) follows for a regular matrix A that:

det(A−1) =
1

det(A)

8.) In general: det(A+ B) ̸= det(A) + det(B).

1. Linear Algebra 23/34



1.4 The determinant
Properties of determinants

5.) The determinant of every identity matrix is equal to 1; the
determinant of every zero matrix is equal to 0.

6.) The determinant of the product of A and B equals the
product of the determinants of A and B:

det(A · B) = det(A) · det(B)

7.) From 6.) follows for a regular matrix A that:

det(A−1) =
1

det(A)

8.) In general: det(A+ B) ̸= det(A) + det(B).

1. Linear Algebra 23/34



1.4 The determinant
Properties of determinants

9.) If det(A) = 0 the matrix has linearly dependent rows
(columns) and is singular.

10.) The determinant of an upper (lower) triangular matrix n × n
matrix U is given by the product of the diagonal entries:

det(U) =
n∏

i=1

di

11.) The determinant of a diagonal matrix n × n matrix D is given
by the product of the diagonal entries:

det(D) =
n∏

i=1

di

.
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1.5 Calculation of the inverse

We can determine regularity/non-singularity/invertibility of the
square matrix A using the determinant. It holds that

det(A) ̸= 0 ⇔ A
−1 exists.
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1.5 Calculation of the inverse

In general: The inverse of the n × n matrix A is denoted as

A
−1 = B =

 b
11

. . . b
1n

...
...

bn1 . . . bnn

 .

We get every single element of B by

bij =
1

| A |
(−1)(i+j) | Aji | . (note the index!)

In order to get the element bij , you have to calculate the
subdeterminant Aji crossing out the j−th row and the i−th column
of A.
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1.6 Linear independence and rank of a matrix
Linear combination of vectors

De�nition: linear combination

For the vectors v
1
, v

2
, . . . , vk ∈ Rn a n-dimensional vector w is

called linear combination of vectors v
1
, v

2
, . . . , vk , if there are

real numbers c
1
, c

2
, . . . , ck ∈ R, such that:

w = c1 · v1 + c2 · v2 + · · ·+ ck · vk =
k∑

i=1

ci · v i .
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1.6 Linear independence and rank of a matrix
Linear independence

De�nition: linear independence

The vectors v1, v2, . . . , vk ∈ Rn are called linearly independent,
if

c1 · v1 + c2 · v2 + · · ·+ ck · vk = 0 with c1, c2, . . . , ck ∈ R

is only attainable with c
1
= c

2
= · · · = ck = 0. Otherwise they are

called linearly dependent and v1 = d2 · v2 + · · ·+ dk · vk (with
d2, d3, . . . , dk ∈ R) applies.
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1.6 Linear independence and rank of a matrix
The rank of a matrix

The rank of the n ×m matrix A is determined by the maximum
number of linearly independent columns (rows) of the matrix A.

rk(A) ≤ min(m, n)

For every matrix the column rank equals the row rank.
The rank criterion allows to determine whether a quadratic n × n
matrix A is regular/non-singular or not:

rk(A) = n ⇒ non − singular

rk(A) < n ⇒ singular
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1.6 Linear independence and rank of a matrix
Properties of the rank

1.) The rank of a matrix doesn't change if you exchange rows or
columns among themselves.

2.) The rank of a matrix A is equal to the rank of the transpose
A

′: rk(A) = rk(A′)

3.) For a m × n matrix A the following applies: rk(A) = rk(A′
A),

where A′
A is quadratic.
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1.6 Linear independence and rank of a matrix
Determination of the rank of a matrix

1.) Consider all quadratic submatrices of a matrix of which the
determinants are not 0. Then search for the submatrix with
the highest order whose determinant is nonzero. The rank of
the matrix is equal to the number of rows of this submatrix.

2.) Gaussian algorithm

3.) Eigenvalues
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1.7 Linear equation systems
Linear combinations in matrix notation

Rewrite
∑k

i=1
ci · v i = w as

(
v1 v2 . . . vk

)︸ ︷︷ ︸
A


c1
c2
...
ck


︸ ︷︷ ︸

x

= w︸︷︷︸
b

where A · x = b and

• A is an n × k dimensional matrix

• x is an k × 1 dimensional vector

• b is an n × 1 dimensional vector.
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1.7 Linear equation systems
How to solve a linear equation system

1 If n > k , i.e. there are more equations than unknowns, then
there are in�nitely many solutions to the equation.

2 If n < k , i.e. there are fewer equations than unknowns, the
system cannot be solved.

3 If n = k , A · x = 0 is called a homogenous linear equation
system. The equation system has a solution in any case. If A is
singular, i.e. det(A) = 0, it has non-trivial solutions (in�nitely
many). If A is invertible, it has the trivial solution x = 0.

4 If n = k , i.e. there are as many equations as unknowns, and
the matrix A is invertible (rk(A) = n and det(A) ̸= 0), then
there exists a unique solution!
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1.7 Linear equation systems
How to solve a linear equation system

For n = k and det(A) ̸= 0, three solution methods exist

1 solve A · x = b by Gaussian elimination

2 use the inverse A−1 to solve x = A
−1
b

3 use Cramer's rule to get each element xj in the vector x :

xj =
|A(j)|
|A|

where in A(j), the j th column of A is replaced by b.
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