Chapter 5
Anticipatory, Goal-Directed Behavior

Martin V. Butz, Oliver Herbort, and Giovanni Pezzulo

As Man is a reasonable Being, and is continually in Pursuit of Happiness, which he hopes
to find in the Gratification of some Passion or Affection, he seldom acts or speaks or thinks
without a Purpose and Intention. He has still some Object in View; and however improper
the Means may sometimes be, which he causes for the Attainments of his End, he never
loses View of an End, nor will he so much as throw away his Thoughts or Reflections,
where he hopes not to reap any Satisfaction from them. (Hume, 1748, pg. 33-34)

David Hume may be one of the first who thought about the causes that actually en-
able us to act goal-directedly in our pursuit of happiness. Besides having usually an
end, or goal, in mind, Hume realized that the end must elicit those means that were
learned to correlate with the end. Such correlation knowledge, according to Hume
(1748), was based on three types of connecting “ideas”: resemblance, contiguity in
time and place, and cause and effect. Knowledge of correlations and cause-effect
relations alone, though, do not directly lead to effective behavior. Thus, not only the
question how we learn correlations in the environment needs to be addressed, but
also how we can exploit the obtained knowledge, if learned properly. While Hume
did mainly address the former question, the latter question was acknowledged by
Hume only in so far that the acquired knowledge may be used to pursue our goals.

Another related line of research on causation is put forward by Kant (1998).
Sloman (2006) contrasted a ‘Humean’ and a ’Kantian’ view of understanding corre-
lations and causations in particular. The former is evidence-based, probabilistic, and
statistical. The latter is structure-based and deterministic. Kant highlights the role
of concepts and necessity in contrast with the Humean emphasis on observation and
correlation. The Kantian notion of causation is more complex and requires under-
standing of spatial structures and relationships as well as the capability to reason
about what happens when they change. While humans are usually seen as explor-
ers that learn correlations in the world based on experimentation—and thus more
"Humean’ evidence-based—they rely on and inevitably detect the ’Kantian’ a priori
structures in our world given due to time, space, and physical constraints.

Just like humans, all other anticipatory systems, both biological and artificial,
need to learn and store knowledge about themselves and the world. Only this knowl-
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edge enables them to predict future events, gauge the consequences of one’s own ac-
tions, and finally interact competently and intelligently with objects or other agents.
Thus, one of the questions addressed in this chapter is how knowledge about the
world or the self may be represented.

However, regardless if we acquire knowledge based on "Humean’ or ’Kantian’
principles, or both, just having gathered knowledge about the world does not mean
per se that our decisions will be wise and our actions will be appropriate. It is not
even clear how predictive knowledge may be turned into actual decisions in gen-
eral. The ideomotor principle, which dates back to the 19-th century (James 1890;
Herbart 1825; cf. Hoffmann et al. 2004), suggests that actions are bi-directionally
linked to the effects they usually produce. Thus, once a goal is chosen and activated,
the bi-directional links point to those actions that previously caused the goal to come
about. While this still does not clarify the actual mechanism of selecting the appro-
priate means, it implies that an inverse mechanism is necessary that stores means to
achieve current goals.

With the ideomotor principle as the basic principle of goal-directed behav-
ior in mind, this chapter analyzes related predictive and anticipatory systems that
learn predictive representations of their environment and can use those to act goal-
directedly. Predictive systems are systems that are able to predict sensory inputs or
pre-processed, more abstracted perceptual input. From an adaptive behavioral per-
spective most important are systems that learn such predictive representation. These
predictive capabilities are an important part of any goal-directed behavioral system
that is explicitly anticipatory. However, as suggested in the comparison of the in-
sights put forward by David Hume and the ideomotor principle, predictive capabili-
ties are only the first step toward an anticipatory behavioral system. Thus, the second
question that this chapter addresses refers to the structures and processes that enable
the selection of actions or decision making, based on the acquired knowledge.

We identify two fundamental classes of approaches that realize action selection
based on predictive representations of sensory-motor correlations. First, schemas
form a mental (internal) predictive world model, which encodes all kinds of prop-
erties, independent of possible tasks and goals. Although the representation might
correspond to an exhaustive internal world model, the schemas alone cannot be
used directly for decision making or action selection. Before a decision and action
is made, internal processes are required that evaluate possible means in the light
of current behavioral goals and desired states. Even more so, to be able to make
complex decisions or execute meaningful actions, many schemas may have to be
combined. Thus, schema approaches generally build a forward model that is used
inversely for action selection.

Second, inverse models—in contrast to schema approaches—encode direct con-
nections between behavioral goals and actions. Thus, they may be directly used for
action decision making without any further processing. Inverse models can be seen
as the result of abstracting or aggregating schemas because they focus on a gen-
eralized, inverted representation of properties in the world. In this sense, they can
also be considered a world model, which is however rather limited compared to the
world models realized in schema approaches.
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Accordingly, this chapter first gives an overview of several kinds of schema ap-
proaches and inverse modeling approaches. We classify each system from an antic-
ipatory behavior perspective discussing how knowledge is represented and which
processes are necessary to turn anticipatory knowledge into behavior. As we cannot
review all architectures that have been proposed to date, we exemplify each class of
anticipatory behavioral systems with a representative model. Examples are chosen
to provide details of state-of-the-art models of goal-directed behavior and to cover
a broad range of approaches, including symbolic, subsymbolic, and neural models
as well as supervised, unsupervised, and reinforcement learning approaches.

In the next section, we first give a brief history of schemas and provide a defini-
tion. We then distinguish different schema system classes and give system examples.
Similarly, we discuss inverse model approaches, combinations of both approaches
and other advanced techniques. In the second part of the chapter, we assess weak-
nesses and strengths of the architectures in learning and representing predictions
and in using those predictions for the generation of anticipatory cognitive functions.
Finally, we contrast the systems’ capabilities and give an outlook on potential future
macroscopic organizational structures for anticipatory systems, especially highlight-
ing hierarchical and modular structures.

5.1 A Brief History of Schemas

Originally, psychology and cognitive sciences suggested that knowledge about our
world is represented by schemas. Drescher (1991) concisely defined a schema as a
representation of a triple that links a situation or condition, an action, which may be
carried out in this situation, and subsequent effects. How the knowledge is turned
into actual behavioral decision making and control remains unspecified. However,
any schema representation may be considered as a structure that represents sensory-
motor correlations, that is, how motor activity usually affects the perceived environ-
ment.

Historically, the term ‘schema’ may have been firstly introduced by Bartlett
(1932) referring to a map or structure of knowledge stored in long-term memory.
Successively, Piaget (1954) described schemas in a more operational sense, roughly
as mental representations of some physical or mental action that can be performed
on an object or event. He considered schemas the building blocks of thinking and
as the basic structure underlying behavior and cognition (in a process that he de-
scribed as ‘assimilation and accommodation’). Schmidt (1975) proposed complex
schema structures, which encode generalized motor programs for a variety of tasks
and internal models of the sensory inputs that accompany movement execution.

Also many approaches in the field of artificial intelligence are based on the
schema notion, including frames (Minsky, 1988), scripts (Schank and Abelson,
1977), schemas (Arbib, 1992, 1989; Drescher, 1991; Neisser, 1976; Norman and
Shallice, 1986; Pezzulo and Calvi, 2007b; Shapiro and Schmidt, 1982), anticipa-
tory classifiers (Butz, 2002a; Butz and Hoffmann, 2002; Gérard and Sigaud, 2001;
Gérard et al., 2005; Stolzmann, 1998), neural schemas (Mccauley, 2002), semi-
otic schemas (Roy, 2005), and behaviors (Brooks, 1991; Maes, 1990). Architec-
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tures including distributed and competitive functional units are often referred to
as ‘behavior-based’ or ‘schema-based’. Several integrated frameworks have been
proposed for designing them; among the most popular ones we can mention the
behavior-based approach proposed in Arkin (1998), the NSL/ASL in Weitzenfeld
et al. (2000), and the Robot Schema (RS)—a formal language for designing robot
controllers proposed in Lyons and Arbib (1989), which includes perceptual and mo-
tor schemas. Drescher (1991) was one of the first who implemented a functional
schema-based approach showing simple goal-directed behavioral capabilities.

Schema theories are strongly motivated by biological and ethological models—
some of the first implementations intended to replicate the behavior of the cock-
roach or the praying mantis in robots (Arkin et al., 2000). In general, a schema links
conditions, actions, and result components, which are sometimes also called (sub-)
schemas. This enables the control system to execute those actions whose conditions
are currently satisfied (that is, schemas that apply) and whose result components
appear currently desirable. Often, schema theories stress the importance of proce-
dural knowledge, that is, a schema constitutes the long term memory of perceptual
or motor skills, or the structure coordinating such skills. Schemas are especially
well-suited for parallel and distributed systems, since they can be seen as concur-
rent computing units.

While several researchers have described the usage of schemas in the perspec-
tive of reactive and behavior-based robotics (Arkin, 1998; Brooks, 1991), schemas
embed a predictive component that is used for action selection. Moreover, percep-
tual schemas are often shaped for motor actions. That is, schema representations
are usually essential for motor actions. Thus, although not necessarily explicitly an-
ticipatory, schemas serve for the control of behavior with a predictive component.
Which schema representations exists and how these representations may be turned
into behavior is discussed in the following section on the basis of various system
examples.

5.2 Schema Approaches

Schemas integrate situations, actions, and their effects, mostly independent of up-
coming tasks, potential goals, or any constraints. However, as these schemas are not
related or specific to a certain task or goal, they cannot be directly used for deci-
sion making or action selection. For example, consider a schema that specifies that
when holding a cup (condition) and drinking out of it (action), thirst will decline
(effect) and another schema that specifies that when in a kitchen and grasping a cup,
the cup will be held by the hand. Now, given the goal of wanting to quench one’s
thirst, and given further the fact of being currently in the kitchen, then both schemas
my be integrated suggesting that when grasping the cup and then drinking from it
may quench the thirst. However, note that there is no schema that directly specifies
what to do given the goal of quenching thirst, rather, little pieces of schema-based
information need to be integrated into a more complex decision or action.

In the following sections we review several classes of schema approaches that
differ in both, the form of the knowledge representation and the processing of the
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knowledge. We begin with a review of symbolic knowledge representations, from
which actions may be derived by comparing expected results, planning, or the gener-
ation of a behavioral policy. Then, neural network approaches are discussed, which
ground schemas on simple perceptions and derive actions from planning processes
or the preparation of a controller by dynamic programming.

5.2.1 Symbolic Schemas for Policy Learning

An approach for using world model representations to improve policy learning
and effectively generating an action policy is the tabular DYNA-PI model (Sutton,
1990), which may be considered as one of the simplest schema-based approaches.
As in all reinforcement learning approaches, the core is an actor-critic architecture
(Sutton and Barto, 1998). The critic implements an “evaluation function” and the
actor an “action policy”. The evaluation function assigns a reward or reinforcement
value to each possible state-action pair. The action policy determines which action
to take in a specific state. In addition to this actor-critic model, DYNA-PI learns a
predictive world model. This model is composed of two functions, a state transition
function and a reward function (both functions may be stochastic). Both functions
are learned by initially random interactions with the environment. The world model
is used to predict the consequences of actions, in terms of reward and future states of
the world. The action policy, due to a reward-backpropagation mechanism, realizes
the inversion process. Behavior is triggered, by choosing that action that is expected
to yield the highest reward in the long run, which is effectively a form of payoff
anticipation.

The key idea of the DYNA-PI model is that an agent endowed with a world model
can produce “simulated experiences”, besides the experiences gathered during ac-
tual environment interactions. Thus, the evaluator and actor can be further trained
on simulated experiences. If the learned world model is accurate enough, this “men-
tal training” will speed-up the improvement of behavioral performance in the real
world. Thus, besides payoff anticipations, DYNA-PI uses internal simulations of
anticipated events to improve its behavior—a form of state anticipation.

Reinforcement learning approaches were recently also carried-over to logic-
based representations, in which case they are often referred to as relational rein-
forcement learning. Kersting et al. (2004) applied reinforcement learning ideas to
a logic-based, relational world model framework. Using reward propagation tech-
niques and a matcher mechanism, desired goal states were activated and propa-
gated through the logic-based relational world model. The first-order logic-based
abstractions in the world model showed to improve behavior and planning capa-
bilities significantly, also enabling generalizations to similar contexts dependent on
the relational logic-based representation available. Thus, besides tabular representa-
tions, generalized relational schema-like representations can be applied effectively
combining world model representations with policy learning. Another challenge,
however, is to learn a suitable generalized schema representation from experience
alone, which is addressed in the subsequent sections.
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5.2.2 Symbolic Schemas and Prediction for Selection

A prominent example of an online generalizing world model learner are Anticipa-
tory Learning Classifier Systems (ALCSs, Stolzmann, 1998). These learning sys-
tems are inspired by the psychological principle of anticipatory behavior control
(Hoffmann, 1993; Hoffmann et al., 2004), as well as by the schema approach of
Drescher (1991) and DYNA-PI. ALCSs learn a generalized predictive model of an
environment online. Predictive knowledge is stored in condition-action-effect rules,
called classifiers, that represent a schema-based world model. The ACS2 system
(Butz, 2002a) combines heuristic search with genetic mechanisms to generalize the
predictive world model online.

As DYNA-PI, ACS (Stolzmann, 1998) originally included reward values directly
in the schema representations. Given a generalized schema representation, however,
reward aliasing can occur in which case the schemas may be sufficiently accurate
to predict action effects but may be over-general to represent an optimal behavioral
policy (Butz, 2002a). Consequently, XACS (Butz and Goldberg, 2003) was devel-
oped, which separates state value and schema learning. XACS is a combination of
ACS2’s model learning capabilities with the evolutionary online generalizing RL
mechanism XCS (Wilson, 1995). The system learns online a generalized state value
function, which is represented by a set of condition-value tuples, using XCS-based
techniques. Moreover it learns a generalized world model according to the model
learning techniques of ACS2. In reinforcement learning terms, XACS learns gener-
alized representations of the state transition function of a Markov decision process
(MDP) as well as of the underlying value function.

As opposed to selecting an action based on the best applicable schema, action
selection then becomes a two-stage process in which all applicable schemas predict
possible next outcomes and the schema is chosen for execution that predicts the
maximally suitable outcome, that is, the outcome that is expected to yield the highest
value according to the learned state value evaluation function. Thus, the inversion
of the predictive capabilities takes place during action selection as well as by means
of reward back-propagation mechanisms while learning the value function. More
complex decisions or behaviors may be elicited if planning mechanisms are used to
combine many schemas.

XACS has shown to be able to robustly learn compact representations of optimal
behavioral policies. Policy learning was further sped-up by exploiting the knowl-
edge of the predictive model using the DYNA-based update techniques discussed
above (effectively speeding-up the adaptation of the value function). Thus, XACS
is a schema system that combines a schema representation with a state value repre-
sentation to learn a compactly represented optimal behavioral policy quickly, accu-
rately, and reliably.

Recent gradient-based update mechanisms in XCS (Butz, 2006) can improve per-
formance of XACS, so that XACS promises to serve as a robust learner in large, high
dimensional MDP problems. With respect to behavioral plausibility, it was shown
that ACS2 can be used to simulate the learning of behavioral patterns previously
observed in rats (Butz and Hoffmann, 2002). Moreover, since XACS is a system
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that learns online and from scratch, the implementation of an enhanced XACS sys-
tem is possible, which may comprise multiple, interacting reward learning modules
that may be additionally controlled by motivational and emotional constraints. For
example, dependent on the gained learning experiences, it is imaginable that the
emotional patterns of the cognitive system may evolve differently resulting in, for
example, a very “shy” or a very “bold” system.

5.2.3 Neural-Based Planning

Besides tabular and symbolic approaches, also a neural network-based schema ap-
proach (Baldassarre, 2001, 2003, 2002a,b) was implemented, which exploited the
prediction and planning capabilities of the schema-based representation. The con-
troller was tested on a simulated robot with a 1D surround camera that solves
stochastic path-finding landmark navigation tasks (the robot moves in an arena with
white walls and black pillar landmarks by selecting one of eight absolute-direction
actions in each simulation time step). Unlike the DYNA-PI architectures, the con-
troller can pursue arbitrary (novel) goals. In particular, the NN can plan with re-
spect to the achievement of any externally or internally generated goal, thanks to
the generation of internal rewards in association with them. Whereas DYNA learns
to predict rewards assumed to be permanently associated to states, the NN plan-
ner is endowed with a “reward generator”, which dynamically generates an internal
reward when the system achieves its current goal.

The controller builds an efficient “partial policy” by focusing on possible start-
goal paths and is capable of deciding to re-plan if “unexpected” states are encoun-
tered (Baldassarre, 2003). The simple “forward planner” version of the controller
iteratively plans by the generation of chains of predictions from the position cur-
rently occupied by the robot. The more sophisticated “backward-forward planner”
version of the controller iteratively generates chains of predictions from both the po-
sition currently occupied by the robot and the goal state. In both cases, the pseudo-
experience so generated is used to train the reactive components of the system as in
the DYNA systems. The forward models are composed of neural networks trained
to predict the perceptual consequence of action executions. The “backward models”
are composed of neural networks trained to “predict” the “origin state” from which
the robot might have arrived to a certain state given the execution of a certain action.

Another version of the controller implements a simple form of neural abstract
planning that enhances the exploration and evaluation updating capabilities of the
controller (Baldassarre, 2001). Abstraction is implemented in terms of planning on
the basis of macro-actions (actions composed of n actions of the same type, such as,
north-north-north) and action execution at the primitive level.

A more sophisticated modular version of the controller (Baldassarre, 2002a) al-
lows the system to store information about achieved goals and to recall such infor-
mation so as to decrease the planning burden when the same goals are assigned more
than one time. In this case, the goals are not only used to plan but also to satisfy a
“motivation” signal that allows the reactive components of the system to recall the
knowledge related to previously achieved goals.
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An earlier, similar NN planner (Schmidhuber, 1990b,a, 1991c¢) learned a recur-
rent NN model and could show capabilities of reinforcement learning and planning
in dynamic environments. He also investigated the capabilities of simulating curios-
ity and boredom with the architecture. Recently, parts of that NN planner were used
in some of the modules of a modular and hierarchical control architecture (Gloye
et al., 2004) that won the robot soccer world cup (FU-Fighters, Small Size, 2004).

5.2.4 Neural Network-Based Dynamic Programming

Finally, neural networks may be used to integrate schemas into highly flexible move-
ment plans by neurally implementing dynamic programming. A recent computa-
tional model of motor learning and control, SURE_REACH, explains the high flex-
ibility of human motor behavior (Butz et al., 2007a). This hierarchical architecture
stores an associative model of state transitions as well as a redundant associative
mapping of hand locations with arm postures. Population-encoded spatial represen-
tations enable the application of dynamic programming techniques. To move the
hand to a desired location, the hand position is first translated into a representation
of the redundant postures that coincide with the target hand position. This redundant
intrinsically encoded goal representations and the encoded state transition model is
then used to generate a movement plan by neurally implemented dynamic program-
ming.

Without additional constraints, the minimum path in posture space is executed.
However, if the task imposes additional constraints, alternative action sequences
may be generated by simple neural inhibitions. Thus, SURE_REACH is able to
reach hand targets while incorporating task-specific constraints, for example, adher-
ing to kinematic constraints, anticipating the demands of subsequent movements,
avoiding obstacles, or reducing the motion of impaired joints (Butz et al., 2007a;
Herbort and Butz, 2007). The approach is generally similar to early self-supervised
control approaches (Kuperstein, 1988; Mel, 1991), but extends them to the sensori-
motor control of redundant bodies. Compared to previous neural network models of
motor learning and control, SURE_REACH accounts for higher behavioral flexibil-
ity and adaptivity without the need for relearning.

5.3 Inverse Model Approaches

Schema approaches may be used to represent a model of the world in a very frag-
mented way and they require complex processes to turn a goal into an action. A
different approach of modeling goal-directed behavior and the function of executive
modules is put forward by the notion of the inverse model (Kawato, 1999). An in-
verse model is an internal representation that inverts the flow from action to effect. It
thus generates actions that are useful to reach a desired state. To follow the example
mentioned above, an inverse model might specify that thirst may be quenched by
drinking from a cup held in the hand and that when in the kitchen without a cup, a
cup should be grasped. Note that in this example, the model directly specifies which
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action to execute given start and goal. The model does not specify the actual con-
sequences of actions, though. Rather, it merely suggests that the action in the given
circumstances is usually advantageous for achieving the specified goal.

Thus, the inverse model approach is fundamentally different from the schema
approach. Whereas in the schema approach, the fragments of information stored in
the schema have to be processed to arrive at a decision or to generate an action, an
inverse model aggregates such a process in a direct mapping from situations and
goals to actions. An inverse model may thus be seen as the result of an aggregation
of many executed schema processes that are combined and generalized into a simple
mapping. A drawback of inverse model approaches is that the acquired mapping is
highly inflexible because it generates a rigid mapping from goals to actions. Thus, if
the environment changes or novel tasks have to be solved, alternative behaviors may
be required to maintain effective behavior. Inverse models cannot provide alterna-
tives so that expensive relearning would be necessary without schema knowledge.
Of course, a direct mapping has the advantage that no potentially costly planning
or other preparatory processes are necessary to determine actions. Thus, while in-
verse models appear well-suited for rigid, quick, automatized control, inverse mod-
els alone are rather inflexible and essentially may hinder the quick adaptation to
novel situations or tasks.

5.3.1 Inverse Models in Motor Learning and Control

In computational neuroscience, inverse model approaches are implemented in feed-
back error learning (FEL) models of cerebral motor learning (Berthier et al., 1992,
1993; Barto et al., 1999; Haruno et al., 2001; Karniel and Inbar, 1997; Kawato et al.,
1987; Kawato and Gomi, 1992; Schweighofer et al., 1998b,a; Wolpert and Kawato,
1998) In short, these model predicate that the cerebellum is an inverse model for
goal-directed motor behavior. The cerebellum exerts control of goal-directed move-
ments and adjusts its output according to an assumed cerebral linear feedback con-
troller. During learning, the cerebellum thus learns a direct mapping from goals to
motor outputs.

While FEL models rely on the accurate control of a simple controller, other in-
verse model paradigms learn their inverse models simply by the observation of ran-
domly sampled actions or physical plant correlations. The most prominent class in
these approaches are direct inverse modeling (DIM, Baraduc et al., 1999, 2001;
Bullock et al., 1993; Kuperstein, 1988, 1991; Ognibene et al., 2006) and the related
resolved motion rate control (RMRC) approaches (D’Souza et al., 2001; Jordan
and Rumelhart, 1992; Whitney, 1969). Both techniques learn a situation-dependent
mapping between goals and motor commands. For example, a non-redundant arm
may learn its inverse kinematics by mapping a hand position goal to a correspond-
ing arm posture, which may trigger suitable motor activity. RMRC is more robust
in the face of redundant plants, storing that action for a particular goal and situation
combination that was optimal during learning.

Redundant bodies or environments generally pose a problem to inverse model-
ing approaches, because one of many equivalent actions has to be associated with
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each particular goal. Thus, among all potential actions, those are stored in the in-
verse model that optimize additional criteria. These optimality criteria have to be
defined to enable the acquisition of an inverse model (D’Souza et al., 2001; En-
gelbrecht, 2001; Todorov, 2004). An inverse model is thus only suited to optimize
a single criterion, which was defined before learning. Changes in the criterion, for
example, due to demands of novel tasks or changes in the environment, reduce the
performance of an inverse model or may even render it completely incapable. In
contrast, only the ability to adapt optimality criteria quickly from one movement to
the next enables the flexibility of human behavior (Rosenbaum et al., 1995). Ad-
ditionally, the need to adapt an inverse model to an optimality criterion seems to
hinder unsupervised sensorimotor learning (Herbort and Butz, 2007). Thus, due to
its inflexibility and limited learning capability, the inverse-model view of motor con-
trol has recently been challenged with the proposition of the SURE_REACH model
(Butz et al., 2007a).

5.3.2 Inverse Models and Schema Approaches

Despite the principled difference that schema approaches store a general model of
the world and inverse models encode preprocessed, task-specific goal-action links,
both approaches are certainly strongly related.

First, inverse models and schema approaches may happen to represent identical
sets of information, if a one-to-one mapping between goals and actions exists (of
course, dependent on the situation). In such a context, each goal can only be pur-
sued by a single action and executing this action is sufficient to reach that goal.
Thus, inverse models and schema models inevitably represent the same informa-
tion given that both models always yield the same action to execute. However, the
general equivalence may only exist in rather abstract, artificial models, seeing that
environments are usually continuously in flux.

Second, some schema approaches first prepare a behavioral policy, dependent
on the goal and potential constraints, and then execute behavior accordingly (e.g.,
SURE_REACH). The resulting policy can be considered an ad-hoc inverse model,
which has been generated solely and exclusively for the current goal and situational
demands. In this sense, these approaches combine the advantages of inverse models
with the flexibility of schema approaches.

Thus, it seems most plausible that efficient anticipatory behavioral control can
only be accomplished with both representations present—schema approaches to
know the environment and also to verify current action successes and inverse model
approaches to effectively and progressively automatically control behavior.

5.4 Advanced Structures

The previous section has described a broad variety of approaches, which imple-
ment executive models and enable goal-directed behavior. In the following, we out-
line how the described approaches may be integrated and combined with predictive
models to enhance performance and address more complex tasks.
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It is evident from many lines of research in psychology, neuroscience, computer
science, and engineering that efficient behavior is not only based on the quality of
schemas or inverse models, but also on the quality of sensory data or the quality of
the output processing. For example, sensory ambiguity may be reduce by integrating
multiple sources of information or by predictive top-down connections. Likewise,
motor control may be facilitated by being able to identify basic characteristics of
plants or by dividing the generation of motor actions from high-level goals into
computationally simpler sub-processes.

In this section, we want to highlight structures, in which schema approaches or
inverse models may be combined or embedded to optimize behavioral control. First,
we show that the combination of executive modules and predictive mechanisms can
enhance behavioral performance. Second, predictive models and executive mod-
ules may be coupled to form higher order schemas, enabling effective behavior in
varying contexts. Finally, hierarchical control structures may stabilize behavior and
enable the solution of more complex types of problems.

5.4.1 Prediction and Action

The discussed inverse model approaches are capable of generating actions or be-
haviors to pursue certain goals. In this section, we discuss how these architectures
may be integrated with predictive models, that is, forward models of schema ap-
proaches, to enhance control. Forward models enable the anticipation of changes
of the environment or effects of one’s own actions. In this section, we first intro-
duce long short-term memory (LSTM) recurrent neural networks, which allow the
prediction of a series of future events. Then, we give examples in which forward
models provide internal feedback to stabilize and enhance control.

5.4.1.1 Recurrent Neural Network Approaches

Recurrent neural networks (RNNs) were proposed in Elman (1990) mainly as a
language and grammar processing system. However, recent advances have applied
RNNSs to a variety of problems including time series analysis, speech processing,
or robot navigation tasks. RNNs seem to have particularly strong potential for the
formation of predictive and anticipatory structures. A good overview of a variety
of RNNs can be found in Zappacosta et al. (2007). In the following, we focus on
the LSTM system, which solves particularly hard grammatical problems as well as
challenging time series analyses problems .

LSTM models are artificial RNN architectures that are endowed with neural gate-
based structures (Hochreiter and Schmidhuber, 1997). Input gates and output gates
guard input/output access to the internal states of neurons, enabling the algorithm
to maintain memory over theoretically infinitely long periods of time. The networks
effectively deal with the problem of vanishing gradients, which is usually a major

! Some of the other neural network approaches discussed below as well as the NN approaches
discussed in relation to schema-based approaches also contain some form of recurrence but are
usually not explicitly termed “recurrent” NNs.
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limitation in other RNN structures especially in problems in which long-term de-
pendencies need to be remembered. LSTM can remember and relate events distant
in time. It is thus expected to be most suitable as a prediction tool for anticipatory
systems that need to detect long-term dependencies (in memory) or that have to deal
with partially observable MDPs (POMDPs).

LSTM RNNs use “memory units” that use the “constant error carousel” (CEC)
to propagate error, theoretically, infinitely back in time. The memory units are pro-
tected by an input gate and an output gate that multiply incoming activation and
outgoing activation to effectively “gate” the memory information so that it can
apply only when necessary. In later papers, a “forget-unit” was added that makes
the timing of the memory unit more precise and allows learning from continuous
data streams (Gers et al., 2000). Kalman-filter enhanced learning (Pérez-Ortiz et al.,
2003) increases learning speed by orders of magnitude but also increases the learn-
ing complexity of the system.

While LSTM RNNs thus showed to be highly useful in predicting challenging
context-free grammars as well as real-valued data streams, it remains to be shown
how the learned structures may be inverted to trigger effective online action selec-
tion and motor control.

5.4.1.2 Internal Feedback

After given an example of a predictive model, we now explain how such models
may be used to improve behavior. In order to efficiently select effective actions, it is
essential to know the current state of the world as exactly as possible. However, bi-
ological and artificial sensor systems are prone to noise, and information about the
environment may only reach the executive modules through time-consuming pro-
cessing pathways. In this case, a predictive model may compensate for these effects.
For example, if sensor data is noisy or ambiguous, a prediction of the current state
of the environment based on recent perceptions and recently executed actions may
enable the formation of a concise representation of the environment. Thus, forward
models may help to implement Kalman filtering approaches. Likewise, decisions
or actions may be adjusted according to their expected impact on the world before
feedback from the environment is available or even before the action is executed.

A processing control model, partially based on internal feedback, was proposed
by Kawato et al. (1987), who applied it to arm movements. In the model, control is
initially exerted by a linear feedback controller. The controller is not very efficient,
though, because the delayed feedback results in a slow control process. A forward
model is gradually learned and improves the control process by providing internal
feedback, thus enabling a much faster control process. Finally, an inverse model
replaces the linear controller to enable maximally effective movements.

In this setup, the forward model provides almost instant feedback about the ex-
pected consequences of the generated motor command. Thus, the motor system does
not have to wait for external feedback to adjust its output but can adjust motor com-
mands on their expected effects. As a result, the motor commands are much more
accurate and movement dexterity increases. Later on, internal feedback can still
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level out small inaccuracies of the inverse model and compensate for forward model
estimation errors.

Several recent studies have suggested that forward models, as body emulators,
are essential for efficient body control (Kawato, 1999; Wolpert et al., 2001). More-
over, various studies suggest that internal forward model feedback is used to esti-
mate spatial body location (Wolpert et al., 1995) as well as to improve behavioral
control of fast reaching movement (Desmurget and Grafton, 2000) or of pole bal-
ancing (Mehta and Schaal, 2002). Grush (2004) relates such representation also to
higher level cognitive processes. Thus, internal, anticipated sensory feedback ap-
pears to play an important role in behavioral control, state estimation, as well as
higher cognition.

5.4.2 Coupled Forward-Inverse Models

In the review of schema approaches, the condition part of a schema mostly referred
to a specific sensory state or situation, whereas the action part referred to a single
action entity. However, it is also possible to form schemas from more complex no-
tions of perception and action. Forward-inverse models directly couple forward and
inverse model information essentially representing context in current forward model
accuracy.

Adaptive agents should be able to operate in different contexts or environments
and should quickly adjust to changes. Thus, it has been proposed that multiple exec-
utive modules, schema approaches or inverse models, may be represented for differ-
ent contexts. However, this requires the quick identification of contexts to enable the
selection of appropriate modules. Predictive models may play a key role to identify
contexts and participate in the selection of the right executive module for the right
task.

Several researchers have proposed such decentralized architectural schemes for
the control of action that are based on coupling forward and inverse models, both,
in a localized (Demiris and Khadhouri, 2005; Pezzulo and Calvi, 2006a; Tani and
Nolfi, 1999; Wolpert and Kawato, 1998) and in a distributed fashion (Tani, 2003;
Tani et al., 2004). The former approaches are based on the mixture of experts archi-
tecture (Jacobs et al., 1991) while the latter are based on the self-organization of the
representational space in RNNs.

In these approaches, forward models are coupled to executive modules (that is,
some form of inverse model), representing a higher level schema. Such a schema
is applicable if the predictive model makes continuously accurate predictions. The
condition part of a schema is a forward model, which enables the identification of
the underlying properties of a situation, for example, how objects or bodies react
to certain actions. These underlying properties may not be evident from regarding
a single instance of the perceptual input. Likewise, the action part of a high level
schema might not be a single motor command but an entire controller, which is
especially suited to exert control in a specific context. Thus, the accuracy of the
predictive model indicates the suitability of the executive module in each schema.
As predictive model and executive module of a schema are trained exclusively in
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parallel and in an assigned context, the predictive model will only be able to make
valid predictions in the context, for which also the executive module was trained.

These architectural schemes have been used for multiple purposes. For example,
they were used to select actions appropriate to the context (Wolpert and Kawato,
1998), they were used for action observation and execution (Demiris and Khadhouri,
2005), and they were combined with a motivational system in which active drives
influence action selection (Pezzulo and Calvi, 2006a) . When behaviors can be com-
bined linearly, the models can also generalize behaviors. Algorithms for learning
and combining contexts in non-linear dynamics have also been proposed (Vijayaku-
mar et al., 2005).

This integration of predictive models and executive modules into a schema may
help stabilize the selection of control strategies, even in noisy contexts. Further-
more, it is possible to deduce abstract properties of a situation, which may not be
directly concluded from sensory input. A drawback can be that the difficulty be-
tween learning the inverse model and the forward model may differ significantly,
so that the current accuracy of the forward model may not necessarily reflect the
current suitability of the coupled inverse model.

5.4.3 Hierarchical Anticipatory Systems

Each of the so-far presented approaches is limited to comparatively small problem
domain, such as the control of simple movements, planning a chain of actions, maze
navigation, or the prediction of events of a certain kind. Whereas each approach may
be well suited to solve the problems in its domain, it cannot be easily extended to
the high variety of tasks that humans or autonomous artificial systems face, ranging
from the need to determine long-term goals to the accurate control of basic actua-
tors. This limitations can be overcome by integrating the described approaches into
a hierarchical framework. Many neurological and psychological studies and models
suggest that effective cognition and consequent behavior is based on hierarchically
structured systems, for example, accounting for complex sensory processing, cogni-
tion, and behavior (Giese and Poggio, 2003; Koechlin and Summerfield, 2007; Loeb
etal., 1999; Poggio and Bizzi, 2004; Powers, 1973; Riesenhuber and Poggio, 1999;
Todorov, 2004; Wolpert et al., 2003).

By structuring a cognitive architecture, separate problems in tasks like sensory
processing or motor control may be solved by different modules. For example, it
was demonstrated that the spinal circuity is able to counteract some perturbations
on its own, thus making motor control easier for the central nervous system (Loeb
et al., 1999). Accordingly, the CNS provides a basic control strategy, for example,
by setting reflex gains or muscle stiffness. This enables the CNS to flexibly adjust
motor control to varying tasks without the necessity to react to small perturbation,
whose compensation is left to the spinal system, which is well suited for this task
due to its fast feedback control loops. Models of central motor control suggest that
the cerebellum replaces and further optimizes cortical motor networks in the con-
trol of frequent, well-trained movements (Berthier et al., 1993; Barto et al., 1999;
Kawato et al., 1987; Kawato and Gomi, 1992; Schweighofer et al., 1998b,a). Fur-
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thermore, also movement specifications may be based on incorporating movement
selection biases on multiple levels (Cisek, 2006; Herbort et al., 2007). Also, current
hierarchical models of vision (Riesenhuber and Poggio, 1999; Giese and Poggio,
2003) were suggested to be extended to motor control problems Poggio and Bizzi
(2004).

In conclusion, hierarchical, modular systems can address specific computations
in specific modules, consequently reducing the complexity of each computation and
enhancing stability due to the partial autonomy of each module. However, in most
approaches information flows in a single direction, for example, from visual sen-
sors to abstract representations or from behavioral goals to movements. Systems in
which layers bidirectionally influence each other seem to be more promising for
the understanding of complex perception, cognition, and behavior (Hinton et al.,
1995; Hinton, 2007; Rao and Ballard, 1997). Higher layers may try to model the
behavior of the lower layers, correcting lower layer states when the lower layers do
not have the knowledge of predicting their own state. In other words, higher layers
may correct the state of lower layers by, for example, resolving ambiguity. Uncer-
tainty measures of each module’s state and also attentional influence may further
modify the influence layers have on each other. In sum, combinations and integra-
tions of effective sensory processing and motor control modules promise to yield
highly flexible adaptive decision making and control structures that go far beyond
the competency of a flat architecture.

In the following section, we now first evaluate the predictive and anticipatory ca-
pabilities of each considered system and then discuss correlations and contrast the
distinct features of each system. In particular, we first list predictive and anticipa-
tory capability criteria. Next, we discuss the various schema approaches and inverse
model approaches with respect to these criteria. The subsequent discussion draws
the attention to the currently missing system capabilities and proposes various future
research options.

5.5 Evaluation of Predictive and Anticipatory
Capabilities

We now evaluate the predictive and anticipatory capabilities of the introduced ap-
proaches on the basis of the taxonomies of predictive and anticipatory capabilities
introduced in Chapter 2. To do so, we consider the capabilities of each system in-
dividually and finally discuss their correlations and differences as well as potential
complementarities.

More concretely, we distinguish and discuss the following predictive qualities:

o Symbolic vs. real valued predictions: Does the system form symbolic, real-
valued, or both types of predictions?

e Discrete vs. continuous predictions: Does the system form predictions about a
discrete next time step or can it form continuous predictions over time?

e Noise robustness: Are learning and representation of predictions noise robust?
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e Sensory vs. payoff predictions: Does the system form sensory predictions or pay-
off predictions?

o Single vs. multiple predictions in representation spaces: Does the system form
one single prediction or multiple predictions (e.g. concrete and abstract)?

e Full vs. partial predictions: Does the system attempt to predict complete future
states or is it able to focus on sub-states?

e Exact vs. fuzzy, distributed predictions: Does the system form on exact predictive
representation or does it also estimate the confidence of its predictions?

o [mmediate vs. long term predictions: Does the system predict only next states or
is it able to form immediate long-term predictions (without chaining immediate
predictions)?

e Generalization capabilities in predictions: Is the system able to generalize its
predictions to similar states in the environment?

o Single vs. multiple sources of information: Does the system distinguish between
multiple sources of information such as sensory, context, and motor activity in-
formation?

o Markov-dependent vs. independent predictions (MDP vs. POMDP): Does the
system rely on full observability to be able to reliably learn accurate predictions?

e Distinction between self and other: Does the system distinguish between predic-
tive representations about own future states and other future states?

With respect to anticipatory capabilities, we distinguish the following qualities:

e Direct vs. indirect inversion: Are goals directly (inversely) mapped to actions, or
is the mapping done indirectly?

e Reward vs. plan-based inversion: Is the inversion accomplished by means of
back-propagated payoff representations or by means of explicit representations
of future states?

Planning capabilities: Is the system able to plan?

Full vs. partial planning: Can the system also generate partial, abstract plans?
Online vs. offline representations: Is the system bounded to generate future rep-
resentations based on the current state or can is also generate anticipated repre-
sentations offline?

Flexible goal-oriented behavior: Can the system flexibly pursue novel goals?

o Adjust to new task constraints: Can the system immediately adjust behavior to
novel task constraints?

o Curious behavior: Can the system act curiously, directedly exploring novel terri-
tory or environmental properties?

e Epistemic actions: Can the system act pro-actively in order to search for missing
information?

o Surprise mechanisms: Can the system implement surprise mechanisms upon un-
expected perceptions?

e Motivational goals: Can goals be chosen or pursued based on the system’s cur-
rent motivations?

With these distinctions of predictive and anticipatory system capabilities in mind,
we now evaluate the considered systems.
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5.5.1 Schema-Based Systems
5.5.1.1 Predictive Capabilities

Schema-based systems exist for symbolic and for real-valued representations as well
as for discrete and continuous predictive representations. Generally, schema systems
focus on sensory predictions and, dependent on the schema representation, this pre-
diction can comprise multiple predictions in space as well as in time. Also, partial
predictions are generally possible and the predictions often contain confidence esti-
mates and thus represent fuzzy predictions. A tenet of schema approaches is that
condition structures try to focus on those sources of information that are maxi-
mally suitable to generate representations of future states. Thus, schema systems
are able to generalize, dependent on the representation and learning mechanisms
employed. Multiple sources of information are usually considered—albeit not nec-
essarily processed by different modules. Except for successful applications in deter-
ministic POMDP problems (Holmes and Isbell, 2005; Landau et al., 2003; Métivier
and Lattaud, 2003; Stolzmann, 2000), the successful development of internal states
for the solution of stochastic POMDP problems still remains an open challenge.
Finally, schema representations may also be projected, or mirrored, onto other en-
tities in the environment, representing their sensory-motor correlations and internal
states. To the best of our knowledge, currently no system exists that accomplishes
such a task autonomously.

DYNA-PI More concretely, the tabular DYNA-PI model may be considered the
most restricted system amongst the considered schema-based systems. It is able to
work only on discrete, distinct, and symbolic state representations and generally
cannot be consider noise robust. The prediction of the next state may be a distri-
bution over states but originally was also restricted to exact next states. The origi-
nal DYNA-PI approach does not contain any generalizations, either, which clearly
poses a huge scalability problem. The table essentially grows linearly in the num-
ber of distinguishable states and actions. Provided diverse real-valued sensory input,
the number of states may be infinite, which is an obvious limitation of tabular ap-
proaches. Thus, tabular DYNA-PI is only suitable to investigate internal planning
and reinforcement propagation mechanisms rather than to actually apply the system
to real-world adaptive system control tasks. More recent schema-based approaches
tackle this limitation with various generalization mechanisms.

XACS The XACS system is a purely symbolic, discrete prediction learner. It com-
bines model and RL learning to learn sensory predictions and payoff predictions.
The sensory predictive module relies on determinism in the environment but can
ignore fluctuations of irrelevant sensors (Butz, 2002a). The reward learning part is
rather noise robust (Butz et al., 2004a, 2003a).

Besides concrete predictions, XACS also provides the certainty of its state pre-
dictions and the corresponding state value predictions. The predictions are gener-
alized in that irrelevant attributes can be ignored. The predictive model is usually
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significantly smaller than a completely specified model. Currently, the architecture
is flat without hierarchies. Irrelevant attributes are ignored and can be explicitly
identified as irrelevant for accurate predictions or as unpredictable.

Experimental evaluations have shown that the system can ignore irrelevant at-
tributes and, given irrelevant attributes, it beats learners that learn a tabular problem
representation. The predictive models are always generalized and are usually much
more compact than tabular approaches.

There are no hierarchies and predictions are currently on one time scale only.
However, predictive chains can be generated so that long-term predictions are pos-
sible in a limited sense. The generalization mechanisms in XACS focuses on the
attributes that are relevant for accurate predictions of the next sensory inputs and
the consequent reward, respectively. Thus, regularities are detected and object clus-
ters are expected to be identifiable by the mechanisms. More sophisticated actions
such as hierarchical option-type actions (Barto and Mahadevan, 2003) or motor pro-
grams have not been investigated so far. Also contextual information, except for
action codes, has not been treated separately from pure sensory inputs in any way.

Sequence learning capabilities or performance in POMDP problems were not
investigated with XACS so far. Currently, the predictive learning capabilities are
restricted to MDP problems, because no internal states are used. Since actions are
directly included in the classifier structure, discrete action codes currently need to
be used currently and encountered changes are related to one’s own actions only.

Neural Based Planning Whereas the original tabular DYNA-PI architecture is a
tabular lookup system, which operates on discrete symbolic inputs, the NN-based
architecture is a continuous predictive system, which predicts feature-like sensory
inputs or even continuous sensory changes. The NN-based architecture can be con-
sidered rather noise robust. It forms stochastic predictions. However, the forward
models of the implemented architecture currently produce deterministic predictions
of the full sensory input. It cannot ignore irrelevant or unpredictable input, nor can
it focus on the prediction of partial input. Confidence values and fuzzy predictions
may be employed by using an appropriate error functions and related weight up-
date mechanism. As in DYNA-PI and XACS, the NN-based schema architecture
represents concrete predictions in terms of sensory input and the architecture is flat
enabling only immediate predictions (but see Baldassarre 2003, for a preliminary
investigation of a NN planner whose predictions span further time steps ahead).

The NN-based system can generalize to similar events and similar sequences,
but it does not develop object-oriented representations (no clustering) nor any type
of grammar representation (no recurrence), except for potential emergent repre-
sentations in the hidden layer of the NN due to back-propagation. Thus, only the
back-propagation algorithm in the implemented NNs may be able to ignore sensory
inputs.

The system distinguishes between two sources of information, sensory inputs,
which are continuous, and action inputs, which are discrete and are used to select
expert forward models dedicated to them. If continuous actions were included, then
actions should be considered as an additional input or may be coded in a population
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code fashion. So far, there were no investigations that would include other context-
based information or that would learn about environmental dynamics that occur
independent of the system’s own actions.

As there are no internal state representations, the neural-based planner relies on
the Markov property. Moreover, the system is completely self-centered being cur-
rently unable to project one’s own predictive knowledge onto other entities in the
world.

SURE_REACH Devised as a model for movement generation rather than pre-
diction, SURE_REACH does not explicitly implement any predictive mechanisms.
Nevertheless, the neural networks that are used for control are also suitable to predict
future states, the developed sensorimotor model is purely associative. The kinematic
mapping may be used to predict hand locations from (predicted) postures and vice
versa. Likewise, the sensorimotor model may be used to predict the trajectory that
results from issuing a sequence of motor commands. Due to the population encoding
of these internal models, also the uncertainty of predictions may be represented.

In sum, the system can be used to form real-valued predictions on a continuous
time scale, predicting perceptions. It can be considered rather noise-robust and may
even form, albeit limited, multiple predictive representations (arm postures and hand
locations). These predictions are full but, due to the population encoding, inherently
represent fuzzy distributions of states. Besides the option to chain predictions, as in
all other schema systems, the predictions are immediate and restricted to one time
scale. As the other approaches, it also integrates action and sensory information for
prediction. SURE_REACH does not address partial observability nor the challenge
to form distinct representations of self and other.

5.5.1.2 Anticipatory Capabilities

The schema-based systems have several anticipatory capabilities in common—most
obvious is the fact that all rely on indirect inversions to trigger anticipatory behavior.
That is, they need to use their predictive capabilities in some way to trigger goal-
oriented behavior. This inversion mechanism is sometimes purely reward-based,
sometimes plan-based and sometimes a combination of both. Moreover, all schema
systems have the possibility to plan, albeit usually generating full plans only. Also
the offline generation of mental representations is usually possible. Dependent on
the involved inversion mechanisms, goal-oriented behavior can be more or less flex-
ibly adjusted. Curious behavior is generally implementable, however, epistemic ac-
tions as well as surprise mechanisms require further additions. Motivational goals
may also be included in each of the systems.

DYNA-PI DYNA-PI models are able to form explicit predictions online and of-
fline. Thus, situation-dependent planning as well as offline reflections are possible
and also implemented. DYNA-PI models are generally goal-oriented anticipatory
system. However, DYNA-PI models do not have the flexibility to account for novel
goals without any significant re-planning effort. That is, DYNA-PI models usually
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learn one (or a couple of alternative) behavioral policies. If none of the policies is
currently suitable because, for example, the goal is relocated to a novel location or
multiple goals are suddenly distributed over the environment, complete re-planning
is often necessary. System behavior is not directly goal-initiated but goal-oriented,
due to the learning of a behavioral policy. Thus, it is the reward inversion that results
in the generation of goal-oriented behavior. Curious behavior has been implemented
in some DYNA-based approaches, however, epistemic actions as well as surprise
mechanisms remain to be further investigated. DYNA-PI may learn policies for sev-
eral distinct goal representations so that it may choose between the pursuance of
available goals based on the system’s current motivational state.

XACS The anticipatory capabilities of XACS are generally similar to those of
DYNA-PI with the advantage that the system is able to learn generalized policies in
partially noisy environments that contain many additional, irrelevant sensory inputs.
Moreover, XACS does not learn a pure policy representation and thus does not rely
purely on reward inversion but also incorporates a plan-based inversion. That is,
anticipated next states and their associated state values trigger action decisions. Par-
tial planning is possible, but it is dependent on the chosen representation. However,
the learned state value function cannot be changed without significant relearning
effort. As the DYNA-PI model, the XACS model lacks the anticipatory flexibility
to account for any possible goal, but it learns to adapt only to the goals, that is, the
rewards, encountered during learning.

The behavioral policy can be improved to cause curious behavior (improving
model and policy learning) as well as greedy behavioral patterns (improving and
speeding-up policy learning, Butz, 2002b). The usage of a list of currently least
accurate predictions combined in a priority list, similar to the work done by Moore
and Atkeson (1993) in their prioritized sweeping mechanism, showed to improve be-
havioral learning even further (Butz and Goldberg, 2003). As in DYNA-PI, though,
neither epistemic actions nor surprise mechanisms were further investigated so far.
Currently only one RL module was implemented but different RL. modules for dif-
ferent motivations are easily interpretable and combinable in the XACS framework.
Thus, the system has strong potentials to study multiple motivational influences and
emotional integrations. For example, opportunistic behavior may be triggered by
combining current motivational utility measures with current predictions.

In sum, the XACS approach has shown that the combination of learning gener-
alized representations of both a predictive model and a state-value representation is
a highly suitable approach that yields effective anticipatory action decision making
and control. However, as in the DYNA-PI approach, without additional mechanisms
or representations, the system cannot adapt to novel task constraints or goal repre-
sentations effectively.

Neural Based Planning Since the NN planner generates reward internally in cor-
respondence to (externally or internally generated) goals by means of a specific
module, the NN planner can self-generate reward. This reward is associated with
any possible state that the system might happen to pursue as a goal. Thus, goals may
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be associated with motivations, triggering internal reward and also shaping behavior
internally. During planning, the NN planner focuses on states that lie between the
starting position and the goal, and those around them. When in planning mode, the
actor is a model of itself acting in reality. In this sense, the system actually predicts
its own choices in states potentially experienced in the future. This is similar to the
XACS model, in which predictions are generated and compared to the state-value
representations choosing that action that leads to the anticipated highest state value.

Since the NN planner does not distribute reward values, behavior may be more
flexible but requires expensive, potentially exponential online planning upon the ac-
tivation of a novel goal representation. Action decision is based on a plan-based
inversion in that hypotheses are generated looking ahead, distributing reward, and
assigning maximally effective actions to NN-based states. While the DYNA-PI sys-
tem is a very simple planning system that only predicts (potentially stochastically
distributed) concrete next states, the NN-based system plans based on predictable
state aspects. Unpredictable inputs are ignored but partial predictions are currently
not possible. Planning is quite robust in the sense that it involves all states that might
likely be visited during action execution. It takes place precisely as an offline im-
provement of the control policy in relation to the assigned goal.

Curious behavior can be included easily by directing the behavior during ex-
ploration to NN regions in which the predictions have high uncertainty. Epistemic
actions were not investigated so far and also surprise mechanisms have not been
considered in further detail. However, goals can become motivations in the multi-
goal versions of the planner so that motivational goals can be readily incorporated
and the goal-based planning mechanism can also account for novel goals flexibly,
even though this may be computationally very demanding.

With respect to action initiation, the system learns to associate goals with actions
once a planning step has been applied successfully. In this case, goals trigger actions
/ motor (control) programs, especially in the multi-goal version of the system when
same goals are assigned more than once. The planning process “compiles” goal-
related information into the reactive components of the system. Thus, relying on
schema representations, the neural-based planner actually forms a goal-dependent
inverse model mapping.

In conclusion, NN-based DYNA-PI is a typical schema-based approach that is
capable of online planning and of generating simulated experiences offline. The NN-
based approach has the advantage of implicitly generalizing, filtering noisy inputs,
and ignoring unpredictable inputs. Hierarchical implementations of the approach,
possibly in combination with recurrent structures, await future research effort.

SURE_REACH The SURE_REACH model transforms spatial population-encoded
goals (that is, hand locations) into intermediate, redundant population-encoded
goals (that is, a corresponding subspace of arm postures). The posture representa-
tion is then used to generate motor commands by means of dynamic programming-
based planning. Thus, also SURE_REACH is an indirect inversion model that uses
its schema representations encoded in its inverse kinematics and inverse sensori-
motor model to map goals to actions. The inversion is reward-based in the sense
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that goal activation, which represents reward, is inversely propagated through the
population-encoded posture space. However, due to the population encoding, the
operation of this mechanism is not exponential but polynomial and thus efficiently
executable online upon goal activation. Thus, the system can yield highly flexible
goal-oriented behavior being able to approach any reachable goal in space. Addi-
tional constraints can modify internal target representations or movement prepara-
tions to adjust behavior to situational demands. For example, new task constraints—
be it disabled joints, preferred arm postures, or anticipated subsequent goals— can
flexibly modify the unfolding anticipatory behavioral control structure.

Although not further investigated so-far, curious behavior patterns may be in-
cluded as well—potentially causing movements to spatial regions that have not been
sufficiently explored or had not been reached for an extended period in time. Epis-
temic actions, however, will require the incorporation of additional mechanisms.
Also surprise mechanisms have not been further investigated, yet. Motivational
goals, however, may be easily incorporated and a first goal-selection mechanism
was coupled with the SURE_REACH model, showing avoidance behavior and the
preference to reach rewarding locations in space (Herbort et al., 2007).

Thus, SURE_REACH may be considered the most flexible architecture of the
schema systems considered. However, so-far SURE_REACH has only been applied
to a rather restricted arm reaching tasks. Thus, the generality of the approach as well
as the scalability of the representation to higher dimensional problems needs to be
further investigated and developed (cf. Butz et al., 2007a).

5.5.2 Inverse Model Approaches
5.5.2.1 Predictive Capabilities

In the discussed inverse adaptive control approaches, the motor control capability
is the most relevant and most investigated system part. Thus, the systems’ predic-
tive capabilities are of lesser importance and an inverse model may very well be
combined with other predictive systems to yield stable online control in addition to
the effective inverse control mechanisms, as done in the discussed forward-inverse
model approaches.

Generally, DIM, RMRC, and FEL all work on continuous valued inputs and rep-
resent continuous changes. No discretization takes place. In general, also payoff
representations are not included. All systems can be considered rather noise robust
but usually have complete representations and have no mechanisms to focus on par-
tial environmental inputs only. Thus, focusing capabilities are restricted to motor
activity and goal dependence. Furthermore, inverse model approaches usually do
not rely on exact representations and thus form rather fuzzy associations. The con-
tinuous changes are usually represented on one time scale so that more abstract
concepts of change are not represented in space nor in time. Nonetheless, the goal
representation and the implicit “belief” that the associated goal will be achieved
may serve as an interesting representation of a desired future state.

All systems known to us process information in one task-context only and can-
not switch between different contexts with different optimality criteria. Finally, the
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capability of forming internal predictions is restricted to the possibility of activating
(desired) goal states, effectively predicting that an activated goal state will become
actual. Triggering goal states based on current internal states, which might depend
on current internal motivations and emotions, is another future research challenge.
Also the distinction between self and other and the potential projection of the inverse
model on observed behavioral patterns awaits future research investigations.

Anticipatory Capabilities The anticipatory capabilities focus on decision mak-
ing and action initiation. As suggested by the name itself, direct inversions from
goals to actions trigger behavior upon goal activation. Thus, the inversion is direct,
neither reward- nor plan-mediated. The consequence is that the systems also do not
have any explicit planning capabilities, and essentially also no re-planning capabili-
ties. Behavior is either successful or fails. Upon failure, further learning is required.
However, since most inverse modeling approaches are state dependent closed-loop
control mechanisms, disturbances during behavioral control can usually be compen-
sated for. In fact, all three approaches discussed learn inverse mappings from goal
representations to motor activity that are conditioned on the current sensory input,
which represents the current state of the body in the environment.

Environmental exploration may be biased dependent on the current system
knowledge, which enables curious behavior. The possibility to impose goal-directed
behavioral execution during learning may be further explored, potentially moving
from very general, inaccurate representations to progressively finer-coded, more ac-
curate control. Coupled forward-inverse models discussed above come into mind
here, where the forward model accuracy may determine motor activity during learn-
ing, and thus bias the focus of inverse model learning. Also motivational constraints
may be incorporated easily, resulting in the selection of a goal, which is then pur-
sued by means of the inverse model. Thus, motivations may trigger goals in the
reachable space, which can be approached without additional computational effort
besides the invocation of the direct inverse mapping.

In sum, inverse adaptive control approaches may be considered as the tools that
can realize anticipatory, goal-based action decision making and control. Due to their
focus on this aspect of motor control and their general lack of predictive capabili-
ties, it seems straight-forward to modularly combine inverse adaptive control sys-
tems with suitable forward predictive mechanisms, which may stabilize control in
dynamic control problems. This has been done by the discussed forward-inverse
model combinations.

5.5.2.2 Advanced Structures

The discussed advanced structures do either form only predictive representations of
sensory inputs or couple some of the discussed system modules. Thus a separate
discussion of the considered systems is not carried through.

It may be noted, however, that RNN-like mechanisms can be expected to be nec-
essary to tackle POMDP problems, since internal state representations are necessary
in this case. To combine multiple sources of information, these systems may need
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to be further modularized, which has been partially realized by the gating structure
of neurons in the LSTM system. However, partial predictions, and predictions on
multiple levels in time and space most likely require the incorporation of multiple
forward and inverse modules and the successful knowledge exchange between these
modules. Coupled forward-inverse model show one approach to successfully com-
bine direct controllers with schema-based forward models. The discussed hierarchi-
cal system approaches may be used to form hierarchical controllers and generate
predictions at multiple levels of abstraction in time and space. Moreover, additional
challenges, such as epistemic actions, may be tackled with such system combina-
tions. The current capabilities of all discussed systems are now further contrasted
from a broader perspective, identifying current system shortcomings as well as aris-
ing challenges.

5.6 Discussion

The system classifications point towards several immediate and longer term chal-
lenges. In this discussion, we contrast the different systems with respect to their
predictive and anticipatory capabilities and identify the most important challenges
lying ahead. Hereby, the combination of several systems and system capabilities ap-
pears highly promising to generate more complex, autonomously learning, highly
adaptive, flexibly behaving cognitive systems.

5.6.1 Contrasting Predictive System Capabilities

The system categorizations showed that there are a rather wide variety of predictive
learning systems, each of which also have distinct anticipatory processing poten-
tials. Although it is hard to contrast these potentials directly, Table 5.1 shows an
overview of the predictive capabilities of the discussed learning architectures. All
systems exhibit highly promising but in many cases differing predictive capabilities.
The table may serve as an indicator of the most important challenges lying ahead
for each investigated system and which aspects are the most immediate challenges
that point towards successful system enhancements and improvements.

The table suggest that there is a current lack of system competencies in several
seemingly highly relevant aspects of predictive capabilities: (1) the development of
competent predictive system that are able to learn predictions on multiple levels of
abstraction in time and space; (2) the development of systems that effectively incor-
porate context information in their predictions. These two points are discussed in
the remainder of this section. Albeit also important challenges, the problem of han-
dling environments with only partially available information (POMDP problems) as
well as the problem of the self/other distinction is not further discussed due to the
diversity of the problem and its strong dependency on representations and diversity
in the approaches to this problem.

Although several of the predictive systems have the potential to predict multiple
aspects and provide accuracy or confidence estimates of their predictions, it seems
to be difficult to provide multiple predictions in parallel, such as the prediction of
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Table 5.1 The contrasted predictive capabilities of the considered systems suggest further ad-
vancements as well as potential system combinations.

Aspect DYNA-PI XACS NN-b.D SURE_REACH| Inverse Mod.
Form Symbolic Symbolic Real-Valued Real-Valued Real-Valued
TimeScale Discrete Discrete Continuous Continuous Continuous
Noise Robust No Partially Yes Yes Yes
Payoft/Sensory Both Both Sensory Sensory Sensory
Multiple Space Single Single Single Single Single
Full/Partial Full Partial Partial Full Full
Det./Fuzzy Deterministic |Partially Fuzzy|Potentially Fuzzy Fuzzy Potentially Fuzzy
Time: Imm./Longer Term|| Immediate Immediate Immediate Immediate Immediate
Generalization No Yes Yes Yes Yes
Info. Sources Two Two Two Two Two
(POMDP MDP MDP MDP MDP MDP
Self/Other Self Self Self Self Self

next sensory input, plus the prediction of the position of an object in the input, or
the prediction of other, often pre-processed environmental features. The hierarchical
networks starting from Rao and Ballard (1997) might be an approach to realize
such multiple abstract capabilities. The hierarchically combined layers, structured
appropriately, may each have a different (emerging) type of abstract representation
and thus also abstract predictions. It seems that the integration of other mechanisms,
such as the clustering-for-prediction capabilities of the XACS system or the long-
term dependency detection capability of the LSTM system, into these hierarchical
network structures points towards a highly challenging but also highly rewarding
future research direction.

Related but not identical to the capability of predicting at multiple levels of ab-
stract representations lies the capability of predicting at multiple time scales. Again,
hierarchical networks seem to have the most potential in this respect. However, even
more important than representational abstraction is the question of how to abstract
in time. To generate flexible longer time-bridging capabilities during learning, it
needs to be clarified when predictive responsibility should be delegated to the next
higher level. Early work in this direction suggests that learning at a higher level
should be activated if the current level is well-predicting on average but currently
encounters highly ill-predicted input (Schmidhuber, 1992a,b). Interestingly, it was
recently shown that a very similar principle can serve for the effective detection and
generation of options, that is, higher level motor programs, in reinforcement learn-
ing (Butz et al., 2004b; Simsek and Barto, 2004). In general, the information content
received from the sensory inputs must be significantly higher and persistently high
in order to delegate predictive responsibility to the higher prediction layer. Further
research in this respect seems very important.

Another approach for multiple levels of abstraction in time is the consideration
of delay in sensory feedback. Hierarchical control structures partially take these
feedback constraints into account, such as the work of Kawato et al. (1987), in which
a lowest-level PD controller serves as backup in case the higher level inverse model-
based controllers and forward models are incorrect or inaccurate. The combination
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of these principles with more competent network structures, points towards another
big future research challenge.

The incorporation of multiple sources of information for prediction, apart from
the distinction of sensory inputs and action input, is also only partially realized in
most of the predictive systems. Hereby, it can be expected that context informa-
tion should not be simply included as an additional lower level input, but rather
should be exploited as a different type of input that serves as a focusing and predis-
position mechanism in the system. Thus, in the rule-based XACS system, context
may pre-select currently relevant rules, or, in the LSTM system, context informa-
tion may be used to open and close certain input, forget, and output gates in order
to stream information flow in a context-dependent way. The usage of context infor-
mation from Balkenius’ context dependent attention-processing and reinforcement
learning systems (cf. Chapter 4) may serve as an inspiration of how to incorporate
such mechanisms in a more flexible way into predictive learning systems.

Besides these possible advances, it should be kept in mind that predictive system
capabilities are only useful if they serve a purpose, that is, if they affect motor con-
trol favorably. To generate competent anticipatory cognitive systems, predictions
need to be learned in order to improve learning and behavior. Thus, the general
challenge is to develop more competent anticipatory decision making and control
systems and possibly also bias the learning of predictions on the resulting anticipa-
tory behavior capabilities. To achieve this endeavor, it will be necessary to combine
several predictive systems and couple predictive and inverse systems for the problem
structures at hand. Moreover, it will be necessary to exploit their respective compe-
tencies modularly to generate more effective anticipatory processing mechanisms.
How this might be achieved is outlined in the following section.

5.6.2 Contrasting Anticipatory System Capabilities

Before contrasting the systems’ anticipatory behavioral capabilities, we want to
point out that the model learning components themselves are not as much influ-
enced by their own predictive capabilities as might be advantageous. Although most
considered systems use error-based learning principles, targeting learning resources
towards task-specific, motivational goals poses an interesting additional challenge.
That is, while “learning for control” may be the first principle, “learning for the
achievement of ecological relevant goals” may be an even more focused principle
that points out that learning should focus on those control aspects that are really
relevant to the learning system.

Table 5.2 shows the current anticipatory capabilities of the discussed learning
systems. Schema-based approaches all have similar properties, although the various
implementations differ in certain respects depending on their generalization capa-
bilities and utilized representations. Inverse modeling systems are additional mecha-
nisms that may shape behavioral learning directly. In addition, RNN approaches are
expected to be useful to learn the achievement of longer-term goals. Hierarchically
structured top-down, bottom-up systems may serve well to form abstracted repre-
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Table 5.2 The contrasted anticipatory capabilities also show several current drawbacks as well as
potential system combinations and integrations.

Aspect DYNA-PI| XACS | NN-b. DYNA| SURE_REACH| Inverse Mod.
inv.model no no no yes yes
reward based yes yes partially yes no
general planning yes yes yes yes no
focused planning no yes no no no
offline simulation yes yes yes yes yes
flexibility low medium medium high medium
flexible goals no no limited yes limited
curious behavior yes yes yes yes yes
epistemic actions no no no no no
surprise mechanisms‘ no no no no no
motivational goals no limited limited yes yes

sentations in space and time to be able to plan and act goal-directedly on a more
conceptual level.

Besides the potential learning improvements by the means of anticipatory mech-
anisms, the table shows that several other capabilities require future research. First,
faster behavioral adjustments due to unexpected sensory inputs have hardly been in-
vestigated. That is, surprise mechanisms could be exploited further for (1) fast self-
stabilization mechanisms and (2) the activation of additional cognitive resources for
more focused learning and adaptation. Kalman filtering-based updates and other er-
ror and information gain estimations may help to improve control and stabilization
capabilities in this respect.

Second, task-dependent planning mechanisms may be investigated further. The
combination of different predictive methods to enable prediction for action deci-
sions on multiple levels of abstraction seems inevitable. It also remains an interest-
ing question, how exact planning needs to be in order to be sufficiently effective.
Davidsson (1997) showed that one-track predictions (those that predict only the
usual behavior-dependent future and do not consider alternatives) are often suffi-
cient to improve behavior by inducing preventive mechanisms if the usual behavior
leads to undesired states.

Third, while curious behavior has been implemented in a few architectures, epis-
temic actions were not successfully shown in any of the considered architectures.
Epistemic actions may, however, be realized in several systems. However, it remains
unclear which predictive representations can most effectively trigger epistemic ac-
tions. It seems necessary that a system would need to generate hypotheses about the
environment and trigger actions to verify uncertain but relevant hypothesis. For ex-
ample, in a search task, a robot may look behind an obstacle to see if the ball might
be there. Kiryazov et al. (2007) have generated a first realization of such a system on
a real robot platform. The system is able to generate hypotheses based on analogy
making, consequently triggering goal-directed verification activity.

Hierarchical NN-based system architectures may offer another solution for the
realization of epistemic actions. Once higher levels are able to pre-activate lower
level neurons, these pre-activations may not only lead to the faster detection of such
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inputs but also to the activation of suitable motor activity to search for the hypothe-
sized inputs. In general, while systems might have a general curious action selection
mechanism, for example, for improving predictive model learning, epistemic actions
may be based on the same principle of predicted information gain, only that in this
case, plasticity needs to be more dynamic in that the entropy of current important
available information needs to be considered and selectively improved. Such mech-
anisms may lead to truly curious behavior and the automatic activation of epistemic
actions.

Fourth, the coupling of motivational mechanisms and potentially even emo-
tional mechanisms with the behavioral decision and control modules poses addi-
tional challenges. Context may be handled as a special input to the predictive and
to the control system and it may reflect current system motivations. The activated
contexts—activated, for example, by a neural activity pattern in the hierarchical neu-
ral architecture—should trigger matching motor programs and action decisions that
usually lead to the activated context. As discussed, coupled forward-inverse models
are a good candidate in this respect, selecting those coupled models that are maxi-
mally suitable given the current context.

5.6.3 Integration

The contrasted factors show that the challenges ahead in the design of competent,
flexible, and highly adaptive cognitive system architectures comprise system im-
provements of predictive and anticipatory capabilities. However, possibly even more
important, they require the effective combination and integration of various learning
and representational mechanisms.

Research currently still focuses on the improvement of particular predictive sys-
tem capabilities. In the future, though, we expect that successful combinations of
different predictive system capabilities will become increasingly important. We ex-
pect the following enhancements to be particularly fruitful:

1. The development of predictive systems that process and combine different sour-
ces of information (such as context information, sensory information, and action
information).

2. The implementation of predictive hierarchies that can generate predictions at dif-
ferent levels of abstraction in time and space.

3. The coupling of predictive representations with action control representations.

Especially the last point poses a great challenge but might be the key to the gen-
eration of actual cognitive systems. Perceptions need to be linked with appropriate
action codes (causing affordances and bottom-up action predispositions). And, vice
versa, action codes need to be linked to corresponding sensory effect codes that are
expected to change after action execution. With such a cognitive structure at hand,
many anticipatory capabilities might even emerge naturally from the system struc-
ture itself. However, even with a less sophisticated representation, several advanced
anticipatory capabilities will need to be investigated:
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1. Anticipatory representational shaping needs to be further developed, that is, the
learning of representations directly for effective behavioral decision making and
control.

2. The further development of curious behavior capabilities and epistemic action
capabilities: to realize a cognitive system that automatically activates epistemic
actions. It seems important that such behavior is triggered by the anticipated
information gain that seems most relevant for the achievement of current goals.

3. Anticipatory top-down mechanisms need to be further developed, which influ-
ence bottom-up sensory processing. This includes attentional mechanisms (cf.
Chapter 4) but also action decision making and control mechanisms since action
decision making can be considered as yet another attentional process.

4. A motivational and potentially emotional module may be coupled with the pre-
dictive system in order to induce even better action decision making capabilities,
enabling the execution of opportunistic actions and actions that are anticipated to
satisfy expected motivations (such as taking food and water on a hike).

The anticipatory enhancements are certainly not stand-alone but are very interde-
pendent and also highly dependent on the predictive representations used. Thus,
the discussed enhancements of the predictive capabilities of the system should not
(only) be pursued in isolation but rather should be designed from the beginning to
serve the realization of effective anticipatory action decision and control mecha-
nisms. It is expected that interactive, emergent, and unforeseen properties will be
detected along the way of this research endeavor and will as well lead to novel in-
sights in information processing, adaptive behavior, embodiment, and cognition as
a whole.

5.7 Conclusions

This chapter has shown that there are various challenges ahead. In order to create
competent, anticipatory, adaptive learning systems, the systems do not only need
to be competent in learning accurate predictive models of their environment but
also need to be able to effectively exploit the learned models for adaptive behavior.
This process is expected to be interactive rather than iterative in that the developing
predictive representations should immediately cause anticipatory mechanisms that,
vice versa, immediately influence the further development of the predictive repre-
sentations. The categorizations and contrasting discussions in this chapter may serve
as guidelines for the development of such more effective anticipatory mechanisms
and competent cognitive systems. It is hoped that this chapter does not only pro-
vide a useful overview of the discussed systems but that the chapter also encourages
further assessments of learning systems with respect to their predictive and antici-
patory capabilities and the creation of combinations of these systems to tackle the
challenges ahead.






