
Bridging the Gap: Learning Sensorimotor-Linked Population Codes for
Planning and Motor Control

Martin V. Butz, Kevin Reif, & Oliver Herbort

Abstract— Humans and animals are able to flexibly learn
internal, cognitive maps of their environments and are able
to use these maps to approach goals efficiently, reliably, and
flexibly. Recent neuroscientific evidence suggests that such maps
are formed in the hippocampus by means of interconnected
place, view, and head direction cell encodings. This paper
presents a neural learning architecture that develops an in-
terconnected population code of place cells during random
exploration. Connections develop dependent on the experienced
sensorimotor contingencies. The learned spatial representation
enables the agent to flexibly plan shortest paths to any goal
location within the explored environment by means of dynamic
programming. It approaches activated goal locations by means
of closed loop control. While the algorithm currently relies on
the Markov property, it is able to connect the network over
radical sensory changes as long as they are close in sensorimotor
distance. Moreover, the agent is able to flexibly adjust its
behavior dependent on current constraints without further
learning. This paper introduces the algorithm and evaluates
its robustness and consequent behavioral flexibility.

I. INTRODUCTION

The ideomotor principle of cognitive psychology [1],
[2], [3] suggests that we learn spatial representations and
inverse control structures solely based on the observation
of sensory-motor correlations during exploratory movements.
Once suitable representations emerge, goal-oriented behavior
becomes increasingly efficient. Given a current goal, those
actions are executed that were previously associated with
the goal representation. Tolman showed that animals can
latently learn sophisticated cognitive maps, which represent
the outline of an explored environment, such as a maze
[4]. Cognitive maps allow the simulation of movements and
thus the offline or online planning of goal-oriented behavior.
Dependent on the representation of the cognitive map, its
accuracy, and connectivity, it may be more or less suitable
to reach goals in the environment.

While various immediate motor control approaches exist
that realize the ideomotor principle (cf. [5]), few investigate
the efficient learning of a neural cognitive map based on these
principles. This paper introduces an algorithm, termed ”time-
growing neural gas” (TGNG), which is an unsupervised
planning and control algorithm. TGNG latently learns a
cognitive map and uses this map for the execution of efficient
goal-directed behavior.

This work was supported by the EmmyNoether Program of the German
Research Foundation, BU 1335/1

Department of Psychology III (Cognitive Psychol-
ogy), University of Würzburg, Röntgenring 11, 97070
Würzburg, Germany butz@psychologie.uni-wuerzburg.de
kevin.reif@stud-mail.uni-wuerzburg.de
oliver.herbort@psychologie.uni-wuerzburg.de

The hippocampus is well-known to be crucially involved
in episodic memory formation and remembering of past
episodes, places, people, etc. In animals (mainly rats), it
has been shown that the hippocampus represents (among
many other things) locations and orientations within the
environment by means of place and head-direction cells,
respectively [6]. Place cells have firing fields and are mainly
active when the animal is located (or moves through) the
respective fields. Head-direction cells encode the orientation
of the animal in the maze environment, effectively providing
compass information1. Recent evidence suggests that place
cells are also crucially involved in goal-directed planning,
since they are necessary for the successful completion of
spatial navigation tasks [7], have representational properties
that indicate anticipatory encodings [8], show goal-dependent
sharp-wave replays of behavior [9], and also exhibit goal-
related firing properties [10].

The introduced TGNG grows a place cell representation
of the explored environment according to the growing neural
gas (GNG) algorithm [11], [12] based on successive sensory
input. Different from GNG, neurons, which represent place
cells, are connected dependent on the sequential firing of
neurons. Due to this approach, connections between place
cells do not depend on sensory proximity but rather on
sensorimotor proximity, that is, the proximity of sensory
inputs dependent on motor activity. Thus, TGNG develops
a cognitive map that is represented as a graph in which
an edge encodes the possibility to move from one node to
the connected neighbor. In comparison with properties of
the hippocampus, place cells are nodes in the graph and
connections associate head-direction cell activity.

We show that the representation is very suitable to effi-
ciently plan and execute goal-directed behavioral sequences,
simply by activating goal states and propagating this activity
through the graph by means of dynamic programming. We
study the effects of parameters and noise on network size and
goal-directed behavior. We also show that the representation
is mostly independent of the sensory representation of the en-
vironment used, as long as the environment stays Markovian.
Moreover, we show that the learned representation allows the
flexible adjustment of behavior to novel constraints, such as
preferred movements in a certain direction.

The article is structured as follows. We first give an
overview over the architecture of TGNG. Next, we evaluate
the general properties of the algorithm in various maze tasks.

1Although, of course, there is no absolute encoding for e.g. North, but
the orientation is relative to the landmark distribution in the space.

Proceedings of the 2008 International Conference on Cognitive Systems
University of Karlsruhe, Karlsruhe, Germany, April 2-4, 2008

123



Furthermore, we show noise-robustness of the algorithm.
Finally, we show that TGNG is able to flexibly adjust
behavior due to additional behavioral task constraints without
further learning. A final discussion concludes the paper.

II. ARCHITECTURE

Based on the Growing Neural Gas (GNG) architecture
[12], the presented architecture simulates the learning of a
cognitive map in two dimensional environments. To establish
an interconnected network (nodes connected by edges) of
place cells, which represent the cognitive map, a simu-
lated robot randomly explores the environment for a certain
amount of time (measured in steps of a predefined length).
Should the robot reach an unmapped area of the environment,
new nodes (place cells) are created and connected to the rest
of the network . After every step, the robot’s movements
in x- and y-direction (its motor vector) is stored in those
edges best representing its trajectory. In every iteration an
edge is updated by increasing its experience and updating
the associated motor vector. Eventually, an evenly distributed
network of nodes and edges evolves, of which the nodes
represent place cells and the edges store the average motor
vector applied when traversing the edge. Previous approaches
have successfully shown that such a network has strong
relations to biological neural networks and can be used to
reach goals effectively [13], [14]. Here, we show that edges
can be formed over time without the need for perceptual
proximity, thus bridging perceptually distant locations while
still allowing efficient planning and goal-directed behavior.

A. Growing Neural Gas

As shown by Fritzke [12], GNG can be used to learn
important topological relations in a given set of input vectors
by means of a simple Hebb-like learning rule. Enhancing
and modifying Fritzke’s algorithm in several respects, the
presented architecture is now able to learn a cognitive map
of a complex environment by random exploration. Fritzke’s
algorithm is shown in Fig. 1.

While GNG was designed for static clustering applica-
tions, our intention was to enhance the approach for the
generation of cognitive maps that encode distances over
time. Thus, connections should be time-dependent instead
of sensor-dependent. This goal lead to the following mod-
ifications of GNG, creating the time-growing neural gas
algorithm TGNG.

B. Time Growing Neural Gas

Several modifications lead to the TGNG algorithm: instead
of sampling input signals at random (Step 2), our model uses
a robot that explores the environment. The most significant
difference can be found in Step 3: instead of using the
Euclidean distance between the input signal and the existing
nodes to determine two winning nodes, TGNG uses a com-
bination of the Euclidean distance and the temporal relation
between two input signals. The first winner (as Fritzke’s)
is the node nearest to the current input signal. The second
winner, however, is the node that used to be the nearest

1) Start with two nodes at random locations.
2) Receive an input signal.
3) Find the nearest and second-nearest node (Winner 1 and 2) to input

signal.
4) Increment the age of all edges emanating from Winner 1.
5) Add the squared distance between input signal and Winner 1 to a

Winner 1’s error variable.
6) Move Winner 1 and its direct neighbors towards the input signal by certain

hard coded fractions.
7) If Winner 1 and 2 are already connected by an edge, set its age to 0,

otherwise create an edge.
8) Remove all edges older than a predefined maximum age. If this results in

nodes with no emanating edges, remove them as well.
9) After a certain number of input signals (integer multiple of a hard coded

variable) insert a new node as follows:
a) Determine the node q with the maximum accumulated error.
b) Insert a new node r halfway between q and its neighbor f with the

largest error variable.
c) Insert edges between r and q and r and f , and remove the edge

between q and f .
d) Decrease the error variables of q and f by a constant fraction.
e) Initialize the error variable of r with the new value of the error

variable of q.
10) Decrease all error variables by multiplying them with a constant.
11) Repeat steps 2 to 11 until a predefined stopping criterion.

Fig. 1. Fritzke’s growing neural gas algorithm [12].

node in the previous iteration. Thus, two different input
signals are used to identify the two winners for the next
steps in the algorithm. This TGNG learns relations between
perceptually distant locations in the maze that, nonetheless,
can be traversed with a small number of steps.

Furthermore, to improve the quality of the generated
network, we use a global error variable ε (Step 5) that is used
to determine the location and instant when a new node should
be inserted. This closely relates to concepts introduced by
Toussaint [14]. The global error variable ε is updated every
iteration reflecting the low-pass filtered current local error:

ε← ε + δ(d− ε), (1)

where d is the Euclidean distance to the nearest node in
perceptual space and δ is the leak in the low pass filter
accounting for a logarithmically weighted recent error distri-
bution. In case this accumulated global error exceeds a hard
coded threshold θε, a new node gets inserted at the location of
the current input signal and connected to the nearest node.
In this way, it is possible to map the given maze in a far
shorter time while preserving the network’s accuracy.

A final modification of Fritzke’s algorithm lies in option-
ally not only updating the edge between the two winner
nodes (Step 7). Instead it is also possible to update all the
edges that connect all those nodes that were in the vicinity
of the robot before with all those that are in its vicinity after
the robot moved.

Similar to storing direction estimates [14], our architecture
stores motor vectors in the edges of the network that later
can be used to plan to any given goal location within the
representation. After every step, the robot’s current motor
vector is stored in the edge between the two winning nodes
(over time). Optionally, all edges representing the robot’s
trajectory are updated. To determine these edges, two lists
are created. All nodes in the lists are direct neighbors of the
current winner node or the current winner node itself. The

124



first list contains all those nodes that were nearer to the input
signal at time t1 than at time t2. The second one consists of
all those nodes that were nearer to the input signal at time
t2 than at time t1. Thus, two sets of nodes are created of
which all connecting edges between nodes of the two sets
(and the possibly newly created edge between winners 1 and
2) are updated in their experiences and motor vectors using
the moyenne adaptive modifiée [15] technique:

mvij ←

{
expij ·mvij+mv·frac

expij+frac if expij < 1/βm

mvij+mv·βm·frac
expij+βmfrac otherwise

, (2)

where expij denotes the number of update fractions the edge
connecting node i to node j has been updated, frac denotes
the update fraction for this edge, mv is the currently executed
motor vector, and βm is the learning rate for the motor
vector update. This method ensures that an average motor
vector is generated as fast as possible. Later on, a moving
average is preferred to ensure continuous adaptivity. If only
the connection between the winning nodes is used, frac
equals one. However, if also neighboring node connections
are updated, then a full update is distributed over the edges
that are updated based on the extend the previous node’s
activity decreased and the current node’s activity increased.

As stated above, the intention to build this sensorimotor-
based cognitive map is to use it for efficient, goal-directed
behavior. To reach a given goal location, goal-originating
activity can be propagated backwards through the network
until the activity reaches the node that coincides the the
robot’s starting location. The activity propagates through
edges from nodes j to nodes i whose experience expij (the
direction pointing towards node j) is greater than 0. The
following equation specifies the activity propagation:

ai ← ai + βa (max{ai(g), γ max
j with expij>0

aj} − ai), (3)

where ai denotes the activation of a node i, ai(g) is its
associated goal significance, and βa denotes the activity-
related propagation rate. Essentially, this corresponds to a
typical Q-learning and model-based reinforcement learning
approach [16].

Once the activation values saturate, propagation is stopped.
The resulting node activations represent their relation to the
goal node. The higher the activation in a node, the easier it is
to reach the goal from this node. Movement penalties can be
accounted for within the proposed equation either adjusting
the propagation rate γ based on the motor vector associated
with edge ij or by adding a fixed “effort” penalty dependent
on the executed motor vector.

Given a current activity distribution, the robot can walk to
a goal by activating the motor vectors that are associated with
edges that point towards higher activity nodes. Two ways are
contrasted to determine the appropriate motor vectors: either,
only the edge to the highest activity node that emanates from
the currently active node (that is, the edge connecting to
the node with the highest activity) is selected and its motor
vector is used for the robot’s next step; or, a weighted average
over all motor vectors of those edges connecting to nodes

with a higher activation than the currently active one is used.
A node stays active as long as it is the nearest node to the
robot’s current position.

III. EMPIRICAL EVALUATION

To evaluate TGNG, we tested the system on a simple
simulated robot platform in various maze environments. De-
pending on the mode of the experiment, the simulated robot
perceives either its absolute location in the maze (x,y real-
valued coordinates) or eight distance measures surrounding
the robot equally spaced. Based on this sensation, the nodes
are created and controlled.

The maze environment consists of a number of square
blocks that are either defined passable or impassable for the
exploring robot. Exceptions are “teleporter” blocks. When
entered, these blocks teleport the robot immediately to the
respective counterpart block. Along the lines of Toussaint’s
work [14], the robot changes its current direction with a
probability of p = .2 and uses a predefined step length.

For the evaluations, we used three mazes2 (Fig. 2). All had
the same number and size of blocks. The first environment
was an empty room with no obstacles. The second one
was a complex maze without teleporters. The last maze was
identical to the second but with three pairs of teleporters for
maximum complexity. Every maze was randomly explored
and each experiment was repeated ten times with different
random number generator seeds.

Fig. 2. Performance was evaluated in three mazes: (1) An empty room,
(2) a complex maze with various pathways, and (3) the same complex maze
with additional teleporter locations, which transferred the robot agent to the
open side of the counterpart teleporter.

To test the quality of the developing sensorimotor maps,
we interrupted learning at pre-defined intervals and generated
a set of nine locations: the most left, center, and most right
positions in the top, center, and bottom (unblocked) rows of
the maze. The nodes closest to the locations served as start
or goal nodes. Each combination of start and goal locations
is tested, yielding 9 × 8 = 72 start-goal combinations.
After propagating goal-originating activations through the
network, the robot has to find its way to the goal using
the edge-associated motor vectors as described above. The
performance analysis below considers the percentage of
successful goal reaches, path length of planned and executed
paths, as well as the density of the generated networks. Using
these measures, we now evaluate parameter dependencies as
well as the capability to account for behavioral constraints.

2The mazes were chosen arbitrarily. Other maze configurations should
generally only alter the outcome if the Markov property is violated.

125



Fig. 3. Learning in the three tested maze environments confirms fast and accurate learning in the empty maze. Also in the more complex mazes
near-accurate performance is reached reliably.

Fig. 4. Successful behavior depends on the method with which motor
vectors are associated with edges and how the associated motor vectors are
used to control goal-oriented behavior.

A. Learning Curves

Before delving into the details of the algorithm and its
constraints, we evaluate the overall learning performance
achievable with the general setup. Generally, learning pro-
gresses rapidly. Fig. 3 shows that in an empty maze after
10, 000 learning iterations (i.e. steps of the robot) already
more than 60 of the 72 goals are reached3—albeit with a high
standard deviation of ≈ 20%. After 100, 000 steps almost all
of the 72 goal nodes are reached and the standard deviation
drops to ≈ 3%. The more complex mazes pose a slightly
harder learning challenge. Nonetheless, nearly all goals are
reached reliably and also the maze with teleporters can be
learned efficiently.

B. Parameter Dependencies

To determine which mode of storing and selecting the
motor vectors is best for the robot’s performance, we tested
several combinations of learning and goal-directed behav-
ioral settings: For the routine that associates motor vectors
with edges, we either associated only the winning edge or
all trajectory-representing edges, as specified above (2). For
selecting the motor vector for goal-directed behavior, we
either executed only the motor vector associated with the best

3Since we use arbitrary movements to explore an environment it takes
the robot between 8, 000 and 15, 000 steps to visit every part of the maze
at least once.

edge or generated a weighted average of the motor vectors
linking to higher activated nodes).

Best performance was achieved when the activity-
weighted average motor vector was used during goal-directed
behavior and only the winning edge was considered during
training. Fig. 4 compares the three settings: either only
the best connection was updated and selected during goal-
directed behavior, or the motor vector generation used the
averaging, or also learning used the averaging for the motor
vector updates. Results are only shown in the maze with
teleporters since the differences in the other two mazes were
even less pronounced. In the teleporter maze, slightly better
performance is achieved when the motor vectors are averaged
during goal-directed behavior but not during learning. This
indicates that motor vector averaging during learning can
yield disruptive performance when attempting to traverse a
teleporter.

Network Density: Our architecture is able to adapt the
density of the created network by means of a hard-coded
threshold. A higher threshold implies a smaller number of
nodes, thus leading to a runtime advantage. On the other
hand, a low threshold leads to the creation of more nodes.
Fig. 5 shows how performance depends on network density.
Thresholds larger than .4 showed to decrease the success
rates. However, even with very small thresholds TGNG was

Fig. 5. Dependent on the error threshold θε, which specifies the tolerance
to sensory change, the resulting network yields different success rates during
goal-directed behavior (performance after 1M learning iterations).

126



Fig. 6. Comparing performance with x,y sensors and distance sensors shows that the algorithm also works robustly in either case.

TABLE I
NUMBER OF NODES AND EDGES AFTER 1M LEARNING STEPS.

(x,y) sensors θε .25 .4 .55 .7 .85
nodes 1675 848 545 409 321
edges 4719 2257 1397 1024 783

dist. sensors θε 3 5 6 9
nodes 5431 2511 1968 1137
edges 18293 7844 6037 3407

able to generate a cognitive map appropriate for goal-directed
behavior. This suggests that the grid needs to be fine enough.
An overly fine network, however, only affects performance
speed but not accuracy. Table I shows the resulting network
densities after one million steps of learning. The number
of rows and edges in the developing networks are highly
dependent on the threshold θε. However, the ratio between
nodes and edges stays nearly constant at around three.

C. Distance Sensors

So far, all evaluations were based on an absolute location
sensation, that is, the sensation of the coordinates of the
robot’s current location. Clearly, such a sensation informa-
tion is rather unrealistic for a cognitive system. Thus, we
conducted the same evaluation with a sensory space of eight
distance sensors, which encode the distance to the nearest
wall in eight directions uniformly surrounding the robot. The
only adjustment necessary to learn in this environment was
to increase the threshold θε. If not stated differently, in the
runs with distance sensations we set the threshold to 5.

Fig. 6 shows that the performance with distance sensors
hardly differs from the one encoding the absolute robot lo-
cation. In fact, with distance sensors, performance is slightly
better than without distance sensors. This may be due to
fact that the developing cognitive map in the encoding with
distance sensors contains more nodes (1635 vs. 2616 in the
maze without teleporters and 1586 vs. 2511 in the maze with
teleporters). However, Fig. 7 shows that this performance is
robust even with a threshold of 9 in the teleporter maze, in
which the number of nodes and edges is smaller than in the
case with x, y sensors and a threshold of .25 (cf. Table I.
Thus, the better performance appears to be caused by the
finer density of the network around corners and teleporters.

Fig. 7. In the maze with teleporters, a wide variety of error thresholds θε

yield optimal behavior in the setting with distance sensors.

This second fact is due to the sensory property of distance
sensors: at corners that point inside the maze, the distance
sensors encounter large changes, consequently causing the
generation of more nodes than at other locations in the maze.

D. Paths and Movement Constraints

To illustrate how certain constraints can immediately affect
behavior, we introduced a movement constraint. To do so,
we distinguished movements in four directions (positive and
negative x and y direction) and added a penalty to one of the
directions. The penalty was used as a multiplicative decrease
in the activity propagation (3) dependent on the percentage
of movement in the penalized direction. For example, given
that the motor vector associated with an edge encodes that
70% of the movement is taken in positive x direction when
traversing this edge and that there is a penalty of .25 to
move in positive x direction, then activity propagated through
that edge is decreased by γ × (1 − .25) × .7 + .3 = .825
instead of γ only. Note that such a constraint can be added
without any further learning effort. Due to the model-based
behavioral approach, the system can thus adjust immediately
to its current movement preferences.

We compared walked paths without and with constraints.
In the mazes without teleporters, the constraints did not
have any behavioral effect because the mazes do not allow
alternative routes. However, in the maze with teleporters,

127



Fig. 8. When increasing the strength of the movement constraint, the robot
takes increasingly long detours to minimize movements to the right.

the paths taken became longer since the system prefers a
longer path in negative x direction instead of the direct
path in positive x direction. While in the unconstrained case
approximately 35% of the walked paths was in positive x
direction, with a constraint of .5, the movement decreased
to 14%.

Fig. 8 compares the relative path lengths taken with
different constraint strengths. Each path was compared to
an approximate optimal distance deduced for the maze. It
can be clearly seen that the approximate path length without
constraints is slightly better than the approximate optimal
path length4. However, when adding constraints, paths be-
come longer because the system prefers more complex routes
(detours) through teleporters (or not through teleporters) in
order to avoid movements to the right.

E. Noisy Sensations

To further study the robustness of the algorithm, we also
added independent Gaussian noise with a certain standard-
deviation to each sensory input. Fig. 9 shows that noise devi-
ations below the threshold θε = .4 hardly affect performance.
Larger thresholds, however, strongly increase the network
size (953 nodes and 3846 edges with Gaussian noise of
standard deviation .5) and lead to learning disruptions due to
aliased perceptual inputs and unsuitable place cell locations
and connections. A similar observation holds also for the
case when distance sensory are employed (Fig. 10). Hereby,
noise levels of deviation 3 still hardly affected performance.
However, the number of nodes in the network increased
significantly from 2617 nodes (8256 edges) with a noise of
1 to 3604 (13193) with a noise of 3. For values above 3,
the number of nodes and edges increased so much so that a
reasonable runtime below one hour per experiment was not
achievable any longer.

IV. SUMMARY AND CONCLUSIONS

This paper has shown that a relatively simple algorithm,
the time-growing neural gas (TGNG), can effectively and

4The approximate optimal path length was determined by considering
movements from the center of one block to the center of any of the
eight neighboring blocks. As well as movements through teleporters from
neighboring blocks. Thus, this is an approximation that nonetheless serves
well for the comparison of relative qualities of generated paths.

Fig. 9. Moderate noise levels below the node creation threshold θε =
.4 hardly affect performance. However, once noise approaches the chosen
threshold, performance degrades significantly.

Fig. 10. In the case with distance sensors, noise did not affect performance.

robustly learn cognitive maps of environments. The algo-
rithm proved to be noise-robust and relatively parameter
independent, while generating near-optimal paths to goals.
Moreover, the algorithm can flexibly account for additional
movement constraints, such as a movement direction pref-
erences. Finally, behavioral success does not depend on any
prior spatial knowledge of the environment nor any distance
or directional knowledge. The only prior information used
was a compass and the capability to move relative to the com-
pass orientation. Thus, the information available to TGNG is
comparable to the one available to the hippocampus, which
encodes place cells and head direction cells. As presumably
in the hippocampus, connectivity between place cells and the
attachment of place cells to spatial areas happens on the fly
during random exploration.

In comparison to Toussaint’s algorithm [14], which also
learned cognitive maps in a maze environment, we showed
that TGNG is able to build cognitive maps over time bridging
gaps and strong changes in sensory input. This enables
the formation of connections through teleporter gateways,
which instantly moved the robot to a different location in
the environment. Moreover, it enables the formation of maps
with distance sensors, regardless of strong sudden changes
of the distance sensor input.

In relation to previous robot platform application, Arleo
and Gerstner [13] have build a similar hippocampal place cell
model, which processes actual pre-processed visual input in
multiple layers for the generation of place fields. However,
connections between place cells were not encoded explicitly

128



but were derived by the provision of path-integration cells,
which provided allocentric spatial representations. To acti-
vate behavior, the authors learned an explicit state-action-
value map, which prevents the fast adaptation to changed
goal locations. TGNG does not require any direct allocentric
information and state-action mappings are generated online
by the employed activation propagation mechanisms, which
is possible since a complete cognitive map is learned. An-
other related model is that of Cuperlier et al. [17]. While
this model is able to bridge strong sensory changes by the
formation of transition cells without any explicit allocentric
information, it remains unclear how robust the employed
algorithm works and how robust it is to noise. TGNG shows
that the usage of transition cells is not necessary still yielding
strong behavioral robustness also in the case of noisy sensory
information.

While TGNG seems to be a promising algorithm for
the autonomous learning of cognitive maps, several current
challenges need to be addressed. First, the algorithm is
mainly dependent on one parameter: the threshold θε, which
determines when a new node should be created. An interest-
ing idea is to make the threshold dependent on the average
change in sensory input during random movements. Sec-
ond, the algorithm currently assumes that all sensory inputs
are relevant for the place cell formation. Thus, behavioral
relevance measures, grouping measures, and generalization
capabilities need to be added to appropriately generalize
the sensory input. Clearly, in the brain this occurs already
mainly before sensory information reaches the hippocampus.
Third, the algorithm relies on the Markov property. That
is, sensory input needs to provide enough information to
localize the agent in the environment and to be able to
predict average action effects deterministically. Since this
is not the case in general, internal state representations
need to be added to distinguish different subspaces in the
environment. Hierarchical reinforcement learning provides
several approaches to develop such representations during
random exploration [18], [19], [20]. Finally, the hippocampus
re-uses place cells and re-connects place cells highly plastic
in different environments [7]. Thus, cognitive maps should
be flexibly reactivated, dependent on the sub-environment
currently in. Neural gating techniques seem to be necessary
to be able to re-activate different memory structures context-
dependently.

Despite the various challenges ahead, this paper has shown
that a simple self-organizing map algorithm can be employed
to structure cognitive maps over time and that a simple
association mechanism is sufficient to associate appropriate
motor vectors. Thus, TGNG builds cognitive maps without
any prior distance or other spatial information. Distances are
derived by the encountered sensorimotor contiguity alone.
Future research will apply TGNG on a real robot platform
and tackle the challenges discussed above combining the
system with other interactive sensory and motor processing
mechanisms.

V. ACKNOWLEDGMENTS

The authors are grateful to Prof. Hoffmann and all the col-
leagues at the Department of Cognitive Psychology. More-
over, the authors are grateful to Prof. Puppe for his support.

REFERENCES

[1] J. F. Herbart, Psychologie als Wissenschaft neu gegründet auf Er-
fahrung, Metaphysik und Mathematik. Zweiter, analytischer Teil.
Königsberg, Germany: August Wilhem Unzer, 1825.

[2] J. Hoffmann, C. Stöcker, and W. Kunde, “Anticipatory control of
actions,” International Journal of Sport and Exercise Psychology,
vol. 2, pp. 346–361, 2004.

[3] W. James, The principles of psychology. New York: Holt, 1890.
[4] E. C. Tolman, “There is more than one kind of learning,” Psychological

Review, vol. 5b, pp. 144–155, 1949.
[5] G. Pezzulo, G. Baldassarre, M. V. Butz, C. Castelfranchi, and J. Hoff-

mann, “From actions to goals and vice-versa: Theoretical analysis and
models of the ideomotor principle and tote,” in Anticipatory Behavior
in Adaptive Learning Systems: From Brains to Individual and Social
Behavior, M. V. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, Eds.
Springer-Verlag, 2007.

[6] S. I. Wiener, A. Berthoz, and M. B. Zugaro, “Multisensory processing
in the elaboration of place and head direction responses by limbic
system neurons,” Cognitive Brain Research, vol. 14, p. 7590, 2002.

[7] B. Poucet, P. P. Lenck-Santini, V. Hok, E. Save, J. P. Banquet,
P. Gaussier, and R. U. Muller, “Spatial navigation and hippocampal
place cell firing: The problem of goal encoding,” Reviews in Neuro-
sciences, vol. 15, pp. 89–107, 2004.

[8] J. G. Fleischer, “Neural correlates of anticipation in cerebellum, basal
ganglia, and hippocampus,” in Anticipatory Behavior in Adaptive
Learning Systems: From Brains to Individual and Social Behavior,
M. V. Butz, O. Sigaud, G. Pezzulo, and G. Baldassarre, Eds. Springer-
Verlag, 2007.

[9] D. J. Foster and M. A. Wilson, “Reverse replay of behavioural
sequences in hippocampal place cells during the awake state,” Nature,
vol. 440, pp. 680–683, 2006.

[10] V. Hok, P.-P. Lenck-Santini, S. R. andEtienne Save, R. U. Muller,
and B. Poucet, “Goal-related activity in hippocampal place cells,” The
Journal of Neuroscience, vol. 27, p. 472 482, 2007.

[11] T. M. Martinetz, S. G. Berkovitsch, and K. J. Schulten, “”Neural-
gas” network for vector quantization and its application to time-series
prediction,” IEEE Transactions on Neural Networks, vol. 4, pp. 558–
569, 1993.

[12] B. Fritzke, “A growing neural gas network learns topologies,” in
Advances in Neural Information Processing Systems 7, G. Tesauro,
D. S. Touretzky, and T. K. Leen, Eds. Cambridge MA: MIT Press,
1995, pp. 625–632.

[13] A. Arleo and W. Gerstner, “Spatial cognition and neuro-mimetic
navigation: A model of hippocampal place cell activity,” Biological
Cybernetics, vol. 83, pp. 287–299, 2000.

[14] M. Toussaint, “A sensorimotor map: Modulating lateral interactions for
anticipation and planning,” Neural Computation, vol. 18, pp. 1132–
1155, 2006.

[15] G. Venturini, “Adaptation in dynamic environments through a minimal
probability of exploration,” From Animals to Animats 3: Proceedings
of the Third International Conference on Simulation of Adaptive
Behavior, pp. 371–381, 1994.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 1998.

[17] N. Cuperlier, M. Quoy, C. Giovannangeli, P. Gaussier, and P. Laroque,
“Transition cells for navigation and planning in an unknown environ-
ment,” From Animals to Animats, vol. 9, pp. 286–297, 2006.

[18] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, vol. 13, pp.
341–379, 2003.

[19] M. V. Butz, S. Swarup, and D. E. Goldberg, “Effective online detection
of task-independent landmarks,” Illinois Genetic Algorithms Labo-
ratory, University of Illinois at Urbana-Champaign, IlliGAL report
2004002, 2004.

[20] Ö. Simsek and A. G. Barto, “Using relative novelty to identify useful
temporal abstractions in reinforcement learning,” Proceedings of the
Twenty-First International Conference on Machine Learning (ICML-
2004), pp. 751–758, 2004.

129


