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1. Introduction

Standard social welfare analysis often uses a single parameter, typically an elasticity, to

quantify key behavioral responses to policy changes. This “sufficient statistics approach”

(Chetty, 2009), however, may produce results that strongly differ from approaches that

explicitly allow for variation in elasticities across different policy levels. A striking example

is provided by Kasy (2018), who analyzes optimal coinsurance rates for health insurance

using data from the RAND health insurance experiment. Allowing for arbitrary variation

in health care expenditure elasticities across different coinsurance rates, he finds a welfare

maximizing coinsurance rate of 18%, whereas the sufficient statistics approach yields an

optimal rate of 50%.

In this paper, we use a similar approach to that of Kasy (2018) to analyze the negative

income tax (NIT), a transfer scheme that aims at reducing poverty. The NIT provides

families without any income with a transfer equal to the guaranteed income level G. The

NIT transfer, however, linearly declines in family income at the take-back rate t up until a

break-even point where the transfer becomes zero (see, e.g., Saez, 2002). In our analysis,

we focus on the role of t to answer the research question: which level of t is social welfare

maximizing? To this end, we first theoretically derive a notion of social welfare that takes

into account the families’ allocation decision regarding their disposable time which can either

be used for work (which earns labor income that is used for consumption, but also reduces

the NIT transfer) or leisure. Our notion of social welfare describes the trade-off between the

policy maker’s two objectives that both depend on the magnitude of the take-back rate t:

(i) maximizing private utility, which is achieved by reducing t, i.e., all other things equal,

increasing the NIT transfer, and (ii) minimizing government spending for the NIT, which is

achieved by increasing t, assuming all other things equal. The key behavioral relationship

in our model is the one between t and the labor supply, as a marginal increase in t induces

a decrease in labor supply, which in turn diminishes the mechanical savings effect regarding
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the transfers. Unlike previous theoretical analyses of the NIT (see, e.g., Saez, 2002), we do

not rely on the aforementioned sufficient statistics approach that summarizes key behavioral

relationships using a single elasticity parameter. Instead, we derive simple expressions of the

labor supply and social welfare that are functions of t. In a next step, we empirically estimate

the labor supply function using data from two NIT experiments that were conducted in the

US in the 1970s. In these experiments, treated families were assigned to different NIT plans,

i.e., different combinations of G and t. Controlling for G and a number of family-specific

controls, we find that families assigned to higher take-back rates supply less labor in terms

of hours worked, as predicted by our theoretical model. Furthermore, also in line with the

theory model, the empirical labor supply function is concave for most of the observed range

of t. However, considering the full available range of t, this result does not hold. Finally, we

plug the estimated labor supply function into our notion of social welfare. For most of the

tested parameterizations, our findings suggest that the welfare optimizing take-back rate is

quite large, lying between approximately 65% and 69%. However, due to poor data quality of

the NIT experiment data, the validity of these empirical findings is limited. Furthermore, we

find that the social welfare optimizing take-back rates strongly differ depending on whether

we allow for nonlinearities in the labor supply estimation or not.

Besides the aforementioned contribution to the theoretical literature regarding the welfare

analysis of the NIT, we add to two strands of the empirical literature. First, we contribute

to the large body of studies estimating labor supply responses to government-run transfer

programs. Regarding the NIT experiments, a comprehensive list of studies is provided

by Widerquist (2005), who summarizes previous labor supply response estimates as being

varying in size.1 Most of the previous estimations using the NIT experiment data regress

labor supply on changes in the net wage rate that are induced by the introduction of the

1The lack of an agreed acceptable level of work-disincentive also had effects on the policy debate sur-
rounding the NIT in the US (Widerquist, 2005). In the end, the NIT was not introduced. Instead, the US
opted for the Earned Income Tax Credit regime, which, up to a certain threshold, matches each dollar of
earned income with a certain transfer, but pays nothing in the case of zero income (Saez, 2002). As pointed
out by Saez (2002), however, many transfer programs in European countries work like the NIT.
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NIT, often distinguishing different subgroups, such as husbands, wives, or single female heads

(Robins, 1985). In contrast, our estimation approach of the labor supply response focuses

on the direct effects of different levels of the take-back rate on aggregated family labor

supply. The evaluation of labor supply responses also plays a large role in the context of

randomized control trials (RCTs) that provide targeted transfers. A recent example is Verho

et al. (2022) who study the work-disincentive effect of participants in an RCT conducted in

Finland that replaced minimum unemployment benefits with an unconditional income of the

same size. They find that the days in employment did not statistically change during the

first year. Banerjee et al. (2017) provide a comprehensive re-evaluation of data from seven

RCTs of cash transfers in six developing countries. They do not find systematic evidence

of a work-discouragement effect. Second, we add to the growing literature in public finance

that estimates behavioral effects for different levels of policy variables rather than relying on

a single aggregating estimate. Besides the aforementioned study by Kasy (2018), a recent

example can be found in Fuest et al. (2022) who study the profit shifting behavior of

multinational firms. They show that profit elasticities depend nonlinearly on the magnitude

of countries’ tax rates and argue that taking these nonlinearities into account is key for

obtaining accurate profit shifting estimates.

The remainder of the paper is structured as follows. Section 2 theoretically derives our

notion of social welfare. Section 3 describes the estimation strategy as well as the data. The

results of our empirical labor supply and social welfare estimations are presented in Section

4. Finally, Section 5 concludes.

2. Theory

2.1. Household Optimization Problem

We start out by describing the decision problem of the family that is subject to the NIT. The

theory builds on standard intensive labor supply models in the context of income taxation
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as discussed in, e.g., Hausman (1985) or Keuschnigg and Wamser (2024).2 The key decision

that the family has to make is the one concerning the allocation of the available time T > 0

between hours worked L ∈ (0, T ), that are compensated at the wage rate w > 0,3 and hours

used for leisure F . Hence, leisure is given by F = T − L. The opportunity cost of leisure is

the labor income that could have been earned instead. The total income of the family states

as follows:

Y = wL+ I + S + P = wL+ I + S +max{G− t(wL+ I)− S, 0}. (1)

The labor income is given by wL. I ≥ 0 denotes unearned income, such as interest, div-

idends, or capital gains. S ≥ 0 gives the total public assistance that the family receives,

including, e.g., Aid to Families with Dependent Children (AFDC). We treat both I and S

as exogeneously given. Finally, P = max{G− t(wL+ I)− S, 0} denotes the NIT payment,

with G > 0 denoting the guaranteed income level and t ∈ (0, 1) denoting the take-back rate.

Note that while labor income and unearned income are taxed at t, the welfare income S

is taxed at 100%, which means that the NIT payment effectively replaced the multitude of

different welfare programs during the US experiments (Mathematica Policy Research, Inc.

[MPR], 1980). For the remainder of this section, we assume that the family receives some

strictly positive NIT payment P in the optimum, i.e., G > t(wL + I) + S.4 Furthermore,

we set unearned income to zero, i.e., I = 0. This assumption is plausible in the context of

the US NIT experiments of the 1970s that we use for our empirical analysis below, as the

samples consist of poor families with no or negligibly small unearned income.5 Finally, we

introduce the “keep-rate” k, which we define as 1− t. The use of the keep-rate rather than

the take-back rate is solely due to practical reasons regarding the formulation of the social

2Note that the model is kept simple, as the goal is to obtain a notion of social welfare function that can
be directly estimated and that allows for nonlinearities in the labor supply. For a more rigorous theoretical
analysis of the NIT, see Aboudi et al. (2014) or Saez (2002).

3We assume that families are price takers and take the wage rate as given.
4We further assume that also after marginal changes in exogenous model parameters, in particular changes

in t, the family still receives some strictly positive NIT transfer.
5See descriptive statistics below in Section 3.2 or Widerquist (2005).
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welfare function. The budget constraint in (1) then simplifies to

Y = G+ kwL. (2)

It is important to note that since our model is static and therefore does not allow for

savings, consumption equals total income Y . Given that the NIT is a policy instrument

that is designed to target low-income households and given that the transfers from the NIT

experiment typically do not raise families’ disposable incomes much above the poverty line

(see, e.g., discussion of the NIT experiments that were conducted in the US in the 1970s

below), this assumption seems plausible. Finally, we assume that the family’s preferences

for consumption Y and leisure F are captured by the Cobb–Douglas utility function

U(Y, F ) = U(Y, T − L) = Y α(T − L)1−α. (3)

α and 1 − α are the utility elasticities of consumption and leisure, respectively, which we

take as given, with α ∈ (0, 1).6 We proceed to formulate the utility maximization problem

of the household (with λ denoting the Lagrange multiplier and V (·) denoting the indirect

utility function):

V (k, w, α, T,G) = max
Y,L

[
Y α(T − L)1−α + λ(G+ kwL− Y )

]
. (4)

Solving the first-order conditions corresponding to (4), we obtain the Marshallian labor

supply:

L∗ = L(k, w, α, T,G) = αT − G(1− α)

kw
. (5)

6Note that α ∈ (0, 1) implies homogeneity of degree one, i.e., multiplying both Y and F by the same
factor a > 0 leads to an increase in utility by the same factor. Formally: U(aY, aF ) = aU(Y, F ) (see, e.g.,
Mas-Colell et al., 1995).
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For our analysis, we are particularly interested in the response of L∗ with respect to marginal

changes in the keep-rate k. The Marshallian labor supply in (5) implies that L∗ is strictly

increasing in k, as

∂L∗

∂k
=

G(1− α)

k2w
> 0. (6)

Note that this result implies that the substitution effect is larger than the income effect.

The substitution effect states that less leisure is consumed as a result of an increase in the

after-tax wage rate kw, i.e., the opportunity cost of leisure. Consequently, the labor supply

L = T − F increases. The income effect, on the other hand, suggests that the labor supply

decreases as kw increases, as the household can maintain its original consumption level Y

with a labor supply level that is lower than the initial one.7

A key result of our theoretical model is that the labor supply response is nonlinear. More

precisely, the second derivative of (5) with respect to the keep-rate k implies concavity:

∂2L∗

∂k2
=

−2G(1− α)

k3w
< 0. (7)

This means that the labor supply response induced by a marginal increase in k is smaller

when k is comparatively high already. Consequently, this finding suggests that characterizing

the complete labor supply function with a single parameter – as often done in simple sufficient

statistics welfare formulas – is not feasible in our setup.

The family’s consumption in the optimum is given by:

Y ∗ = Y (k, w, α, T,G) = G+ kwL∗ = α(kwT +G). (8)

It can easily be seen that the first derivative of Y ∗ with respect to k is also strictly positive:

∂Y ∗/∂k = αwT > 0. This is due to (i) the fact that the family increases its labor supply

7For an in-depth discussion of the substitution and income effects, see Keuschnigg and Wamser (2024).
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in response to an increase in k (see (6)) and thereby increases its labor income; and (ii) a

mechanical increase in the NIT transfer due to an increase in k.

Finally, the indirect utility function is obtained by plugging (5) and (8) into (4):8

V ∗ = V (k, w, α, T,G) = (G+ kwL∗)α(T − L∗)1−α

= [α(kwT +G)]α
[
(1− α)

(
T +

G

kw

)](1−α)

. (9)

The derivation of V ∗ with respect to k states as follows:

∂V ∗

∂k
=

(1− α)

k
Y ∗α(T − L∗)−αL∗. (10)

Given the assumptions regarding ranges of the parameters and choice variables, it follows

that ∂V ∗/∂k > 0. A proof of this result as well as a detailed derivation of (10) are provided

in Appendix 1. Invoking the Envelope Theorem, it can be shown that changes in the choice

variables (i.e., L, Y , and λ) as response to a marginal change in k have no effect on V ∗ in

the optimum. Instead, the derivative of V ∗ with respect to k equals its direct derivative (see,

e.g., Mas-Colell et al., 1995 or Keuschnigg and Wamser, 2024). A brief demonstration of the

Envelope Theorem is provided in Appendix 2.

2.2. NIT Payment

We now turn to the government side. Using the family’s optimal labor supply choice L∗

from above, we can compute the NIT payment that the government makes to the family:9

P ∗ = G− (1− k)wL∗ − S. (11)

8Note that the term λ∗(G + kwL∗ − Y ∗) in (4) becomes zero, as the budget constraint is satisfied with
equality in the optimum.

9Keep in mind that we assume that P > 0 always holds.
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A marginal change in k has two effects on the magnitude of P ∗. (i) A mechanical effect that

can simply be computed by holding the family’s labor supply fixed at L∗. It amounts to wL∗.

Note that this effect is always strictly positive, i.e., it increases the NIT payment, as both

w > 0 and L∗ > 0. (ii) A behavioral effect, which results from the family adjusting its labor

supply in response to the change in k. In detail, this change amounts to −(1−k)w(∂L∗/∂k).

As k ∈ (0, 1), w > 0, and ∂L∗/∂k > 0 (see (6) above), this behavioral effect is strictly

negative, i.e., reduces the NIT payment. Adding up the mechanical and the behavioral

effects, we obtain the partial derivative of (11) with respect to k:

∂P ∗

∂k
= wL∗ − (1− k)w

∂L∗

∂k
= w

(
αT − G(1− α)

k2w

)
. (12)

The last equality is obtained by inserting the value function for L∗ (see (5)) as well as its

derivative with respect to k (see (6)). The labor supply response of the household at k plays

an important role for the magnitude of (12), with a strong response, i.e., a steeply upward

sloping labor supply curve, being beneficial for the government. Note that our model does

not suggest any particular sign for (12); in theory, payments could decrease as result of an

increase in k. This is the case when the behavioral effect outweighs the mechanical effect.

In our empirical application below, however, this special case does not play a role.

2.3. Social Welfare Function

Finally, we define social welfare as a function of k that the policy maker seeks to maximize.

Similar to Kasy (2018), we define social welfare as the difference between household utility

(see (9)) and the transfer payment (see (11)), both of which are value functions of the take-

back rate k and all other exogenous parameters. For the sake of notational simplicity we

shall henceforth denote the value function of the labor supply depicted in (5) with L∗ = L(k).
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Formally, the social welfare function states as follows:

SW (k) = V ∗ − P ∗

= (G+ kwL(k))α(T − L(k))1−α − [G− (1− k)wL(k)− S]. (13)

Note that while both our notion of social welfare as well as the one proposed by Kasy

(2018) account for nonlinear behavioral responses, there are two key aspects in which they

differ. First, we explicitly model the household’s trade-off between consumption and leisure

under the assumption of Cobb-Douglas preferences. In Kasy (2018), the individual chooses

a level of health care expenditure while being confronted with a given coinsurance rate.

However, the trade-off the individual faces in this setup, i.e., staying/becoming healthy

versus reducing out-of-pocket costs and thereby increasing, e.g., other consumption, is not

theoretically modeled. Instead, the only assumption that is made by Kasy (2018) is that

maximized private utility changes linearly with respect to the coinsurance rate. In our setup,

the indirect utility function is a nonlinear function of the policy parameter of interest k, see

(10).10 Second, the social welfare function used by Kasy (2018) assumes that the policy

maker sets a marginal value of an additional dollar transferred to the sick relative to the cost

of an additional dollar of expenditure for the health insurance provider, which is assumed

to be larger than one. Without this parameter, the social welfare function in Kasy (2018)

essentially collapses. In contrast, our setup does not necessitate invoking such a parameter.

As mentioned above, the policy maker sets the keep-rate such that social welfare is

maximized. We denote the maximizing level of the keep-rate as k∗. The first-order condition

is

SW ′(k∗) =
∂V ∗

∂k

∣∣∣∣
k=k∗

− ∂P ∗

∂k

∣∣∣∣
k=k∗

= 0. (14)

10Note that if one would assume quasilinear preferences for our problem with consumption Y entering
utility linearly, the indirect utility function would also change linearly with respect to k. However, we
believe that assuming Cobb-Douglas preferences with diminishing marginal utility with respect to both
consumption and leisure is more adequate.
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Using the expressions for the first derivatives of V ∗ and P ∗ with respect to k from above

(see (10) and (12), respectively), we can rewrite (14) as a function of the Marshallian labor

supply L(k) and its first derivative with respect to k, L′(k):

SW ′(k∗) =
(1− α)

k∗ (G+ k∗wL(k∗))α (T − L(k∗))−αL(k∗)− wL(k∗) + (1− k∗)wL′(k∗) = 0.

(15)

Note that the first derivative of the social welfare function is conceptually similar to the

notion of excess burden as described in, e.g., Keuschnigg and Wamser (2024) in the context

of income taxation. This becomes apparent when we think about a marginal decrease in k,

which is identical to an increase in the take-back rate t:11 An increase in t reduces utility (see

(10)), which reduces overall social welfare (see (13)). However, the increase in t mechanically

lowers the NIT payment, which is beneficial for overall welfare, as the government has more

money at its disposal for other purposes that increase welfare. In this sense, from a social

welfare perspective, a lower NIT payment is similar to an increase in income tax revenue.

The degree to which the lower NIT payments make up for the decrease in private utility

hinges on the behavioral response of the household, or, more precisely, the magnitude of

the substitution effect at t. In case the household is strongly decreasing its labor supply in

response to a marginal increase in t, i.e., a reduction in the after-tax wage rate (1 − t)w,

the mechanical decrease in the NIT payment is largely canceled out. Our notion of the

excess burden states how much of the loss in utility cannot be offset by the decrease in the

NIT payment. They key innovation compared to other standard formulas of social welfare

and excess burden is that we do not rely on a single elasticity parameter characterizing the

curvature of the labor supply function. Instead, we account for the response intensity at

each level of k. In the remainder of the paper, we use data from the US NIT experiments

to estimate L(k), explicitly allowing for nonlinearities. Then, we use the estimate of L(k) to

estimate (13) for different levels of k to determine the welfare optimizing keep-rate k∗.

11Keep in mind that k = 1− t.
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3. Empirical Approach

3.1. Estimation Strategy

The key ingredient for the estimation of the social welfare function for different levels of the

take-back rate k is the labor supply L(k), see (13). With all exogenous model parameters at

hand, one could simply calculate L(k) using (5). However, we are interested in an empirical

estimate of the labor supply, L̂(k), that accounts for behavioral responses that cannot be

captured by our simple model. In doing so, we accept potential deviations between L̂(k) the

purely model-based L(k). In the following, we describe the estimation strategy for obtaining

L̂(k) using data from two NIT experiments that were conducted in the US in the 1970s. In

these experiments, families were assigned to different NIT plans consisting of combinations

of take-back rates (k = 0.30, k = 0.40, k = 0.50, or k = 0.60) and guaranteed income levels

G, which amounted to either 75%, 95%, 100%, 120%, or 140% of the respective family’s

poverty line (see MPR, 1980; Robins, 1985; Widerquist, 2005). In addition to the families

in the NIT plans, the experiments observed a number of families in the control group with

k = G = 0. We predict the marginal effects of the different take-back rates on the labor

supply of the families using the following linear estimation equation:12

Labor supplyiq = β0.31(kiq = 0.3) + β0.41(kiq = 0.4) + β0.51(kiq = 0.5) + β0.61(kiq = 0.6)

+ κGiq + γNo treatmentiq + ϕXi +ψXiq + ζXiq−1 + θy + εiq. (16)

12Note that our labor supply estimation differs from most previous studies using the same NIT experiment
data in that these studies typically conduct the estimation at the individual level, often times focusing on
and comparing the labor supply responses of different groups such as husbands, wives, or single female heads
of households. See Robins (1985) or Widerquist (2005) for overviews of such studies. Note that in our
context, estimating the labor supply at the individual level would complicate the analysis, as, e.g., the labor
supply of the husband is a function of his wife’s labor supply and vice versa. Controlling for the respective
spouse’s labor supply, however, would lead to endogeneity issues. Furthermore, since the NIT payments
are administered at the family level, either way some sort of (non-trivial) aggregation from the individual
response to the family level response would still be necessary in such a setup.
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The indices i and q denote family and experimental quarter, respectively.13 The dependent

variable Labor supplyiq gives the sum of hours worked by all members of family i on all

regular jobs in the given quarter q. Following Kasy (2018), we estimate the marginal effects of

different take-back rates using dummy variables, denoted by 1(kiq = k). The corresponding

OLS coefficients are denoted by the βk’s. The marginal effect of the guaranteed income level

Giq is given by κ. Note that for the families in the control group, Giq is equal to zero in all

quarters. No treatmentiq is an indicator variable that is equal to unity if a family was in the

control group, i.e., was never eligible for any NIT payment. To ensure that the estimation of

the βk’s and κ is not contaminated by families that are treated with an NIT plan, however,

do not receive NIT payments as their income is too high,14 we assign families that did not

receive any NIT payments in the previous quarter q − 1 to the control group in q. The

underlying rationale of this assignment of certain observations to the control group is that

the magnitudes of the keep-rate and the guaranteed income level are only relevant when

a strictly positive NIT payment is expected. Not making this adjustment would lead to a

systematic bias in the estimation of the βk’s and κ, as one would expect more generous plans

(i.e., plans with high k and high G) to have a higher share of families receiving payments

than less generous ones (i.e., plans with low k and low G). We further control for a set

of time-constant variables, contained in Xi, as well as sets of contemporary and lagged

variables, contained in Xiq and Xiq−1, respectively. The corresponding coefficients for

the variables in Xi, Xiq, and Xiq−1 are collected in the vectors ϕ, ψ, and ζ, respectively.

These additional variables control for factors that potentially influence the labor supply other

than the NIT variables and include, e.g., the pre-experimental average wage rate across the

different working family members, the pre-experimental quarterly total labor income, the

number of adults, the number of minors, the gender of the family head, or the received

13The experimental quarters denote the months since the enrollment of the family, with the first quarter
comprising the first, second, and third month after the enrollment month (Mathematica Policy Research, Inc.
[MPR] and Social & Scientific Systems, Inc. [SSS], 1980). Therefore, the experimental quarters generally do
not align with the calendar quarters, i.e., January to March, April to June, etc.

14For details on the calculation of the NIT payments, see Section 2.1.
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welfare income. In particular controlling for pre-experimental income as well as the family

size and composition is crucial, as the assignment of the different NIT plans was not random

but instead was based on the Conlisk-Watts assignment model (Conlisk and Watts, 1979).

This method aims to reduce the expected costs of the experiment, i.e., the sum of NIT

payments, and therefore favors families with high pre-tax income and small families in the

assignment of generous plans, i.e., plans with high k and high G.15 As pointed out by

Keeley and Robins (1978), controlling for the Conlisk-Watts assignment variables is the only

way to correct for the bias from the non-random assignment, even though the inclusion of

additional control variables may reduce the reliability of the estimates (Keeley, 1981). In

addition to the family-specific control variables we control for year fixed effects, which are

denoted by θy, with y indicating the calendar year. Note that since each unique NIT plan

was tested only at one of the two sites,16 we pool over the two locations, i.e., do not include

site fixed effects. Further note that since a family’s NIT plan did not change over the course

of the experiment, we do not include family fixed effects. However, we cluster our standard

errors at the family level to account for non-independence between the different quarters.

Finally, εiq denotes the error component. Similar to Kasy (2018), we de-mean all covariates

except for the 1(kiq = k)’s and the No treatmentiq dummy. Since our model does not

include a constant, this allows for the interpretation of the βk’s in (16) as the average labor

supply corresponding to the given coinsurance rate for a hypothetical family that has control

variables that are equal to the respective sample means.

Regarding the labor supply estimation, there is an important aspect that deserves some

special attention, namely the distinction between intensive and extensive margin responses

(Heckman, 1993). Unlike Saez (2002), our theoretical model – for the sake of simplicity –

focuses exclusively on intensive margin responses and rules out non-participation in the labor

market by assumption. Given that we consider the aggregated labor supply of a family rather

15Note that family size is relevant for the magnitude of NIT payments, as G is calculated by multiplying
a constant factor with the family-specific poverty line, with the latter being higher for large families. For
more details on the calculation of the poverty line, see Section 3.2.

16More details on this are provided below in Section 3.2.
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than of an individual and given that our observations correspond to rather long three month

time periods, this assumption does not seem completely implausible. In fact, only 16.78% of

family-quarter observations in the final sample report zero hours worked. Nevertheless, we

want to clarify that the empirical estimates of the labor supply are the result of a combination

of responses along both margins.

In a second step, to be able to compute and evaluate the social welfare function not

only at the observed k’s but at all k’s in the range [0.30, 0.60], we apply a cubic spline

monotonic interpolation approach (Dougherty et al., 1989; Forsythe et al., 1977; Hyman,

1983). Unlike conventional cubic splines, this method ensures that the slope of the labor

supply curve is monotonically increasing. Of course, this requires that the βk estimates that

are passed to the spline are monotonically increasing as well, i.e., β0.3 ≤ β0.4 ≤ β0.5 ≤ β0.6.

As can be seen in Section 4.1, this is the case in our analysis. Another feature of the spline

is that the interpolated line passes right through observed data points, i.e., the βk’s. The

main advantage of cubic spline monotonic interpolation lies in its simplicity, in particular

in comparison to machine learning based algorithms that are usually more computationally

intensive, require tedious (and often times arbitrary) tuning of hyperparameters (see, e.g.,

Hastie et al., 2009), and usually do not work with categorical variables (Potdar et al., 2017).

On the downside, compared to some machine learning algorithms such as the Gaussian

Process Priors used by Kasy (2018) that allow for the computation of confidence bounds,

the interpolated line obtained with cubic splines does not allow to make statements about

statistical uncertainty.

In a third and final step, the estimated labor supply curve is plugged into the social

welfare function (13). Other exogenous parameters that are needed for the computation of

social welfare as function of k, i.e., G, T , w, or S, are calibrated using the data from the

NIT experiments. The utility elasticities of consumption and leisure, α and 1−α, are varied

in the empirical analysis to simulate different family preferences.
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3.2. Data, Sample, and Parameterization

As mentioned above, the data used for the empirical analysis stem from the NIT experiments

that were conducted in different areas of the United States between 1968 and 1980.17 The

implementation of the experiments was the result of political debate surrounding the NIT in

the context of the “war on poverty” that President Lyndon Johnson’s called for in his state

of the union address in 1964. Advocates of the NIT, including most prominently the Office

of Economic Opportunity, which was established by the US Congress to administer the war

on poverty, were confronted with the criticism that NIT programs could promote idleness.

While a reduction of the labor supply in response to the NIT is in line with economic theory

(see Section 2), reliable empirical estimates regarding the magnitude of the work-disincentive

effect were not available at the time. As a result, the NIT experiments were implemented to

obtain the necessary information to settle the debate (Hum and Simpson, 1993).

For our analysis, we use the “Cross-Site Analysis File”, which includes records for the

New Jersey, the Gary (Indiana), and the Seattle/Denver Income Maintenance Experiments

(SIME/DIME) and was provided by the Data and Information Services Center (DISC) at the

University of Wisconsin-Madison.18 The Cross-Site Analysis File provides relevant variables

for the different experiments in a common format using the same concepts and definitions for

the construction of the variables (MPR and SSS, 1980). In detail, it provides information on

each individual enrolled in the experiment as head of a family for the 12 experimental quarters

as well as for the four quarters preceding the start of the NIT treatment.19 Note that since

17Note that additionally to the NIT experiments conducted in the US, there was also an experiment
conducted in Manitoba, Canada between 1975 and 1978, the so-called “Manitoba Basic Annual Income
Experiment” or “Mincome” (Widerquist, 2005). However, due to data availability, we only consider the US
experiments.

18Note that the fourth US experiment, the Rural Income-Maintenance Experiment (RIME) which was
conducted in Iowa and North Carolina from 1970 to 1972 (Widerquist, 2005) is not included in the Cross-
Site Analysis File and therefore is not part of our analysis.

19Note that due to infrequency of interviews and attrition, not all families are covered in each quarter.
Regarding the survey method of interviews, there is evidence of systematic misreporting of labor supply
(Greenberg et al., 1981; Greenberg and Halsey, 1983). Since the periodic interviews are the only data
available to us, we cannot correct for this bias, however, we want the reader to be aware that the results
presented in this paper may possibly be biased due to misreporting.
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we also control for pre-experimental variables, we exclude experimental observations where

the number of family heads does not coincide with the one of the quarter before the start of

the treatment, as this suggests that either a marriage or a divorce happened (MPR and SSS,

1980) and the pre-experimental variables therefore lose validity as controls.20 We convert all

monetary variables to 1971 dollars using consumer price based annual inflation rates that

we obtain from the World Bank’s World Development Indicators database. Since several

variables that we need for our analysis are not provided for the New Jersey experiment, we

only use data from the Gary and the Seattle/Denver experiments.21

The Gary experiment was carried out between 1971 and 1974 and initially comprised a

total of 1,799 households. It included only black families, with the majority of them being

single-headed (54%). The requirements for participation were that the head of the family was

between 18 and 58 years old and that the family income was below 240% of the poverty line

in the year of enrollment. The NIT plans that were tested in Gary were combinations of the

guaranteed income levels G of either 75% or 100% and keep-rates k of 0.40 or 0.60 (Robins,

1985; Widerquist, 2005). Note that the assignment of treatment in all experiments was based

on information obtained from a couple of interviews that were conducted before enrollment

(MPR, 1980). Compared to the Gary experiment, the Seattle/Denver experiments, for which

we observe the time span 1971 to 1975,22 exhibited a much larger sample size of initially 4,800

households. The households in the Seattle/Denver experiments were primarily black (43%),

followed by an almost equally big share of white households (39%), and a comparatively

small share of Latino households (18%). The share of single-headed families amounted to

20Interestingly, the families in the NIT experiments exhibited a substantial number of divorces, which in
itself is a research subject. Widerquist (2005) provides an extensive list of papers regarding this topic.

21The variables that are missing for New Jersey include, e.g., the quarterly experimental payments or
family social security income (MPR and SSS, 1980).

22Note that for 71% of the households, the treatment was planned – and communicated – to last three
years, which is also the treatment duration of the Gary experiment. For the other households in of the sample,
the treatment duration was longer, either five years (25%) or 20 years (4%). However, the experiments were
cancelled in 1980, such that the maximum treatment duration only amounted to 9 years. For our analysis,
we only use the first three years of treatment, irrespective of the communicated total duration. We are aware
that the labor supply response may differ depending on the communicated duration of treatment, however,
due to a lack of variation in treatment duration across sites and therefore NIT plans, we do not control for
this in our analysis.
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39%. For eligibility, the households’ income had to be below 325% of the respective poverty

line in the year of enrollment. The plans that were tested in the Denver/Seattle experiments

were combinations of the guaranteed income levels G of either 95%, 120%, or 140% and

keep-rates k of 0.30 or 0.50 (Robins, 1985; Widerquist, 2005).23

The variables from the Cross-Site Analysis File that we use for our labor supply estima-

tion are the following. The dependent variable, labor supply in hours in the given quarter

(Labor supplyiq), is calculated as the sum of a family’s heads’ hours worked on all regular

jobs. In an alternative specification of our model, we use the labor income (Labor incomeiq)

rather than the labor supply as dependent variable. Labor income is defined as the to-

tal of gross wages earned by a family’s heads on all regular jobs in the respective quarter.

As mentioned above, we code indicator variables for each of the four keep-rates k used in

the experiment, which are denoted by 1(kiq = k). We also control for the guaranteed in-

come level Giq which states the NIT transfer in the absence of any family income. Note

that since the Cross-Site Analysis File only provides G as the share of the respective fam-

ily’s poverty line, we use poverty thresholds tables for the year 1971 which we obtain from

the US Census Bureau to calculate the actual thresholds using the relevant information on

the families.24 The indicator No treatmentiq is equal to unity if a family is in the con-

trol group, in which case all 1(kiq = k)’s as well as Giq are equal to zero. As discussed

above, besides the actual control group of the experiment, we also assign families that are

assigned to an NIT plan but did not receive any transfers in the previous quarter to the

control group of the current quarter. As final NIT related variable, we control for the NIT

payments that the family received in the previous quarter (NIT paymentiq−1). Next, we

control for family size, distinguishing the number of adults (Persons 18 or olderiq) as well

23Note that additionally flexible keep-rates that depended on the household’s income were tested in Seat-
tle/Denver. However, we exclude households treated with such flexible rates, as our setup is using indicator
variables to control for different levels of the keep-rate, which does not allow us to sensibly control for con-
tinuous variation in k (see Section 3.1). Furthermore, note that flexible keep-rates on the right-hand side of
our labor supply estimation equation would be endogenous due to simultaneity, as they depend on income
and are therefore correlated with the labor supply.

24Note that we converted all monetary variables to 1971 dollars before.

17



as minors (Persons 17 or youngeriq). We further control for the gender of the head of

the family (Female headiq),
25 as well as the family type. Regarding the latter, we distin-

guish two-headed families (Two headsiq), one-headed families with at least one dependent

under 18 years old (One head, dependentsiq), and one-headed families without dependents

(One head, dependentsiq). Since the NIT plans were not assigned randomly, but dependent

on family size and pre-experimental income (Conlisk and Watts, 1979; Widerquist, 2005), we

also control for the average quarterly family labor income across the four pre-experimental

quarters (Labor income pre− expi). We furthermore control for a family’s pre-experimental

wage rate (Wage rate pre − expi), which we calculate as the weighted mean of all hourly

wage rates of a family’s heads, with the weights reflecting the share of total family hours

worked by the given individual. Note that using wage figures during the treatment quarters

would be endogenous, as family members of treated families might be reluctant to accept

low paying jobs, effectively making the wage rate a treatment outcome itself.26 The idea

behind controlling for pre-experimental wage is to account for the families’ value in the la-

bor market. Finally, we control for families’ income sources outside of labor income, namely

the previous period’s non-labor income (Non − labor incomeiq−1), which includes interest

and rent income (i.e., the I in the theoretical model in Section 2), total welfare income

(Welfare incomeiq−1), and social security income (Social security incomeiq−1). The final

sample includes a total of 30,307 family-quarter observations. Descriptive statistics on all

variables are depicted in Table 1.

Finally, we estimate the other parameters needed for the welfare analysis. For the wage

rate w, we simply use the sample mean of the pre-experimental wage rate (Wage rate pre−

expi), depicted in Table 1. We also parameterize the guaranteed income level G in the

theoretical model using the sample mean of Giq, however, we exclude observations where

Giq = 0 from our calculations, yielding G = 1142.76 dollars. The total public assistance

25Note that the head of the family is considered female if there is no male head.
26Of course, the wages in the pre-experimental quarters may be contaminated by anticipation effects,

though we deem this a comparatively smaller issue.
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Table 1: DESCRIPTIVE STATISTICS

The table depicts descriptive statistics on all the variables used for the empirical labor supply estimation. Definitions of the
variables are provided in Section 3.2.

Panel A: Dependent variables

Observations Mean (sd)
Labor supplyiq 30,307 472.373 303.755
Labor incomeiq 30,307 1500.315 1122.858

Panel B: Experimental treatment variables

Observations Mean (sd)
1(kiq = 0.3) 30,307 0.166 0.372
1(kiq = 0.4) 30,307 0.083 0.276
1(kiq = 0.5) 30,307 0.164 0.371
1(kiq = 0.6) 30,307 0.083 0.276
Giq 30,307 567.255 631.516
No treatmentiq 30,307 0.504 0.500
NIT paymentiq−1 30,307 186.684 310.510

Panel C: Family control variables

Observations Mean (sd)
Persons 18 or olderiq 30,307 2.112 0.895
Persons 17 or youngeriq 30,307 2.221 1.562
Female headiq 30,307 0.362 0.481
Two headsiq 30,307 0.640 0.480
One head, dependentsiq 30,307 0.342 0.474
One head, no dependentsiq 30,307 0.018 0.134
Labor income pre− expi 30,307 1398.770 870.305
Wage rate pre− expi 30,307 2.892 1.128
Non− labor incomeiq−1 30,307 6.036 42.882
Welfare incomeiq−1 30,307 90.585 224.465
Social security incomeiq−1 30,307 40.775 173.082
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that a family receives, denoted by S in the theoretical model, is parameterized by simply

adding up the sample means of total welfare income (Welfare incomeiq−1) and social security

income (Social security incomeiq−1) depicted in Table 1. The parameterization of T , i.e., the

available time that is split up into work time L and leisure F , is somewhat more complicated.

The reason for this is that it is not observable in the data and may in theory differ between

individuals, depending on their circumstances. We therefore make an assumption, which

is that each worker has a total of 60 hours at his or her disposal per week. Multiplying

this figure with the sample mean of the number of adults per family (2.112; see Table 1)

and accounting for the fact that a quarter has 12 weeks, we arrive at a T = 1520.64 hours.

Finally, we need to make an assumption regarding the model parameter α in the Cobb-

Douglas utility function, which defines both the utility elasticity of consumption and leisure.

Rather than assuming a fixed value, we calculate the social welfare maximizing keep rate

k∗ for a range of α. Note, however, that we disregard α < 0.4, as for this range we find

that the slope of the indirect utility function V is not strictly monotonically increasing in k,

which contradicts the theoretical model (see Section 2.1) and basic intuition. For the sake

of illustration, we set α = 0.7 for some graphical depictions of the indirect utility function

as well as the social welfare function.

4. Results

4.1. Nonlinear Labor Supply Estimation

The results of our labor supply estimation are depicted in Table 2. We first focus on

specification (1), which uses the families’ total labor supply in a given quarter in hours

(Labor supplyiq) as dependent variable. Note that this specification is also used as basis

for our welfare analysis. A central result is that the labor supply corresponding to a hypo-

thetical family which has control variables that are equal to the respective sample means

is increasing in the keep-rate k. This finding is generally in line with the prediction of our
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Table 2: PREDICTED AVERAGE LABOR SUPPLY AND LABOR INCOME
FOR DIFFERENT KEEP-RATES

The table presents OLS estimates. The dependent variable of specification (1) is the labor supply of family i in experimental
quarter q, Labor supplyiq . The dependent variable of specification (2) is the total labor income of family i in experimental
quarter q, Labor incomeiq . Both models are estimated without constant and all independent variables except for the 1(kiq = k)’s
and No treatmentiq are de-meaned. Robust standard errors are reported in parentheses (clustered at the family level). ∗∗∗

denotes significance at the 1% level; ∗∗ denotes significance at the 5% level; ∗ denotes significance at the 10% level. Definitions
and descriptive statistics on all are provided in Section 3.2.

(1) (2)

1(kiq = 0.3) 420.919*** 1295.262***
(12.352) (41.085)

1(kiq = 0.4) 445.200*** 1313.494***
(11.398) (33.583)

1(kiq = 0.5) 446.289*** 1399.793***
(11.538) (36.842)

1(kiq = 0.6) 502.634*** 1475.266***
(11.753) (36.916)

Giq 0.105*** 0.445***
(0.014) (0.049)

No treatmentiq 497.283*** 1635.510***
(8.932) (29.876)

NIT paymentiq−1 -0.360*** -1.207***
(0.012) (0.040)

Persons 18 or olderiq 6.337 -1.820
(4.073) (13.175)

Persons 17 or youngeriq 0.152 11.626
(2.378) (8.066)

Female headiq -144.413*** -522.334***
(20.956) (73.654)

One head, dependentsiq 35.302* 176.640**
(base: Two headsiq) (20.467) (73.745)
One head, no dependentsiq -32.326 -127.441
(base: Two headsiq) (31.151) (100.406)
Labor income pre− expi 0.126*** 0.458***

(0.007) (0.022)
Wage rate pre− expi -54.196*** 60.491***

(8.138) (19.622)
Non− labor incomeiq−1 0.034 0.252

(0.063) (0.198)
Welfare incomeiq−1 -0.332*** -1.103***

(0.017) (0.050)
Social security incomeiq−1 -0.202*** -0.720***

(0.021) (0.065)

Year FEs YES YES

Adjusted R2 0.830 0.829
Observations 30,307 30,307
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theoretical model in Section 2. However, the fact that the increase in labor supply between

k = 0.50 and k = 0.60 is larger than the increase between k = 0.40 and k = 0.50 contradicts

the Marshallian labor supply function depicted in equation (5) in Section 2, which suggests

that the optimal labor supply curve is concave, i.e., becomes flatter as k increases. The

contradiction becomes more apparent in the graphical representation of the labor supply

estimation as function of k, L̂(k), in Figure 1. Note that in the figure, the areas between the

observed k’s are imputed using a cubic spline monotonic interpolation approach (Dougherty

et al., 1989; Forsythe et al., 1977; Hyman, 1983). Overall, we find that the difference in la-

bor supply between the most generous keep-rate that was tested (k = 0.60) and the smallest

keep-rate that was tested (k = 0.30) amounts to economically significant 503 − 421 = 82

hours. Regarding our alternative specification in column (2) of Table 2 which analyzes labor

income (Labor incomeiq) instead of labor supply, we also find a positive relationship between

the dependent variable and the different keep-rates. Note, however, that the labor income

response does not exhibit the same pattern of differences between adjacent observed levels

of k. This is due to the fact that – unlike in the theoretical model – wages are varying

across families and time, which results in the labor supply and the labor income responses

not being directly comparable.

Before we turn to the welfare analysis, let us briefly discuss the coefficient estimates on

the other control variables. We find that labor supply is increasing in the guaranteed income

level Giq. This is surprising, given that our theoretical model predicts a negative relationship

between labor supply and Giq (see equation (5) in Section 2). However, in deciding on their

labor supply for the current quarter, it can be argued that the actual received NIT payment

from the previous quarter (NIT paymentiq−1), which also equals the NIT payment of the

current quarter if the total family income remains unchanged, is the more relevant measure

for families compared to Giq, which states the transfer amount that is paid out only in

the rare case where labor supply is equal to zero. The negative coefficient estimate on

NIT paymentiq−1, which in absolute terms is three times as large as the estimate on Giq,
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Figure 1: NONLINEAR LABOR SUPPLY ESTIMATION FOR DIFFERENT
KEEP-RATES

The figure depicts the nonlinear labor supply estimation for different keep-rates k. The black dots are the OLS coefficient
estimates on different keep-rates k (see Table 2) and are depicted with corresponding 95% confidence intervals that are based
on robust standard errors (clustered at the family level). The line connecting the OLS estimates is imputed using a cubic spline
monotonic interpolation approach (Dougherty et al., 1989; Forsythe et al., 1977; Hyman, 1983).
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matches the work-disincentive theory that more generous NIT plans reduce labor supply.

Also in line with work-disincentive argument regarding the NIT is the positive coefficient on

the indicator No treatmentiq, which suggest that untreated families exhibit a substantially

higher labor supply. However, it has to be stressed that No treatmentiq by definition is also

equal to unity for families that are technically assigned to an NIT plan but did not receive

any NIT payments in the previous period, as their total income exceeded the break-even

threshold. Assuming that families with such high income also exhibit above average labor

supply and assuming that their labor supply is somewhat constant across quarters, a part

of the large coefficient on No treatmentiq can be explained by a mechanical effect of high

income earners being assigned to the control group.

Regarding the family characteristics, the coefficients on the variables concerning the size

and type of families suggest that families with a female head supply less labor and that

labor supply is increasing with the amount of children. Furthermore, we find that families

that received higher welfare and social security payments in the previous quarter work fewer

hours on average – again, however, note that these effects may be in parts mechanical, as
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these payments often depend on and are decreasing in labor income. The coefficient on

non-labor income is not significantly different from zero, which may be due to the fact that

most families in the sample had no or negligibly little non-labor income and consequently

the coefficient is identified from very little variation. As one would expect, we find that

families with high pre-experimental income provide more labor on average. The negative

coefficient on the pre-experimental wage rate, however, at first may seem surprising. A

possible explanation may be that treated families could purposely reduce their labor supply

to a level such that they become eligible for NIT payments. In this context, families with

high wage rates need to reduce their labor supply to lower levels than families with low wage

rates to obtain the same NIT transfer. Alternatively, the sign could be explained by the

fact that high wage earners need to work less than low wage earners to generate the same

income required to cover basic expenses. This latter mechanism is also valid for untreated

families. A result that stands out in Table 2 is that the wage rate is the only control variable

for which the coefficient estimate is both statistically significant from zero and differs in sign

between our two model specifications. However, in the context of specification (2) which

uses labor income rather than labor supply as dependent variable, the positive coefficient on

the wage rate can simply be explained by the mechanical effect of income which is, holding

work hours constant, increasing in the wage rate.

4.2. Optimal Social Welfare

We now turn to the analysis of social welfare, for which we use the nonlinear labor supply

estimation L∗ = L̂(k) that is depicted in Figure 1. We start out by analyzing the indirect

utility function (using α = 0.7), which is obtained by inserting L∗ = L̂(k) into the first

row of equation (9) (see Panel A of Figure 2). It can be seen that utility increases in the

keep-rate k, which is in line with the theoretical model in Section 2. Moreover, the slope is

almost perfectly linear, with only the section between k = 0.50 and k = 0.60 exhibiting a

slightly steeper slope.
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Figure 2: WELFARE ANALYSIS WITH NONLINEAR LABOR SUPPLY

The figure depicts the welfare analysis based on the nonlinear estimation of the labor supply, L∗ = L̂(k) depicted in Figure 1.

Panel A depicts the indirect utility, which is obtained by plugging L∗ = L̂(k) into (the first row of) (9). α is set to 0.7. Panel

B depicts the NIT payment, which is obtained by plugging L∗ = L̂(k) into (11). Panel C depicts the social welfare, which is

obtained by plugging L∗ = L̂(k) into (13). Note that the line depicted in Panel C gives the difference between the lines depicted
in the Panels A and B. The vertical line depicts the social welfare maximizing keep-rate k∗, which is equal to 0.347 for setting
α = 0.7. Finally, Panel D depicts the welfare maximizing keep-rate k∗ for different levels of α. For the parameterization of the
other parameters, see Section 3.2.
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Panel B of the same figure depicts the NIT payments based on the nonlinear labor supply

estimation. It is obtained by plugging L∗ = L̂(k) into equation (11). The shape of the NIT

payment curve is a direct reflection of the curvature of L∗ depicted in Figure 1: a strong

labor supply increase associated with a marginal increase in k, as observable in the areas

between k = 0.30 and k = 0.40 as well as between k = 0.50 and k = 0.60, counteracts the

mechanical increase in the NIT payments substantially, which explains the flatness in these

areas. A more moderate labor supply response, on the other hand, as seen between k = 0.40

and k = 0.50, is associated with a smaller reduction of the same mechanical increase in the

NIT payments, which explains the steeper increase of the NIT payment curve in this range.

Finally, Panel C depicts our notion of social welfare as function of the keep-rate k. Social

welfare is simply defined as the difference between the indirect utility (Panel A) and the NIT

payment (Panel B) (see equation (13) in Section 2). Regarding the shape of the function,

it stands out that social welfare is increasing only in the two areas with the smallest labor

supply response, that is, at the bottom and the top of our observed range of k. In between

these areas, social welfare is decreasing in k, which can be explained with the moderate

labor supply response and its aforementioned relationship with the NIT payments. We find

a local maximum at around k∗ = 0.347, which is at the lower end of our observed range of k.

However, we need to discuss two major caveats regarding the determination of k∗. First, we

cannot rule out that there is a global maximum outside of the observed range [0.30, 0.60].

Second, the parameter α, which defines the utility elasticities of consumption and leisure, is

a key determinant of the shape of the indirect utility function and therefore also the social

welfare function. Due to data availability, there is nothing that can be done about the first

point. However, the second point, i.e., the dependence of k∗ on α, can easily be investigated

in more detail. Panel D depicts for each α the corresponding social welfare maximizing level

of k∗.27 We find that up until about α = 0.736 the corresponding optimal local maxima

lie in the range between k∗ = 0.310 and k∗ = 0.352, with the k∗ linearly increasing in α.

27Note again that we only consider α ≥ 0.4, as for α < 0.4 the indirect utility function is not strictly
monotonically increasing in k.

26



This small amount of variation in k∗ within a rather large range of α shows that the finding

with α fixed at 0.7 is quite robust in the sense that small deviations in α lead to similar

optimal keep-rates k∗. However, at around α = 0.736 there is a jump in k∗, which then has

an optimal value of 0.60, i.e., the highest observed value of k in our analysis, for all α’s above

this threshold.

4.3. Comparison to Social Welfare Analysis with Linear Labor Supply

Figure 3: LINEAR LABOR SUPPLY ESTIMATION FOR DIFFERENT
KEEP-RATES

The figure depicts the linear labor supply estimation for different keep-rates k. The black dots are the OLS coefficient estimates
on different keep-rates k (see Table 2) and are depicted with corresponding 95% confidence intervals that are based on robust
standard errors (clustered at the family level). The line is fitted using an OLS regression with a constant.
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In a last step of our analysis, to illustrate the importance of accounting for nonlineari-

ties in the labor supply, we redo our welfare analysis on the basis of a linear labor supply

function. This is supposed to mimic standard sufficient statistics welfare analysis where the

curvature of the key behavioral response margin is summarized by a single parameter. In

detail, the linear labor supply function is obtained by fitting a straight line between the four

coefficients corresponding to the observed levels of k (see Table 2) using OLS. The result

of this exercise is depicted in Figure 3. The linear estimate of L∗ = L(k) is then used to

calculate indirect utility, the NIT payment, as well as social welfare using an otherwise iden-
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Figure 4: WELFARE ANALYSIS WITH LINEAR LABOR SUPPLY

The figure depicts the welfare analysis based on the linear estimation of the labor supply, L∗ = L̂(k) depicted in Figure 3.

Panel A depicts the indirect utility, which is obtained by plugging L∗ = L̂(k) into (the first row of) (9). α is set to 0.7. Panel

B depicts the NIT payment, which is obtained by plugging L∗ = L̂(k) into (11). Panel C depicts the social welfare, which is

obtained by plugging L∗ = L̂(k) into (13). Note that the line depicted in Panel C gives the difference between the lines depicted
in the Panels A and B. The vertical line depicts the social welfare maximizing keep-rate k∗, which is equal to 0.413 for setting
α = 0.7. Finally, Panel D depicts the welfare maximizing keep-rate k∗ for different levels of α. For the parameterization of the
other parameters, see Section 3.2..
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tical parameterization compared to above. The results are depicted in Figure 4. We find a,

compared to the analysis using the nonlinear labor supply, similarly linearly shaped indirect

utility function (Panel A). However, regarding the NIT payments (Panel B), we now find

a perfectly linear curve, which is a stark contrast compared to the analysis with nonlinear

labor supply. As discussed above, the curvature of the NIT payment function is directly

corresponding to the labor supply function, which is now linear. Finally, Panel C depicts

the social welfare, which is now a strictly concave function of k, with a local maximum at

k∗ = 0.413. Note that this social welfare maximizing k∗ is substantially larger than the one

in the analysis using nonlinear labor supply above, which amounts to 0.347. We further find

that also for other levels of α the welfare-maximizing levels of k∗ substantially differ between

the different methods of computing labor supply (compare Panels D of Figures 2 and 4).

Note also that the linear labor supply yields larger ranges of α for which either the mini-

mum or the maximum observed values of k are optimal. This underlines the importance of

accounting for nonlinearities in key behavioral responses to policy parameters and suggests

that conventional social welfare analysis that disregards nonlinearities may potentially be

very imprecise.

5. Conclusions

We conduct a welfare analysis of the NIT that explicitly allows for nonlinearities in the labor

supply response to changes in the take-back rate. Our key finding is similar to that of Kasy

(2018), which is that welfare optimizing levels of the policy parameter differ between analyses

accounting for nonlinearities or not. We think that this finding should be considered in future

research and in the interpretation of results from standard sufficient statistics analyses.

However, regarding the magnitude of the optimal levels of the keep-rate, we refrain from

formulating any policy implications. The reason for this is threefold, as (i) the external

validity of the data is likely low, as the NIT experiments that are analyzed were conducted

about 50 years ago; (ii) the data quality is poor, which is mainly due to the fact that
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treatment assignment was not random, that specific NIT plans were only tested in one of

the two experiments considered, and that there was misreporting;28 and (iii) only a limited

number of guaranteed income levels and take-back rates was tested, with the latter only

covering a range of 30 percentage points. Ideally, a potential future NIT experiment is

conducted as RCT using a wider range of tested plans. The formulas derived in this paper

could serve as basis for calculating social welfare with data from such an RCT.

28Note that the ambiguity in empirical results based on the NIT experiments data is a much discussed
topic in the empirical NIT literature, see, e.g., Ashenfelter and Plant (1990), Hum and Simpson (1993), or
Widerquist (2005).
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Appendix 1. Proof that ∂V ∗/∂k > 0

In the following, we proof that ∂V ∗/∂k > 0. First, rewrite the indirect utility function as

V ∗ = Y ∗α (T − L∗)1−α . (A.1)

Taking the first derivative of (A.1) with respect to k yields

∂V ∗

∂k
= αY ∗α−1∂Y

∗

∂k
(T − L∗)1−α + Y ∗α(1− α) (T − L∗)−α (−1)

∂L∗

∂k

= Y ∗α(T − L∗)−α︸ ︷︷ ︸
>0

[
αY ∗−1∂Y

∗

∂k
(T − L∗)− (1− α)

∂L∗

∂k

]
︸ ︷︷ ︸

≡Z

. (A.2)

Since we assume that T > L > 0 and Y = G + kwL with G > 0, k > 0, and w > 0 (see

Section 2.1), it follows that both consumption and leisure are always strictly positive and

therefore Y ∗α(T −L∗)−α > 0. The sign of ∂V ∗/∂k therefore equals the sign of Z. Using the

results for Y ∗ and L∗ as well as their first derivatives from Section 2.1, we can write Z as

follows:

Z = α
1

α(kwT +G)
αwT

[
T −

(
αT − G(1− α)

kw

)]
− (1− α)

G(1− α)

k2w

=
αwT

kwT +G

[
(1− α)

kwT +G

kw

]
− (1− α)

G(1− α)

k2w

= (1− α)
αT

k
− (1− α)

G(1− α)

k2w

=
(1− α)

k

[
αT − G(1− α)

kw

]
︸ ︷︷ ︸

=L∗

. (A.3)

(1 − α)/k > 0, as we assume α, k ∈ (0, 1) (see Section 2.1). The hours worked in the

optimum, L∗, must be strictly positive, too, as we assume T > L > 0. Therefore, Z > 0,

and as a result, ∂V ∗/∂k > 0. ■
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Appendix 2. Envelope Theorem

In the following, we demonstrate the Envelope Theorem that states that the effect of a

marginal change in k on utility in the optimum equals its direct derivative.29 Or, in other

words, changes in the choice variables (i.e., Y , L, and λ) induced by the change in k do

not affect utility in the optimum. For the sake of notational clarity, we restate the utility

maximization problem from (4) using the placeholder U(Y, T − L) for the Cobb-Douglas

utility function:

V (k, w, α, T,G) = max
Y,L

[U(Y, T − L) + λ(G+ kwL− Y )] . (A.4)

The first-order conditions from the utility maximization problem in (A.4) state as follows

(with UY = ∂U/∂Y and UL = ∂U/∂L):

Y : UY − λ
!
= 0, (A.5a)

L : − UL + λkw
!
= 0, (A.5b)

λ : G+ kwL− Y
!
= 0. (A.5c)

Solving the first-order conditions yields value functions for the optimal labor supply Y ∗ and

L∗ (depicted in detail in Section 2.1) as well as the household’s marginal, or shadow, value

of income in the optimum (see, e.g., Mas-Colell et al., 1995):

λ∗ = UY = αY ∗(α−1)(T − L∗)(1−α). (A.6)

29Note that we borrow the notation from Keuschnigg and Wamser (2024).
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The indirect utility function can then be obtained by plugging the value functions for Y , L,

and λ into (A.4):

V ∗ = V (k, w, α, T,G) = U(Y ∗, T − L∗) + λ∗(G+ kwL∗ − Y ∗). (A.7)

In a next step, we take the derivative of (A.7) with respect to k:

∂V ∗

∂k
= λ∗wL∗ + (UY − λ∗)︸ ︷︷ ︸

=0 (see (A.5a))

∂Y ∗

∂k
+ (λ∗kw − UL)︸ ︷︷ ︸

=0 (see (A.5b))

∂L∗

∂k
+ (G+ kwL∗ − Y ∗)︸ ︷︷ ︸

=0 (see (A.5c))

∂λ∗

∂k
. (A.8)

The way we arranged the derivative shows that the second, third, and fourth terms are equal

to zero as the optimality conditions (A.5a)-(A.5c) must be fulfilled. The partial derivative

hence equals λ∗wL∗, which equals equation (10). The latter can be shown by substituting

the value functions Y ∗ (see (8)), L∗ (see (5)), and λ∗ (see (A.6)) into (A.8) and (10):

λ∗wL∗︸ ︷︷ ︸
(A.8)

=
(1− α)

k
Y ∗α(T − L∗)−αL∗︸ ︷︷ ︸

(10)

↔ αY ∗(α−1)(T − L∗)(1−α)︸ ︷︷ ︸
=λ∗ (see (A.6))

w =
(1− α)

k
Y ∗α(T − L∗)−α

↔ αY ∗(−1)(T − L∗)w =
(1− α)

k

↔ α
1

α(kwT +G)

(
T − αT +

G(1− α)

kw

)
w =

(1− α)

k

↔ 1

(kwT +G)

(
(1− α)(kwT +G)

kw

)
w =

(1− α)

k

↔ (1− α)

k
=

(1− α)

k
. ■ (A.9)
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