How to construct an accurate fistogram in Excel

This procedure uses the scatter diagram with lines between points option to build a 'dot-to-dot'fistogram.

1. Create a frequency distribution of the data, using separate cells for the lower and upper limits of the cell as well as for the symbolimplying from/to.

Classes			Frequency
20	to	39	1
40	to	49	5
50	to	59	7
60	to	69	6
70	to	84	4

2. Add a column for frequency density, using the formula:
Frequency density $=$ Frequency/(Ulpperclass limit Lower class (imit+1) for each cell. The ' +1 'is there to include the falf unit above and below the class limits that make up the class boundaries.

Classes		Frequency	Frequency density	
20	to	39	1	0.05
40	to	49	5	0.50
50	to	59	7	0.70
60	to	69	6	0.60
70	to	84	4	0.27

3. To construct the fistogram we need points starting at $(19.5,0)$ to $(19.5,0.05)$ to $(39.5,0.05)$ to $(39.5,0)$ etc
4. Put these in a list of paired values on the spreadsheet adjacent to the frequency distribution like this:
5. Now fighlight all the cells and click on Chart Wizard. Go for xy(scatter)
 and y-axis labels. Uncheck legend box. Click $\mathcal{N} E X T$ and choose either option (as newsheet or object within the sheet).
6. Double click on Plot Are a and under Patterns Area choose \mathcal{N} (one
7. Double clickover Series point. On Patterns, thickenthe line and in markers check $\mathcal{N} O \mathcal{N} \mathcal{E}$.
8. Double clickover the title, axes and labels in turn and ensure that the font is the one you want and the size is at le ast 12 if not 14 -when you

19.5	0
19.5	0.05
39.5	0.05
39.5	0
39.5	0.50
49.5	0.50
49.5	0
49.5	0.70
59.5	0.70
59.5	0
59.5	0.60
69.5	0.60
69.5	0
69.5	0.27
84.5	0.27
84.5	0
0	

The fistogram looks like this:

Title

9. If you want a frequency polygon, a fewadjustments can produce one. If the class widths are unequal, then an assessment needs to made for the x-coordinates of the end points. One method is to double the class width of the end classes. Hence the midpoint (i.e. the x-coordinate) is one class width backwards/forwards. If however the class widths are equal, then the empty classes at the end are assumed to be the same as all the others and thus the end points are $1 / 2$ a class width. In this case the classes are une qual and so the zero point classes have widths of 40 and 30 respectively and the midpoints are thus 20 before the lowest lower class boundary and 15 above the fighest upper class boundary. The 'dot-to-dot'list therefore looks like this:
10. And the frequency polygon looks like this, after adjustments to the scale, start and finish points, line thickness and background have been made:

-0.5	0
29.5	0.05
44.5	0.50
54.5	0.70
64.5	0.60
77	0.27
99.5	0

Braintree College

