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Abstracts

Photon sphere uniqueness and the static n-body problem

Carla Cederbaum

Generalizing a phenomenon well-know in Schwarzschild and other spherically
symmetric spacetimes, we give a geometric definition of photon spheres in static
asymptotically flat spacetimes [2]. Photon spheres are relevant in the analysis of
black hole stability and in gravitational lensing. We then use this definition to
prove that static vacuum asymptotically flat spacetimes possessing a single [2] or
multiple photon spheres – together with Gregory J. Galloway [3] – must be iso-
metric to the Schwarzschild spacetime in the exterior region of the photon sphere.
In particular, multiple photon spheres cannot occur in the same static vacuum
asympt. flat spacetime.

The two methods used in these two approaches can be extended to the elec-
trostatic electro-vacuum setting, which has been done by Yazadjiev and Lazov [5]
for a single and in joint work with Gregory J. Galloway [4] for multiple photon
spheres, respectively. Here, the unique electro-vacuum asymptotically flat space-
time possessing an electrically charged photon sphere is the Reissner-Nordström
spacetime, which is again spherically symmetric.

The uniqueness proofs in [2, 5] adapt and generalize the single (electro-)static
black hole uniqueness proofs going back to Israel and will not be further dis-
cussed here. The proofs in [3, 4] modify and generalize arguments given for static
black hole uniqueness by Bunting and Masood-ul-Alam [1] in the vacuum and by
Masood-ul-Alam [?] in the electro-vacuum case, see below.

The uniqueness results for multiple photon spheres [3, 4] can easily be extended
to include additional non-degenerate Killing black hole horizons. They can be
re-interpreted as saying that there are no (electro-)static configurations of k ∈ N

black holes and n ∈ N ‘very compact’ bodies with k + n > 1. Here, a body is
considered ‘very compact’ if it is surrounded by a photon sphere; a property that
astrophysicists expect to hold for suitably compact bodies.

In the following, we will restrict our attention to the non-charged case for sim-
plicity of the exposition. We define a photon sphere P3 in a (standard) static
spacetime (R ×M3,−N2dt2 + g) to be a timelike umbilic hypersurface on which
the static lapse function N – the length of the static Killing vector field – is con-
stant. Here, umbilicity captures that any null geodesic initially tangent to P3 is
tangent to P3 throughout. Constancy of N ensures that every null geodesic tan-
gent to P3 has constant potential energy logN , or, equivalently, that its energy
E – and color/frequency ν – as observed by the static observers is constant. The
latter property is essential to characterize photon spheres as will be shown in joint
work with Gregory J. Galloway elsewhere.

From this definition and the vacuum Einstein equations, we then derive quasi-
local geometric properties of a photon sphere in a static vacuum spacetime:
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Proposition 1 (Cederbaum [2]). Let (R ×M3,−N2dt2 + g) be a static vacuum
spacetime and let (P3, p) →֒ (R×M3,−N2dt2 + g) be a photon sphere. Write

(

P3, p
)

=
(

R× Σ2,−N2dt2 + σ
)

=

I
⋃

i=1

(

R× Σ2

i ,−N2

i dt
2 + σi

)

,(1)

where each P3

i = R × Σ2

i is a connected component of P3. Then the embedding
(Σ2, σ) →֒ (M3, g) is totally umbilic with constant mean curvature Hi on the
component Σ2

i . The scalar curvature of the component (Σ2

i , σi),
σiR, is a non-

negative constant, namely σiR = 3

2
H2

i . Moreover, the normal derivative of the

lapse function N in direction of the outward unit normal ν to Σ2, ν(N), is also
constant on every component (Σ2

i , σi), ν(N)i := ν(N)|Σ2

i

. For each i ∈ {1, . . . , I},

either Hi = 0 and Σ2

i is a totally geodesic flat torus or Σ2

i is an intrinsically and
extrinsically round CMC sphere for which the above constants are related via

NiHi = 2ν(N)i, (riHi)
2
=

4

3
,(2)

where ri :=

√

|Σ2

i
|σi

4π
denotes the area radius of Σ2

i .

Using Proposition 1, we obtain the following theorem:

Theorem 1 (Cederbaum–Galloway [3]). Let (R×M3,−N2dt2+g) be a static vac-
uum asymptotically flat spacetime that possesses a (possibly disconnected) photon
sphere (P3, p) →֒ (R×M3,−N2dt2+g), arising as the inner boundary of R×M3.
Let m denote the ADM-mass of (M3, g). Then m > 0 and (R×M3,−N2dt2 + g)
is isometric to the region {r ≥ 3m} exterior to the photon sphere {r = 3m} in
the Schwarzschild spacetime of mass m. In particular, (P3, p) is connected and a
cylinder over a topological sphere.

Before sketching the proof of Theorem 1, let us very quickly review the proof
by Bunting–Masood-ul-Alam [1]. In short, they double the asympt. flat static
3-manifold (M3, g) across its black hole inner boundary ∪I

i=1
Σ2

i to obtain a new
manifold (M̄3, ḡ) which is smooth away from a finite set of gluing 2-surfaces Σ2

i ,
C1,1 across them, and has two asympt. flat ends. They then conformally modify
the manifold (M̄3, ḡ) such that the original asymptotic end transforms to have
vanishing ADM-mass and the doubled end can be one-point compactified. By
construction, the new manifold (M̃3, g̃) has vanishing scalar curvature, is geodesi-
cally complete, and is asympt. flat with vanishing ADM-mass. By the rigidity
statement of the positive mass theorem – more precisely, a weak version due to
Bartnik –, the conformally modified manifold (M̃3, g̃) must be isometric to Eu-
clidean space. In other words, the original manifold (M3, g) is conformally flat.
Combining this with the static equations, it follows that (R×M3,−N2dt2 + g) is
necessarily isometric to the Schwarzschild spacetime.

For the proof of Theorem 1, we proceed as follows: Each photon sphere com-
ponent Σ2

i is assigned a Schwarzschild mass µi := ri/3 > 0 computed from its
area radius ri. We then show via Proposition 1 that the neck (2ri, µi]× S

2 of the
Schwarzschild spatial slice (2ri,∞)×S

2 with metric ϕi(r)
−2dr2+r2Ω can be glued
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to (M3, g) across Σ2
i in a C1,1 fashion. Here, Ω is the canonical metric on the unit

sphere and ϕi(r) =
√

1− 2µi/r as usual. In order to glue the lapse function N
of (M3, g) to the Schwarzschild lapse function ϕi across Σ2

i , more care needs to
be taken: We exploit the lapse scaling invariance of the static vacuum equations
△N = 0, ∇2N = N Ric, and glue N to 3miϕi/ri, with mi :=

∫

Σ2

i

ν(N)i dσi/4π

the pseudo-Newtonian mass of Σ2
i . In this way, we obtain a new static vacuum

asympt. flat 3-manifold (M̂3, ĝ) with black hole inner boundary. This manifold

(M̂3, ĝ) is smooth away from the gluing 2-surfaces Σ2
i and C1,1 across them. The

Bunting–Masood-ul-Alam method can then be applied to (M̂3, ĝ) after ensuring
that the conformal factor stays positive. The claim of Theorem 1 follows.

In a forthcoming paper, the author will combine the ideas described above
with new geometric and PDE arguments, in particular a new class of metrics
generalizing the Schwarzschild class of metrics, to prove the following theorem:

Theorem 2 (Cederbaum, to appear). Let (Mn, g) be a smooth, asymptotically flat

Riemannian manifold of non-negative scalar curvature and ADM-mass m and let

N : Mn → R
+ be harmonic function on (Mn, g) that tends to 1 at infinity. Assume

that (Mn, g) has an inner boundary ∪I
i=1Σ

n−1

i such that each (Σn−1

i , σi) is umbilic,

has constant mean curvature Hi and constant scalar curvature σiR > 0. Assume

moreover that N |
Σ

n−1

i

=: Ni and its normal derivative ν(N)|
Σ

n−1

i

=: ν(N)i are

constant on Σn−1

i and that there exist constants 0 ≤ ci < (n−1)/(n−2) such that

ciν(N)i = HiNi

(

1−
n− 2

n− 1
ci

)

and H2
i = ci

σiR,(3)

I
∑

i=1

mi = m, where mi :=
1

4π

∫

Σ2

i

ν(N)i dσi.(4)

Then (Mn, g) is isometric to n-dim. Schwarzschild-Tangherlini of mass m.

Theorem 2 can be applied to re-prove static vacuum black hole uniqueness
in n + 1 spacetime dimensions (reproducing a result by Gibbons, Ida, and Shi-
romizu), and to prove static vacuum photon sphere uniqueness in n+1 spacetime
dimensions, generalizing Theorem 1. It does not appeal to the full static vacuum
equations but instead to a generalization of the assertions in Proposition 1.
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