From Newton to Einstein: A guided tour through space and time

Outline of our tour

Sir Isaac
Newton
1643-1727

Why are the planets orbiting the sun?

Why are the planets orbiting the sun?

Why are the planets orbiting the sun?

heavy

Why are the planets orbiting the sun?

heavy

Newton's new math

- rate of change/derivative

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- vectors:
velocity, acceleration, force \vec{v} \vec{a}
\vec{F}

Newton's law of gravity

$$
\begin{aligned}
m & =\text { mass of planet } \\
M & =\text { mass of sun } \\
G & =\text { gravitational constant } \\
\vec{r} & =\text { distance planet to sun } \\
& \vec{F}=-\frac{m M G \vec{r}}{r^{3}}
\end{aligned}
$$

How do we measure mass?

mass

Outline of our tour

Transform Newłon's ideas inło math!

Modeling gravitation with mathematics (vector calculus) allows to compute predictions and improve understanding!

Vector calculus

Idea: generalize calculus to 3-dimensional space!

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
\rightarrow \frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f\left(x, y_{0}, z_{0}\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{x-x_{0}}
\end{aligned}
$$

Newton's idea revisiłed

$U=$ Newtonian potential of sun
$G=$ graviłational constant
$\rho=$ mass density = mass/volume
$\Delta=$ "differential operator"

$$
\triangle U=4 \pi G \rho
$$

Where is \bar{F} ?

$U=$ Newtonian potential of sun $m=$ mass of planet
$\vec{\nabla}=a$ differential operator

$$
\vec{F}=-m \vec{\nabla} U
$$

What is now mass M?

$M=$ mass of sun
$\vec{n}=$ normal vector to surface

What is now mass M?

Apply mathematical theorems (by Gauß and Słokes)

$$
\begin{aligned}
M & =\iiint_{\text {sun }} \rho d V \\
& =\cdots \\
& =\iint_{\text {surface of sun }} \vec{\nabla} U \cdot \vec{n} d S
\end{aligned}
$$

Summary

New math allows to

- write Newłon's ideas as
"differential equation" $\Delta U=4 \pi G \rho$
- express mass as an integral (using mathematical theorems)

$$
M=\iint_{\text {surface of sun }} \vec{\nabla} U \cdot \vec{n} d S
$$

Morale

- Use new math to "model" gravitation mathematically.
- gives better methods for predictions
- helps understand gravity better
- Newton's new physics inspired new math!

Outline of our tour

How can we measure curvałure?

How can we measure curvałure?

$$
\alpha+\beta+\gamma=180^{\circ} \quad \alpha+\beta+\gamma \neq 180^{\circ}
$$

Curvature is important for:

- Geodesy and Geography
- Astronomy
- Physics
- Engineering (wings of planes,...)
- Biology (surface of cells,...)
- Mathematics
-> differential geometry

Differential Geometry

- słudies curves and surfaces
- generalizes vector calculus
- allows rigorous definition of curvature
(in terms of derivatives)

Curvałure

- Curves can be curved.
- Surfaces can be curved.
- 3-dimensional space can also be curved!
- Can even think about higher dimensional (curved) space!!

Outline of our tour

Why are the planets orbiting the sun?

θ

Conflicts with observations and electrodynamics!

General Relativity

Modeling gravitation with mathematics (differential geometry) allows to compute predictions and improve understanding!

Math allows to make predictions like

- Black holes:
- Expansion of universe:
- Gravitational waves?

Einstein's theory

- is called "general relativity"
- uses ideas from differential geometry like curvature
- describes gravitational effects by a differential equation

General relativity

Main equation:

$$
\text { Ric }-\frac{1}{2} \mathrm{~g} R=\frac{8 \pi G}{c^{4}} \mathrm{~T}
$$

$c=$ speed of light
R, Ric: measure curvature
g: measures disłance
T : describes matter

Describes the world

Einstein's theory is consistent with many measurements:

- bending of light
- graviłational red shift

Applications

- General Posiłioning Sysłem
- satellites
- space travel

General relativity in every day life:

General relativity in every day life: matter curves space-łime

General relativity in every day life:

General relativity in every day life: curvature influences movement

General relativity in every day life:

Morale

- Again: Use math to model gravitation.
- gives better mełhods for predicłions
- helps undersłand gravity better
- Gauß/Riemann's new math allows to predict new phyics!

Outline of our tour

Can we forget about Newłon?

Naive Idea: Yes!

Einstein's general relativity is much better
(in predicłing experiments) And much more beautiful!

But: also more difficult!

Can we forget about Newton?

Better: Reconcile the theories:
Think of Newłon's theory
as an approximation to Einstein's?

Also:

Try to learn from Newton's theory how to interpret relativistic notions!

Example:

What is mass in general relativity?

Negative mass?

Many different definitions

At infinity?

My thesis: What is a good definition of relativistic mass?

Step 1: differential geometry + vector calculus = new formula for mass

Step 2: use Newtonian limit by to compare new definition with Newtonian mass

Mass in general relativity

new formula for mass
(analogy to Newtonian formula):

$$
M=\iint_{\text {surface of sun }} \vec{\nabla} U \cdot \vec{n} d S
$$

u, $\vec{n}, d S, \vec{\nabla}$ constructed from geometry

Newłonian limit

Newton's theory: c=infinite
Einstein's theory: $c=300.000 \mathrm{~km} / \mathrm{s}$

Newłonian limit:
take c to infinity

My thesis: When is relativisłic mass approximatively Newłonian mass?

Result: When a star or galaxy does not move

$0 \mathrm{~m} / \mathrm{h}$
then its relativistic mass is approximately equal to its Newtonian mass.

My theorem

Theorem 6.4.1 (Newtonian Limit of Mass Theorem). Let $\mathcal{F}(\lambda):=\left(\mathbb{R} \times E^{3}, s^{\alpha \beta}(\lambda)\right.$, $\left.t_{\alpha \beta}(\lambda), \Gamma_{\alpha \beta}^{\mu}(\lambda), T^{\alpha \beta}(\lambda), \lambda\right)$ be a family of static isolated ends in frame theory parametrized by $\lambda \in(0, \varepsilon)$ for some $\varepsilon>0$ and let $\mathcal{F}(0):=\left(\mathbb{R} \times E^{3}, s^{\alpha \beta}(0), t_{\alpha \beta}(0), \Gamma_{\alpha \beta}^{\mu}(0), T^{\alpha \beta}(0), 0\right)$ be a static isolated system of FT with global Cartesian coordinates $\left(x^{k}(0)\right)$. Assume that there exist global asymptotically flat systems of coordinates $\left(x^{k}(\lambda)\right)$ for $\mathcal{F}(\lambda)$ converging to $\left(x^{k}(0)\right)$ uniformly on M^{3} as $\lambda \rightarrow 0$. Let ${ }^{3} g_{i j}(\lambda), \gamma_{i j}(\lambda), \gamma_{i j}(0), U(\lambda)$, and $U(0)$ denote the physical and pseudo-Newtonian metrics and potentials of $\mathcal{F}(\lambda)$ and $\mathcal{F}(0)$, respectively. Then

$$
m_{A D M}(g(\lambda))=m_{P N F T}(\gamma(\lambda), U(\lambda)) \rightarrow m_{P N F T}(\gamma(0), U(0))=m_{N}(U(0))
$$

as $\lambda \rightarrow 0$.

What is the Newtonian Limit?

See movie

Credit for pictures:

- www.wikipedia.org
- www.myflyprofile.com
- www2.ed.gov
- www.universe-review.ca
- www.newscientist.com
- www.flickr.com/photos/ ak42/2971239293
- www.beyonddieting.com

