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”Life [...] is a tale told by an idiot,

Full of sound and fury,

Signifying nothing.”

Macbeth, act V, scene iv

William Shakespeare

1 Introduction

In May 2007, Japanese car maker Honda announced to refrain from expanding its production

of its British subsidiary until the United Kingdom joined the euro area. The reasons for this

step, as given to the press, are not too high wages or taxes as the casual observer might be

inclined to think but the exposure to the currency risk of the British Pound Sterling against

the Euro, as the continental market is also served by the British Honda subsidiary.1 Obvi-

ously, currency risk plays a major role in determining the worthiness of investment projects

and influences optimal portfolio choices. Alas, classic portfolio theory as the Capital Asset

Pricing Model (CAPM henceforth) does not bother to account for the fact that investors face

investment opportunities and thus uncertain pay-offs denominated in different currencies.

Therefore, the aim of this paper is to present an amended international version of the CAPM

which incorporates currency risk, confront the theory with data in order to check whether

currency risk is priced in international financial markets and, if it is, how much one has to

pay for it.

My econometric strategy is inspired by Santis and Gérard (1998) and follows a two-step

approach: In a first step, covariances between different assets are generated using a parsi-

monious bivariate GARCH model. These are then used in a second step as regressors in

OLS regressions of the international CAPM. Results of hypothesis tests are presented and

the price of currency risk is plotted.

2 The model

I will introduce the international asset pricing model which was originally developed by Adler

and Dumas (1983) and is the theoretical foundation of Santis and Gérard (1998).

Assume a world in which exist L + 1 countries and M risky assets apart the deposit in the

measurement currency.
1http://www.spiegel.de/wirtschaft/0,1518,484711,00.html, 24/05/2007
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With rit, I denote the excess return on asset i denominated in the reference currency. The

excess rate is obtained by subtracting the risk-free rate from the gross return. As risk-free

rate, I use the short-term deposit rate of the reference currency.

In a world where Purchasing Power Parity (PPP) holds, exchange rate changes perfectly

reflect relative changes in price levels between countries which implies that an investor can

transform her return into the same amount of consumption, irrespective of her domestic

currency. That is, every investor values the return of an asset equally. Therefore, exchange

rate risk does not exist and is not priced as a consequence. The only risk premium which

has to be paid to an investor is her exposure to the systematic market risk which cannot

be diversified away. In terms of asset pricing restrictions, this translates into the textbook

CAPM model given by

Et−1(rit) = δm,t−1covt−1(rit, rmt), i = 1, ..., M (1)

where Et−1(·) and covt−1(·) are conditional moments given the information available to the

investor at t− 1. δm,t−1 can be interpreted as the price of market risk.

However, empirical evidence shows that even though PPP may hold in the very long-run,

deviations from PPP are large and volatile [see Rogoff (1996) for an overview; new empirical

evidence against PPP even in the long-run is given e.g. by Lopez, Murray, and Papell

(2005)]. Therefore, PPP is no assumption which should be used for an international asset

pricing model. As Adler and Dumas (1983) point out, if PPP is violated, then investors from

different countries value returns differently as their respective purchasing power depends on

their domestic price index. In order to account for this fact, the CAPM has to be amended

by the covariances of an individual asset i with changes in PPP deviations. These can be

seen as additional risk factors which will be incorporated in asset prices. Thus, the pricing

restrictions for an asset i are given by

Et−1(rit) = δm,t−1covt−1(rit, rmt) +
L∑

c=1

δc,t−1covt−1(rit, πct), i = 1, ..., M (2)

where πct denotes the inflation of country c expressed in terms of the measurement currency.

In analogy to δm,t−1, δc,t−1 can be interpreted as the price of currency exchange risk of

currency c. rmt is the return on the market, i.e. world portfolio. In principle, deviations

from PPP as measured by πct include not only differences in inflation rates across countries.

As πct is given in the measurement currency, it also reflects exchange rate risk. In order to

simplify the analysis, I assume that differences in inflation expectations are nonstochastic.

As I use monthly returns for my empirical implementation, this assumption is not unduly

restrictive. However, the gain from this is that in this case, the only random component in πct

is the relative change in the exchange rate between the reference currency and the currency

of country c. As deposit returns are denominated in domestic currency, their only random

element is the variation in the exchange rate. Therefore, I replace πct with the return on

eurocurrency deposits.

I arrange all equity and deposit returns in a vector rt where the first q elements are excess
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returns on equity portfolios in the L countries, and the next L elements the excess returns on

short-term deposits denominated in domestic currency but transformed into the measurement

currency. The last element in rt is the excess return on the world portfolio. Using this

notation, the conditional international CAPM (ICAPM) can be represented as follows:

Et−1(rit) = δm,t−1covt−1(rit, rmt) +
L∑

c=1

δc,t−1covt−1(rit, rq+c,t) + εit, i = 1, ..., M (3)

As is again indicated by the expectational operator, this formulation is a conditional version of

the ICAPM as it uses all information available to the investor at time t−1. If investors behave

rationally, they will hedge against any intertemporal expected variation in the investment

opportunity set [see Merton (1973) for an intertemporal version of the CAPM.]. Thus, also

covariances with the relevant variables which represent the state of the world should have to

be included. However, this would complicate the empirical implementation significantly and

is therefore not pursued further.

3 Empirical implementation

3.1 Approach from Santis and Gérard (1998)

As the above formulation of the ICAPM uses conditional covariances and variances, an econo-

metric technique which takes account of the conditional heteroscedasticity is needed. Santis

and Gérard (1998) use a multivariate version of a generalized ARCH (GARCH) process for

their empirical implementation which can accommodate for the GARCH-in-mean feature of

the ICAPM. For the sake of clarity in exposition, the estimated system of pricing restrictions

which has to hold at every point in time is:

Et−1(r1t) = δm,t−1covt−1(r1t, rmt) +
L∑

c=1

δc,t−1covt−1(r1t, rq+c,t),

...

Et−1(rq−1,t) = δm,t−1covt−1(rq−1,t, rmt) +
L∑

c=1

δc,t−1covt−1(rq−1,t, rq+c,t),

Et−1(rq+1,t) = δm,t−1covt−1(rq+1,t, rmt) +
L∑

c=1

δc,t−1covt−1(rq+1,t, rq+c,t),

...

Et−1(rq+L,t) = δm,t−1covt−1(rq+L,t, rmt) +
L∑

c=1

δc,t−1covt−1(rq+L,t, rq+c,t),

Et−1(rq+L,t) = δm,t−1vart−1(rmt) +
L∑

c=1

δc,t−1covt−1(rmt, rq+c,t).

(4)

In principle, any subset n < q of the pricing restrictions on the assets can be used in empirical

work, however, only q − 1 assets can be included at the uppermost. This is due to the fact
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that as all M pricing equations hold, the last equation pricing the market portfolio would

just be a linear combination of the last q equations for every period. To the contrary, all L

currency risk terms have to be included in any subset of the assets as no currency risk factor

can be omitted from the estimations. If an equity return index is used for each country, then

q − 1 = L.

If only a subset n < q − 1 of the assets is used, all in all s = n + L pricing restrictions have

to hold. Stacking all of these in one vector rt yields

rt = δm,t−1hm,t +
L∑

c=1

δc,t−1hn+c,t + εt, εt|It−1 ∼ N(0,Ht) (5)

where It−1 is the set of conditioning information variables at time t− 1. With Ht, I denote

the (s× s) conditional variance-covariance matrix of asset returns. Accordingly, hn+c is the

(n + c)th column of Ht, and hm,t is the last column of Ht. Following the ordering from

(4), the (n + c)th column of Ht contains the conditional covariances between each asset and

the return on the currency deposit c, and therefore measures the exposure of each asset to

the respective currency risk. Analogously, the last column of Ht contains the covariance of

each asset with the world portfolio and thus measures its exposure to market risk. This only

leaves the specification of Ht. Santis and Gérard (1998) use the multivariate equivalent of a

GARCH(1,1) process which, under the assumption of covariance-stationarity, is specified as

Ht = H0 ◦ (ιι′ − aa′ − bb′) + aa′ ◦ εt−1ε
′
t−1 + bb′ ◦Ht−1 (6)

where H0 is the unconditional variance-covariance matrix of the residuals, ι is a vector of

ones, a and b are s × 1 vectors of unknown parameters and ◦ denotes the Haddamard

product, i.e. element-wise multiplication. This so-called diagonal GARCH has an immediate

and intuitive appeal: The variance terms in Ht depend on the respective squared residuals

and an autoregressive part, whereas the covariances depend on the respective cross-products

and the autoregressive component. This parsimonious specification of the variance leaves 2s

parameters to be estimated (s elements in a and b).

Assuming conditional normality of the error terms, parameter estimates can be obtained by

maximizing the following log-likelihood function:

lnL(θ) = −0.5ln(2π)− 0.5
T∑

t=1

ln|Ht(θ)| − 0.5
T∑

t=1

εt(θ)′Ht(θ)−1εt(θ) (7)

As the normality assumption is often violated for financial time series, all test statistics

should be calculated using the quasi-maximum likelihood approach to obtain robust variance-

covariance matrices of the estimated parameters [For further details, see Santis and Gérard

(1997).].

3.2 Related work

The selling point of Santis and Gérard (1998) is that they can address the question of the size

of the risk premia paid to international investors. This is the payoff they get from specifying
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explicitly the covariance matrix of returns Ht and a huge improvement compared to the

approach of Dumas and Solnik (1995). They circumvent the specification of the conditional

covariance matrix by estimating a pricing kernel representation of the model of Adler and

Dumas (1983) instead of the direct asset pricing restrictions. This parsimony, however, comes

at a cost: As they leave the second moment behaviour unspecified, they can only present time

series of the prices of risk. In order to plot the risk premia, i.e. price of risk times the quantity

of risk, they have to make the auxiliary assumption of time invariant market and currency

risk. Santis and Gérard (1998), to the contrary, allow for the fact that both the prices of risk

can vary, i.e. δm,t−1 and δc,t−1, and the level of risk, as measured by the covt−1(·) terms.

3.3 The Kehrle approach

For my own empirical implementation, I follow a different methodology than Santis and

Gérard (1998) which was developed by Kerstin Kehrle.2

Santis and Gérard (1998) have to estimate their system of mean equations (4) jointly with

their specification of the conditional covariance matrix Ht as their model features a GARCH

in mean effect.

The Kehrle approach splits this system up in two steps. In a first step, series of the con-

ditional covariances which are needed for the estimation of (4) are generated via a so-called

BEKK model which is another specific form of a multivariate GARCH model. By this ap-

proach, the GARCH-in-mean feature can be circumvented. In a second step, one can then

estimate the system of equations (4) by a simple OLS regression. The equality of coefficients

in the system is simply imposed by stacking the equations in a single OLS regression. The

remainder of this section will explain the two steps in more detail.

3.3.1 Step I: Estimating the covariances

In the first step, I fit bivariate ARCH models to generate series of the respective covariances

needed for the estimation of the actual model (4). The specific form of the bivariate ARCH

process I use is a modification of the BEKK model which was developed by Engle and Kroner

(1995).3

As I only want to impose as much structure on the data as needed, I specify the mean

equations of the returns as
[

r1,t

r2,t

]
=

[
µ1

µ2

]
+

[
εi,t

εm,t

]
(8)

or shorter

rt = µ + εt (9)
2I am grateful to Kerstin Kehrle for hours of support and helpful comments.
3The acronym stems from an earlier draft of this paper which was presented by Baba, Engle, Kraft, and

Kroner. Engle and Kroner kept this name as the model very rapidly became known by this catch phrase.
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I only include a constant µ in the mean for the sake of hoped-for numerical stability of the

estimations.

Concerning the variance, I use a modified version of the so-called BEKK model

Ht = Ω + A′εt−1ε
′
t−1A + B ◦Ht−1 (10)

where ◦ again denotes the Haddamard product. Ω and B are both symmetric (N × N)

parameter matrices, whereas A is a general (N ×N) parameter matrix. In the bivariate case,

i.e. N = 2, this implies

Ht ≡
[

h11,t h12,t

h21,t h22,t

]
=

[
ω11 ω12

ω21 ω22

]
+

[
a11 a12

a21 a22

]′ [
ε2
1,t−1 ε1,t−1ε2,t−1

ε2,t−1ε1,t−1 ε2
2,t−1

][
a11 a12

a21 a22

]
+

[
b11 b12

b21 b22

]
◦ Ht−1 (11)

where h12,t = h21,t, ω12 = ω21 and b12 = b21.

For the sake of clarity, I write out the elements of Ht explicitly:

h11,t = ω11 + a2
11ε

2
1,t−1 + 2a11a21ε1,t−1ε2,t−1 + a2

21ε
2
2,t−1 + b11h11,t−1

h12,t = h21,t = ω12 + a11a12ε
2
1,t−1 + (a21a12 + a11a22)ε1,t−1ε2,t−1 + a21a22ε

2
2,t−1 + b12h12,t−1

h22,t = ω22 + a2
12ε

2
1,t−1 + 2a12a22ε1,t−1ε2,t−1 + a2

22ε
2
2,t−1 + b22h22,t−1

where h stems from vech(Ht) ≡ [h11,t, h12,t, h22,t]′. All in all, for every BEKK, 12 parameters

have to be estimated (2 for the constant in the mean specification as in (8) and 9 for the

actual variance specification).

The BEKK formulation has the general advantage that by construction, Ht is positive def-

inite almost surely for all t. The BEKK model is also estimated by maximum likelihood.

As above, I assume conditional multivariate normality. As the log-likelihood function only

depends on the distributional assumption of the vector of residuals, it remains the same as

specified in (7). This holds for any multivariate GARCH process. The different versions of

GARCH only model the behaviour of Ht in a specific way; the likelihood function, however,

remains oblivious to this explicit modeling as only Ht enters its calculation, irrespective of the

underlying assumed data-generating process of Ht [see Bollerslev, Engle, and Nelson (1994)].

The programme I use for the estimation of the BEKK model was written by Ken Kroner and

can be downloaded from his website.4

As the log-likelihood can only be maximized by iterative numerical optimization, starting

values have to be provided. Therefore, I feed the BEKK models with the estimates of a

univariate GARCH(1,1) process for the respective series which is estimated before the max-

imization of the actual BEKK likelihood. Specifically, I fit the conditional variance ht for a

univariate series with the mean specified analogously as in (8) as

ht = ω + α1ε
2
t−1 + β1ht−1 (12)

4http://econ.ucsd.edu/publications/ARCH.shtml
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where εt is the residual from the mean equation.5 Specifically, the estimates of ω are used to

replace the diagonals of matrix Ω, the diagonals of A are filled with the respective estimates

of α, and the estimates for β are used for the diagonals of B. For the off-diagonal values of the

parameter matrices, no estimates are available, because they are specific to the multivariate

GARCH process as they capture the cross-correlation behaviour of the variance-covariance

matrix. Therefore, no guidance is available, and values between 0 and 1 are chosen.

In general, these starting values lead to convergence. However, in several cases, some of them

had to be altered as convergence could not be reached with the generated values from the

GARCH(1,1).

3.3.2 Step II: Estimating the ICAPM

Having obtained estimates for the covariances via the BEKK approach, I use these covariances

as regressors in an ordinary OLS regression of the pricing restrictions. As theory implies the

same risk premia for all six portfolios used in my investigation, I impose this restriction

by stacking all the data for the s pricing restrictions. Thus, I estimate the following OLS

regression with s× T observations:

rit = δmcovt−1(rit, rmt) +
L∑

c=1

δccovt−1(rit, rn+c,t) + εit, i = 1, ..., s (13)

Note that in this framework, I model both the market risk premium as well as the currency

premium as constant.

4 The data

4.1 Data used

Following Dumas and Solnik (1995) and Santis and Gérard (1998), I use monthly excess log

returns on national equity indexes plus a value-weighted world equity index (as a proxy for

the market portfolio) for the period of February 1975 to January 2007 (i.e. 384 observations)

provided by Morgan Stanley Capital International (MSCI). My analysis includes stock mar-

kets from the US, the UK, and Germany which cover 50% of the MSCI world portfolio. It

can only be hoped that this share is large enough so that any bias by not covering the whole

portfolio can be negligible.

As measurement currency, I use US-$, i.e. I take the view of an investor residing in the US

facing currency risk towards the German Mark and the British Pound Sterling.

For the calculations of returns I use time series of the actual price index without reinvested

dividends. Dumas and Solnik (1995) actually use returns on these indexes with reinvested

dividends; however, they do not clearly state whether they use gross or net returns (i.e. ex or

cum withholding tax) for their estimations [see Morgan Stanley Capital International (2007)

for details on index calculations]. Santis and Gérard (1998) do not even distinguish here ei-

ther. However, their descriptive statistics of the data hint at total returns. Therefore, I tried
5For a thorough introduction to GARCH models for the univariate case, see Hamilton (1994), chapter 21.
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to estimate the models with both pure price index returns and with total returns including

dividends. However, convergence could not be achieved with the latter data series so that I

use the pure price index data throughout my paper.

For measuring the exposure to currency risk of the British Pound Sterling and German Mark

(Euros are transformed into Mark accordingly), I use monthly returns on the one-month

euroDM and euro£ deposits. As risk-free rate, I follow Santis and Gérard (1998) and use

the return on the one-month euroUS-$ deposit quoted on the first day of the month. All

eurocurrency time series are provided by Financial Times, London.

Returns are calculated as log-returns and are measured in domestic currencies, i.e. they have

to be transformed into returns in the measurement currency. For this, I use closing spot

exchange rates calculated at 16:00 p.m. London time provided by WM/Reuters.

To sum things up, I have six asset pricing restrictions, i.e. s = 6 as defined in (13), with

three equity return indexes, two eurocurrency deposits and the world portfolio.

Table 1 reports descriptive statistics for the used return series. Excess returns on the equity

markets are considerably higher than returns on the Eurodeposits. Also, the standard devia-

tion indicates higher volatility. This is in line with expectations from basic economic theory

and with Santis and Gérard (1998). All series are leptokurtic, i.e. they have a kurtosis greater

than 3 which is the kurtosis of the normal distribution; only the euroDM deposits come close

to a mesokurtic behaviour. Consequently, for all series except the euroDM deposits the hy-

pothesis of normally distributed returns can be rejected on any standard significance level.

Evidence is even stronger for the returns on the UK equity index. I also find a very high

value for the return of this index for January 1975 which is responsible for the high value of

the Jarque-Bera statistic of 925.01.

Table 2 shows the autocorrelations of the respective return series. None of them turns out to

be significant on the 5% level. This complete lack of autocorrelation indicates that there is no

need to correct for spurious autocorrelation in the return series. This is again completely in

line with Santis and Gérard (1998). In economic terms, this corroborates the fact that returns

are not predictable by their own history, as past realizations do not convey any information

about the return in the next period.

Nevertheless, I find significant autocorrelation in the squared returns for the German stock

index and, even more prominently, for the British stock and euro£ series. This suggests that

a GARCH parametrization for the conditional variance could be appropriate, at least for

three of the six series. My results differ from Santis and Gérard (1998) in the respect that

they find significant autocorrelations for the first lags for all their stock indexes, but none for

the Eurocurrencies. The significant autocorrelations for all lags of the UK series is not found

by Santis and Gérard (1998).

4.2 Data not used due to convergence problems

At the beginning, I wanted to closely follow Santis and Gérard (1998) and also include data

for Japan, as it represents 31% of world market capitalization (ibd.). However, this was

prevented by the fact that several of the BEKK models did not converge for the shorter
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time period (Japanese data are only available from September 1979 onwards). The conver-

gence problems, however, did not only arise with the Japanese return series but also for

several BEKKs modeling the covariances with the market portfolio of other return series.

Particularly the series for Germany and the US did not converge when Japan was included.

Remember that all the covariances have to be estimated anew due to the new time period. It

could well be that convergence is the harder to achieve the smaller the sample size as outliers

in the data get harder to fit due to their higher relative weight.

Convergence problems such as these during non-linear optimization are quite common, though.

Bond, Harrison, and O’Brien (2005) report similar problems using the GAUSS software.

When implementing a recently proposed non-linear estimation technique, they document

that even minor changes on the used data set like excluding a couple of the first or last

observations can change convergence behaviour and even parameter estimates considerably

(up to different results for significance of parameters). Even though their paper deals with a

completely different estimation method, their convergence problems are still illustrative.

5 Empirical evidence

5.1 Step I: BEKK estimates

5.1.1 Description of results

As I need covariances between returns of all six assets (three equity markets, two eurocurren-

cies and the world portfolio), with the returns on the market portfolio as well as covariances

of the asset returns with currency risk, I need 15 covariances. Because some of these terms

in fact are equal and some are covariances between the same series of returns, i.e. they are

actually variances, all in all only 12 BEKK models actually have to be estimated. Tables

4 to 15 present the estimation results of the bivariate BEKK models which I run to obtain

estimates for the covariances between the different return series. Their specification is given

by equations (8) and (11). The variance-covariance matrix of the estimated parameters is

calculated by the inverse of the Hessian matrix [see Hamilton (1994), chapter 5.8 for statis-

tical inference with maximum likelihood].

As the results of the BEKKs are of interest on their own concerning the modeled interdepen-

dence of volatilities of the respective return series, I describe the results of these estimations

in quite some detail, even though technically, they are only used as the ”data generating

process” for the ICAPM.

The results show some broad similarities. First of all, the constant in the mean equation, i.e.

the average or expected excess return on asset i, µ1 and µ2 respectively, is positive for all

estimates except for the excess returns on the EuroDM deposit as estimated in Table 9. The

highest estimate for µi is 0.35% [Table (9)] which is the estimated average excess return on

the Euro£ deposit.6 The lowest value is the negative average excess return from the same

regression. One should not interpret too much into µ, though, as none of the estimated
6All estimations are run with actual percentage values, i.e. 0.1 equals 0.1%.
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parameters in the mean equation are significant for any of the 12 BEKKs. p-values range

from 14% in the best case (Table 11) to values as high as 98%.

Turning to the elements of Ω, i.e. the constant element in the variance Ht, I find that in

only two cases (Tables 4 and 10), all three elements of Ω are significant, at least at the 10%

level. At the opposite side of the spectrum, none of the elements in Ω are significant for the

cases reported in Tables 14, 9, and 8. The remaining seven cases give a mixed result of the

significance of the elements of Ω. The actual values of Ω are not of particular interest, as Ω

represents a mere scaling factor which only shifts the overall level of the estimated conditional

variances h11 and h22 and the covariance h12 = h21, respectively.

Concerning the estimates of the elements of matrix A, which governs the influence of the

squared residuals of the respective mean equation as well as the relative weight of their cross-

products, I find that in none of the estimated BEKKs, all of the four estimated elements in A

are significant. Yet, in eleven out of the twelve estimated BEKKs (exception is Table 7), the

main diagonal elements of A turn out to be highly significant, in most of all cases at any stan-

dard significance level. As the residuals εt−1 can be interpreted as new information hitting

the market, one could conclude that news arriving at a market affect the estimate of its con-

ditional variance to a higher degree than news (i.e. residuals) from the other market included

in the BEKK estimation. This interpretation of the results is corroborated by the fact that

the estimates for a11 and a22 are considerably larger than the estimates for the off-diagonal

elements a12 and a21. The only exception from this is again Table 7. A possible reason for

the different behaviour of Table 7 could be the following: This case models the co-movement

of volatility of US equity market returns with the world portfolio returns. As the US equity

market has a weight of 35% in the calculation of the overall world portfolio return [see Santis

and Gérard (1998)], it is not surprising that the weight of the cross-dependence of volatilities

between the US and the world portfolio as measured by the parameters a12 and a21 is con-

siderably higher than for all the other return series considered. Actually, the magnitude of

the estimated coefficients just inverts its position: Here, the cross-correlation coefficients are

considerably higher than the coefficients measuring the influence of the squared residuals of

the same process. Furthermore, it could well be that the high influence of the cross-products

takes away the otherwise significant effect of a11 and a22.

The overall poor performance of the off-diagonal elements of A also fits into the descriptive

statistics. Santis and Gérard (1998) note that there is hardly any evidence of cross-correlation

in the return series, except for contemporaneous cross-correlation. It is for this reason that

they adopt a diagonal parameterization of the covariance matrix which sets the influence of

these non-contemporaneous cross-correlations equal to 0.

Finally, I turn to the elements of B, i.e. the part which captures the autoregressive behaviour

of the variance. In all Tables except 4 and 12 which model the covariance of the German

equity index with the world portfolio and the Euro£, respectively, all elements of B are highly

significant. Still, even in the aforementioned two exceptions, the diagonal elements of B are

highly significant. Only b12, which governs the persistence behaviour of the covariance we

are actually interested in, turns out to be insignificant. This does not imply, however, that
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these covariances do not exhibit GARCH behaviour, as only the generalized part, i.e. the

persistent element turns out to be insignificant. The ARCH part, to the contrary, is alive

and well, i.e. its coefficients are significant even in these two cases. This means that both the

conditional variances as well as the covariance clearly show GARCH behaviour. Moreover, as

the significant coefficients are all close to 1 or at least as high as 0.511 (b11 in Table 11), I can

conclude that the various return series show a high persistence in their conditional variances.

This also corroborates the findings of Santis and Gérard (1998). For both their model of the

ICAPM with constant as well as time-varying prices of risk they also find high values for the

estimated elements of their vector bi which are equally significant. Thus, even though differ-

ent methodologies are used, conclusions about the high persistence of conditional variances

and covariances is confirmed by both approaches.

5.1.2 Diagnostic checks

As a diagnostic check for the validity of the chosen parameterization of the conditional vari-

ance, I checked the residual diagnostics which are automatically computed by Kroner’s pro-

gramme. Short summaries of these statistics can be found at the bottom of Tables 4 to

15. The Ljung-Box Q-statistic for the standardized residuals (εt/ht) I report checks the hy-

pothesis of no autocorrelation up to lag 12 in the residuals. As can be expected from the

preliminary descriptive statistics from above, I do not find autocorrelation in the residuals

of the BEKK estimations. p-values are all well above the 10% level. Only twice (in Tables

6 and 5), I detect autocorrelation at the 10 % significance level. As for all the other cases

p-values are far higher, I impute these two exceptions to chance.

The Q-statistic for the squared standardized residuals (ε2
t /ht) also checks the hypothesis of

no autocorrelation up to lag 12. However, it does not check for autocorrelation in the mean

equation but in the specification of the conditional variance. If the parametrization is cor-

rect, the standardized residuals should not exhibit any autocorrelation any more, as the used

GARCH model takes account of it. If the Q-statistic nevertheless detects autocorrelation,

then the conditional variance is misspecified as it cannot capture all of the autocorrelation

of the data. Here, the general result is that the underlying covariance matrix specified by

the BEKK model fits the data quite well. Only in three cases (Tables 6, 9, and 13), I find

a rejection of the null at the 10% level. Especially in Table 6, the rejection is on any sig-

nificance level with an p-value of 0.000. The most interesting fact is that all the rejections

occur because of remaining autocorrelation in the conditional covariance, even though the

descriptive statistics of the data hint at no cross-product autocorrelation. This is a finding

contrary to Santis and Gérard (1998). It can only be speculated what the reason could be

for this interesting fact.

I can conclude from this discussion that overall, the BEKK model specification fits the data

quite well, albeit some problems with the model specification cannot be disputed away. Nev-

ertheless, I use the covariance series generated by the several BEKK models in order to

calculate the OLS regression for the ICAPM.
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5.1.3 Estimated variances

An artefact of the BEKK specification I use throughout this paper is that I obtain five

estimates of the variances of the world portfolio, the EuroDM and Euro£ deposits. Therefore,

the question arises whether these estimated conditional variances behave in a similar way or

not — what they should do as each of the five different series represents the same thing.

Figures 1, 2, and 3 plot the time series of the five estimated conditional variances of the

EuroDM, the Euro£ and the world portfolio, respectively. As can be seen by casual inspection

of the graphs, in general, the variances behave ”well”, i.e. they all comove. The estimated

variances of the Euro£ returns, depicted in 1, differ in the height of the peaks (May 1985

and December 1992), but are quite similar in their overall behaviour. The only exception is

the variance estimated by the BEKK which includes the German equity index and the euro£

deposit. Here, the two peaks lose much of their impressive size, and the overall behaviour of

the series is distinctly different. Still, some similar patterns remain.

For the variances of the euroDM deposits, the pictures is decidedly clearer: All the series

behave quite similar.

Finally, turning to the variances for the world portfolio, one can see that the overall behaviour

of the series is represented by each of the series. Still, differences are more pronounced than

in the other two cases. Moreover, the variance from the BEKK using the German stock index

and the world index returns has smaller peaks and is considerably smoother than the other

estimated variances. Obviously, the German equity index behaves in a distinct way as the

variances produced by the BEKK estimation it is involved in are considerably different from

the rest. Still, even in this case, the series cannot deny its pedigree, i.e. it shares the common

features of all the other variances. By and large, it seems to make only a minor difference

which time series of the estimated variances of the respective returns is used for the ICAPM.

Consequently, I arbitrarily choose the following variances: For the variance of the Euro£, I

choose the series generated from the BEKK involving the returns on the world portfolio and

the Euro£; for the euroDM, I chose the BEKK with the world portfolio and the euroDM

deposit and finally the BEKK of the world portfolio and the German equity index for the

variance of the world portfolio.

In principle, one could also come up with a more rigorous test of co-movement of the different

time series of the estimated variances: If the variances really describe the same process, they

should be pairwise cointegrated. Thus, an augmented Dickey-Fuller test or a KPSS test could

be applied. I did not pursue this idea any further, though.

5.2 Step II: International conditional CAPM

5.2.1 International conditional CAPM with constant prices of risk

Having obtained estimates for the covariances which are used as regressors in (13), I can

proceed to estimate this equation by OLS. Table 16 reports the results. Standard errors are

calculated with the Newey-West covariance matrix estimator in order to control for possible

autocorrelation in the residuals. Not surprisingly, R̄2 is 0.001, which means that practically
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nothing can be explained in the variations of the returns. However, anything else would be

startling anyway, as returns should not be predictable. I obtain an estimated market risk

premium of 0.010%, a negative currency risk premium of -0.045% for the German Mark, and

a positive risk premium for the UK £.7 Estimates of the coefficients are different from the

results from Santis and Gérard (1998). Albeit I also find a negative currency premium for

the German Mark, my estimate is more than twice as large. The same holds for the market

risk premium. Having said that, one has to keep in mind, though, that all t-statistics report

insignificant coefficients, if considered separately. Turning to the hypothesis of interest —

namely: Is currency risk priced in international capital markets? — results are in the same

spirit. The robust Wald statistic of the H0: δger = δuk = 0 is 2.503 and thus the H0 cannot

be rejected with a p-value of 0.286.8 Thus the international version of the CAPM including

currency risk is rejected in this setting. Even more so, also the joint hypothesis that all risk

premia are equal to 0, i.e. H0: δm = δger = δuk = 0, cannot be rejected either as it has a

p-value of 0.177.

These results are in line with Santis and Gérard (1998), as they also report that currency risk

is no significant factor in international asset pricing, at least if one assumes constant prices

of risk as I do. Interestingly, this is a contrary finding to Dumas and Solnik (1995) who find

evidence in favour of the ICAPM with constant prices of risk.

5.2.2 Robustness check: Market segmentation

In order to check for the robustness of my results, I mimic the robustness tests as proposed

by Santis and Gérard (1998).

In a first step, I introduce the idea of some mild form of market segmentation by estimating a

fixed effect model. This can be captured by including a different intercept δi for every asset.

Technically, I do this by introducing five dummies while using the German equity index as

the base category.

Economically, a significant δi could be interpreted as an average excess return for asset i.

From a neoclassical perspective, this would imply a free lunch, as investors can reap an

excess return even though they do not bear any risk for which they are compensated by the

risk premia as represented by the last three terms of Equation (13). Nevertheless, reasons for

a significant δ0 are not difficult to think of. Examples could be differential tax treatment of

the assets or a preferred habitat phenomenon [see Bollerslev, Engle, and Wooldridge (1988)].

In a more general way, all of the aforementioned facts can be reasons for market segmentation.

Table 17 reports the results for this model specification. Only the dummy for the German

equity index turns out to be significant at the 10% level; all the other dummies have p-values

of at least 0.185. The joint hypothesis of no market segmentation, i.e. H0 : αi = 0 ∀ i,

cannot be rejected with a p-value of 0.550. Market risk is insignificant as well with a p-value
7As all variables enter the estimations as percentages, the parameters can be interpreted directly as per-

centage risk premia.
8I use the Newey-West covariance for the calculation of the Wald statistic. For computational details see

Greene (2003), chapter 6.4.
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of 0.507; but the currency risk premia are significant on the 5 and 10% levels for the euroDM

and the euro£, respectively. The size of the estimates is different to the baseline model from

Table 16: The German currency risk premium doubles its absolute value and becomes even

more negative.

The most striking result, though, is the negative estimate of the market risk δm. As Santis

and Gérard (1998) point out, δm cannot be negative by definition. This stems from the fact

that theoretically, δm is a weighted average of the coefficients of risk aversion of all national

investors. If all investors are risk-averse, then δm cannot be negative. Obviously, even this

minimum requirement of the value of δm is violated by my estimations.

Having said that, I turn to the hypothesis of no priced currency risk, i.e. H0: δger = δuk = 0.

It cannot be rejected, nor the null of no priced risk at all (p-values of 0.103 and 0.155,

respectively).

As a further robustness check, I add the variance of the respective market as regressor.

Contrary to Santis and Gérard (1998), however, I impose the restriction that all returns are

affected by their respective variance in the same way, that is the coefficient is the same for all

assets. I keep the fixed effects for comparison purposes. Thus, the estimated model becomes

rit = δi + δmcovt−1(rit, rmt) +
2∑

c=1

δccovt−1(rit, rn+c,t) + δvarvart−1(rit) + εit, i = 1, ..., 6(14)

Results can be found in Table 18. Effectively, nothing changes compared to Table 17. Param-

eter estimates only vary in the second or third digit, and also the significance of parameters

remains the same. The added regressor is highly insignificant with a p-value of 0.934. The

robust Wald tests repeat the picture from Table 17, too. The hypothesis of no market seg-

mentation (now also including δvar) cannot be rejected with a p-value of 0.665. The same

goes for the test of no currency risk premium and no risk premium at all, with p-values of

0.103 and 0.162, respectively.

To sum things up, it can be said that the used model specification of time-invariant prices

of risk obviously fails to detect risk premia at all. This result also holds true for several

robustness checks. These findings are completely in line with Santis and Gérard (1998). Ob-

viously, prices of risk have to be modeled as time variant in order to detect risk premia in

international asset prices.
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5.2.3 The size of the risk premiums

In Figures 4–9, I plot graphs of the estimated total risk premium measured by

TPit = δmcovt−1(rit, rmt) + δecgercovt−1(rit, recger,t) + δecukcovt−1(rit, recuk,t) (15)

and of the corresponding currency risk premium calculated as

CPit = δecgercovt−1(rit, recger,t) + δecukcovt−1(rit, recuk,t), (16)

where the values of the estimated parameters are obtained from the baseline ICAPM results

as reported in Table 16, i.e. with time-invariant prices of risk. Thus, these graphs differ from

those as reported in Santis and Gérard (1998) as they use the estimates of their ICAPM with

time-varying prices of risk. As a result, the graphs are not directly comparable; still, both

depict the associated risk premia and their evolvement over time. Note that I can also plot

the currency risk for the US equity market, even though the measurement currency is US-$.

This is due to the fact that exchange rate risk is aggregated over the world population of

investors who consume goods denominated in their domestic currency. Therefore, there also

exists a premium for the US equity index.

Even though the dynamics of each premium are different for the various assets, some general

observations can be made. First of all, all total and currency risk premia appear to be very

similiar curves which are only moved up or down the vertical axis. This can be attributed

to two features of the underlying estimates: On the one hand, it is an artefact of the very

small value for δm, so that the influence of the market risk premium becomes very small. On

the other hand, it is the direct result of time-invariant prices of risk. Therefore, the relative

prices per unit of market or currency risk remain the same throughout the whole sample.

Another general result is that risk premia on equity and eurocurrency markets differ. Whereas

in the latter case nearly the complete total risk premium consists of currency risk, market

risk plays a far bigger role for the equity markets. This is in line with Santis and Gérard

(1998) who find similar patterns, and also fits into economic theory: As eurocurrencies are

fixed income securities, the importance of the covariance with market risk becomes a quantité

négigeable. I also find that UK equities and euro£ essentially exhibit the same currency

premium dynamics. Admittedly, Santis and Gérard (1998) can show this more prominently

in their graphs than I can. But the similarity in the currency risk premia in Figures 5 and 9

is still striking. Again, the economics behind this finding are quite obvious: An invested US-$

bears the same currency risk, no matter in which asset it is actually invested in. German

equity and eurocurrency risk premia (Figures 4 and 8) do not show this behaviour, however.

Again contrary to Santis and Gérard (1998), I do not find negative currency premia for

the period between January 1980 and December 1985. Only the German equity index and

the EuroDM exhibit this feature. Furthermore, the German stock index premia somewhat

resemble the those as depicted in Santis and Gérard (1998).

Despite this fact, similarities end here: The prominent spike in the risk premia of UK equity

index and euro£ in December 1985, e.g., does not appear in the graphs of Santis and Gérard
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(1998) even though it appears in all the estimated variances of the euro£ and obviously feeds

through to the risk premia.

Even more striking, the risk premia estimated for UK equities resemble those for the world

equity index, even though the UK only makes up for 11% of the total world portfolio.

6 Conclusion

The purpose of this paper is to tackle the question whether currency risk is priced in in-

ternational capital markets using an international version of the CAPM and data from the

US, the UK, and Germany from February 1975 to January 2007. Taking its inspiration

from Santis and Gérard (1998), I motivate the Kehrle approach which consists of two steps:

First, I estimate covariances of asset returns using bivariate multivariate GARCH models of

the BEKK type. These covariances can then be used to estimate directly the CAPM asset

pricing restrictions. The results are that there is no evidence in the data which backs the

hypothesis of currency risk premia in international asset prices. However, these conclusions

could well be an artefact of the chosen model specification which leaves prices for currency

risk constant over time. This also corroborates the findings of Santis and Gérard (1998) who

find similar results. In a next step, time-varying prices of market and currency risk which

reflect the state of the world could be modeled using instrumental variables in order to check

the robustness of the results of the findings of Santis and Gérard (1998). Furthermore, the

inclusion of inflation risk premia could be a fruitful area of further research as it is obviously

priced in capital markets [see Vassalou (2000)].

As a concluding afterthought, some remarks on model specification are warranted. A question

which is hardly addressed in applied multivariate GARCH literature is the problem of model

selection. Mostly, a GARCH(1,1) process is assumed as it arguably fits the data quite well,

or at least not worse than more elaborate models, i.e. these which include higher lag orders.

However, the overall ad hoc approach to model selection obviously is a weak point of most

GARCH applications. Brooks and Burke (2003) present modified information criteria which

can be used for model selection, however, they have to admit that there obviously exists

no panacea for this problem. Given the fact that including GARCH terms of higher order

inevitably complicates the convergence of the multivariate GARCH as even more parame-

ters would have to be estimated, applying a rigorous model selection process is a formidable

task in itself, and with doubtful success concerning an improvement of the representation

of the actual data. Therefore, pragmatic econometricians often refrain from undergoing this

painstaking process as the gains from it are presumably low comparing its implementational

costs.

Obviously, the standard top-down Box-Jenkins approach of starting with a very high order

of lags and then deleting out lags sequentially is ruled out by the difficulties of estimating

non-linear models with such a high number of parameters. To the contrary, a bottom-up

approach is indicated, i.e. starting with a simple model and adding more terms only if the

remaining standardized residuals still contain GARCH behaviour. Inevitably, this makes di-
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agnostic checks of the chosen model even more important. Here, classic portmanteau tests

of standardized residuals and squared standardized residuals like the Ljung-Box test I report

are very often used as they are easy to implement and have an intuitive appeal [see Li (2004)

for an overview]. Yet, these tools should be used with care: It is not clear under which condi-

tions they can actually be used as diagnostic tests. Therefore, some authors [e.g. Lüthkepohl

(2005), chapter 16] do not use them altogether and prefer ARCH-LM tests instead as they

maintain their validity under more general conditions.

At the end of the day, it is a potential caveat of multivariate asset pricing models that they

seem to be Much Ado About Nothing.
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Figure 1: Estimated variances of euro£ returns
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Graph depicts estimated variances of euro£ returns for the various bivariate BEKK models
as specified in Equations (8) and (10). In all BEKKs, one of the series is the return on euro£,
the other series are returns from:
Variance 1: world equity index
Variance 2: German equity index
Variance 3: UK equity index
Variance 4: US equity index
Variance 5: euroDM deposits
All returns are monthly excess log returns denominated in US-$. Excess returns are obtained
by subtracting the euro$ deposit rate as a risk-free rate. Data range from February 1975 to
January 2007 (384 observations).
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Figure 2: Estimated variances of EuroDM returns
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Graph depicts estimated variances of euroDM returns for the various bivariate BEKK models
as specified in Equations (8) and (10). In all BEKKs, one of the series is the return on euroDM,
the other series are returns from:
Variance 1: world equity index
Variance 2: German equity index
Variance 3: US equity index
Variance 4: UK equity index
Variance 5: euro£ deposits
All returns are monthly excess log returns denominated in US-$. Excess returns are obtained
by subtracting the euro$ deposit rate as a risk-free rate. Data range from February 1975 to
January 2007 (384 observations).
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Figure 3: Estimated variances of world portfolio returns
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Graph depicts estimated variances of world portfolio returns for the various bivariate BEKK
models as specified in Equations (8) and (10). In all BEKKs, one of the series is the return
on the world equity index, the other series are returns from:
Variance 1: German equity index
Variance 2: euroDM deposits
Variance 3: US equity index
Variance 4: UK equity index
Variance 5: euro£ deposits
All returns are monthly excess log returns denominated in US-$. Excess returns are obtained
by subtracting the euro$ deposit rate as a risk-free rate. Data range from February 1975 to
January 2007 (384 observations).
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Figure 4: Estimated market and currency risk premia for German equity
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Figure depicts estimated total and currency risk premia for the German equity index as
defined by Equations (15) and (16), respectively. Parameter values for the prices of market
and currency risk are obtained from the ICAPM estimates reported in Table 16. Covariance
series are obtained from respective BEKK estimations. Data range from March 1975 to
January 2007 (383 observations).
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Figure 5: Estimated market and currency risk premia for UK equity
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Figure depicts estimated total and currency risk premia for the UK equity index as defined
by Equations (15) and (16), respectively. Parameter values for the prices of market and
currency risk are obtained from the ICAPM estimates reported in Table 16. Covariance
series are obtained from respective BEKK estimations. Data range from March 1975 to
January 2007 (383 observations).
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Figure 6: Estimated market and currency risk premia for US equity
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Figure depicts estimated total and currency risk premia for the US equity index as defined
by Equations (15) and (16), respectively. Parameter values for the prices of market and
currency risk are obtained from the ICAPM estimates reported in Table 16. Covariance
series are obtained from respective BEKK estimations. Data range from March 1975 to
January 2007 (383 observations).
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Figure 7: Estimated market and currency risk premia for world equity

-0.8

-0.4

0.0

0.4

0.8

1.2

Jan 80 Jan 85 Jan 90 Jan 95 Jan 00 Jan 05

total
currency

Figure depicts estimated total and currency risk premia for the world equity index as defined
by Equations (15) and (16), respectively. Parameter values for the prices of market and
currency risk are obtained from the ICAPM estimates reported in Table 16. Covariance
series are obtained from respective BEKK estimations. Data range from March 1975 to
January 2007 (383 observations).

26



Figure 8: Estimated market and currency risk premia for euroDM deposits
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Figure depicts estimated total and currency risk premia for euroDM deposits as defined by
Equations (15) and (16), respectively. Parameter values for the prices of market and currency
risk are obtained from the ICAPM estimates reported in Table 16. Covariance series are
obtained from respective BEKK estimations. Data range from March 1975 to January 2007
(383 observations).
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Figure 9: Estimated market and currency risk premia for euro£ deposits
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Figure depicts estimated total and currency risk premia for euro£ deposits as defined by
Equations (15) and (16), respectively. Parameter values for the prices of market and currency
risk are obtained from the ICAPM estimates reported in Table 16. Covariance series are
obtained from respective BEKK estimations. Data range from March 1975 to January 2007
(383 observations).
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Table 1: Descriptive statistics of excess returns

Germany UK US EuroDM Euro£ World
mean 0.20 0.37 0.20 0.00 0.15 0.20
std.dev. 6.10 6.09 4.16 3.21 3.08 4.04
min. -22.90 -25.94 -24.95 -10.84 -13.47 -17.53
max. 20.17 43.56 12.55 8.57 13.50 13.13
kurtosis† 4.44 10.46 6.26 3.26 4.76 4.39
J-B‡ 44.43∗∗∗ 925.01∗∗∗ 202.83∗∗∗ 2.82 53.16∗∗∗ 42.53∗∗∗

†kurtosis of the standard normal distribution is 3.
‡value of the Jarque-Bera test statistic, H0 : series is standard normally distributed.
∗∗∗denotes 1% significance level.
All returns are monthly excess log returns in percent, denominated in US-$. Excess returns
are obtained by subtracting the euro$ deposit rate as a risk-free rate. Returns are calculated
from time series of the German, UK, US, and world equity price index from MSCI and from
euroDM and euro£ deposit returns from FT.
Data range from February 1975 to January 2007 (384 observations).

Table 2: Sample autocorrelations of rit

Lag Germany UK US EuroDM Euro£ World
1 0.00 0.05 0.03 0.03 0.09 0.07
2 0.02 -0.07 -0.03 0.10 0.03 -0.04
3 0.06 0.01 -0.01 0.03 -0.01 0.00
4 0.02 -0.01 -0.03 -0.03 0.01 -0.04
5 -0.01 -0.05 0.12 0.02 0.03 0.11
6 0.09 -0.03 -0.03 -0.03 -0.03 0.01
7 0.04 0.00 -0.01 0.08 -0.02 -0.04
8 0.04 0.00 0.03 0.04 0.04 0.06
9 -0.06 0.03 0.01 0.10 0.06 0.06

10 0.02 0.01 0.10 0.02 -0.05 0.10
11 0.07 0.04 -0.03 0.13 0.12 -0.02
12 -0.03 -0.04 0.00 0.01 0.00 0.01

Table reports autocorrelations up to lag 12 for monthly excess log returns in percent, de-
nominated in US-$. Excess returns are obtained by subtracting the euro$ deposit rate as a
risk-free rate. Returns are calculated from time series of the German, UK, US, and world
equity price index from MSCI and from euroDM and euro£ deposit returns from FT.
Data range from February 1975 to January 2007 (384 observations).
Number of significant autocorrelations at 5% level: 0
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Table 3: Sample autocorrelations of r2
it

Lag Germany UK US EuroDM Euro£ World
1 0.09 0.20∗∗ 0.10 0.04 0.21∗∗ 0.07
2 0.08 0.08∗∗ 0.03 0.02 0.04∗∗ 0.10
3 0.10∗ 0.06∗∗ 0.02 0.01 0.04∗∗ -0.01
4 0.04∗ 0.02∗∗ 0.01 0.03 0.07∗∗ -0.01
5 0.03 0.11∗∗ 0.02 0.03 0.06∗∗ 0.08
6 0.04 0.00∗∗ 0.02 0.04 0.07∗∗ 0.05
7 0.13∗ 0.04∗∗ -0.03 0.03 -0.02∗∗ 0.02
8 0.02∗ 0.00∗∗ -0.03 0.01 0.02∗∗ -0.03
9 0.07∗ 0.02∗∗ 0.14 0.09 0.05∗∗ 0.09

10 0.05∗ 0.01∗∗ 0.04 0.08 0.02∗∗ 0.09
11 0.01∗ 0.01∗∗ -0.01 0.01 0.00∗∗ -0.01
12 0.04∗ 0.01∗ 0.02 0.01 -0.02∗ 0.00

Table reports autocorrelations up to lag 12 for squared monthly excess log returns in percent,
denominated in US-$. Excess returns are obtained by subtracting the euro$ deposit rate as
a risk-free rate. Returns are calculated from time series of the German, UK, US, and world
equity price index from MSCI and from euroDM and euro£ deposit returns from FT.
Data range from February 1975 to January 2007 (384 observations).
* and ** denote statistical significance at the 5% and 1% levels, respectively.
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Table 4: BEKK for estimating covt−1(rgerpi, rw)

parameters estimates s.e. est./s.e. p-value
µ1 0.120 0.181 -0.664 0.507
µ2 0.103 0.296 -0.348 0.728

ω11 0.386∗∗ 0.154 2.516 0.012
ω12 12.473∗∗ 6.113 2.040 0.041
ω22 5.972∗∗∗ 2.124 2.812 0.005
a11 0.231∗∗∗ 0.040 5.848 0.000
a12 -0.082 0.105 -0.787 0.431
a21 -0.111∗∗∗ 0.020 -5.661 0.000
a22 0.240∗∗∗ 0.057 4.192 0.000
b11 0.945∗∗∗ 0.017 54.191 0.000
b12 0.195 0.385 0.507 0.612
b11 0.786∗∗∗ 0.068 11.635 0.000

ln(L)§= -2174.985 Q12(z2)‡ for h11=0.109
Q12(z)† for r1=0.219 Q12(z2)‡ for h12=0.203
Q12(z)† for r2=0.667 Q12(z2)‡ for h22=0.603

Table reports estimation results from bivariate BEKK as specified in Equations (8) and (10)
using returns on the German and world equity index for the estimation of their conditional
covariance and the variance of the world portfolio as used for the ICAPM regressions reported
in Tables 16–18. Standard errors are calculated from the inverse of the Hessian.
All returns are monthly excess log returns denominated in US-$. Excess returns are obtained
by subtracting the euro$ deposit rate as a risk-free rate. Data range from February 1975 to
January 2007 (384 observations).
§value of the log-likelihood at parameter values.
†p-value of the Ljung-Box statistic for autocorrelation in the standardized residuals up to lag
12.
‡p-value of the Ljung-Box statistic for autocorrelation in the squared standardized residuals
up to lag 12.
*, **, and *** denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 5: BEKK for estimating covt−1(recger, rw)

parameters estimates s.e. est./s.e. p-value
µ1 0.237 0.190 -1.243 0.214
µ2 0.003 0.162 -0.021 0.983

ω11 0.740∗ 0.426 1.736 0.083
ω12 0.136 0.251 0.542 0.588
ω22 0.124 0.241 0.512 0.609
a11 0.290∗∗∗ 0.051 5.682 0.000
a12 0.018 0.030 0.586 0.558
a21 0.016 0.057 0.280 0.780
a22 0.145∗∗ 0.067 2.162 0.031
b11 0.868∗∗∗ 0.039 22.228 0.000
b12 0.866∗∗∗ 0.068 12.703 0.000
b11 0.966∗∗∗ 0.037 26.107 0.000

ln(L)§= -2051.148 Q12(z2)‡ for h11=0.552
Q12(z)† for r1=0.160 Q12(z2)‡ for h12=0.997
Q12(z)† for r2=0.091 Q12(z2)‡ for h22=0.969

Table reports estimation results from bivariate BEKK as specified in Equations (8) and (10)
using returns on euroDM deposits and the world equity index for the estimation of their
conditional covariance and the variance of the euroDM deposits as used for the ICAPM
regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.

Table 6: BEKK for estimating covt−1(rgerpi, recger)

parameters estimates s.e. est./s.e. p-value
µ1 0.109 0.271 -0.401 0.688
µ2 0.100 0.158 -0.628 0.530

ω11 1.460 0.975 1.497 0.134
ω12 0.448∗ 0.265 1.690 0.091
ω22 0.001 0.088 0.010 0.992
a11 0.338∗∗∗ 0.049 6.959 0.000
a12 0.004 0.010 0.359 0.719
a21 -0.137 0.088 -1.553 0.121
a22 0.171∗∗∗ 0.036 4.736 0.000
b11 0.864∗∗∗ 0.039 22.450 0.000
b12 0.911∗∗∗ 0.021 42.879 0.000
b11 0.971∗∗∗ 0.015 62.829 0.000

ln(L)§= -2168.410 Q12(z2)‡ for h11=0.984
Q12(z)† for r1=0.551 Q12(z2)‡ for h12=0.000
Q12(z)† for r2=0.093 Q12(z2)‡ for h22=0.948

Table reports estimation results from bivariate BEKK as specified in Equations (8) and (10)
using returns on the German equity index and euroDM deposits for the estimation of their
conditional covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.
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Table 7: BEKK for estimating covt−1(ruspi, rw)

parameters estimates s.e. est./s.e. p-value
µ1 0.283 0.192 -1.470 0.142
µ2 0.192 0.202 -0.950 0.342

ω11 0.236 0.201 1.172 0.241
ω12 0.442∗∗ 0.206 2.149 0.032
ω22 1.055∗∗∗ 0.400 2.636 0.008
a11 -0.065∗ 0.039 -1.689 0.091
a12 0.177∗∗∗ 0.047 3.782 0.000
a21 0.236∗∗∗ 0.052 4.510 0.000
a22 0.004 0.059 0.065 0.948
b11 0.948∗∗∗ 0.012 78.231 0.000
b12 0.938∗∗∗ 0.012 81.379 0.000
b11 0.907∗∗∗ 0.019 48.994 0.000

ln(L)§= -1884.797 Q12(z2)‡ for h11=0.514
Q12(z)† for r1=0.246 Q12(z2)‡ for h12=0.463
Q12(z)† for r2=0.373 Q12(z2)‡ for h22=0.561

Table reports estimation results from bivariate BEKK as specified in Equations (8) and
(10) using returns on the US and world equity index for the estimation of their conditional
covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.

Table 8: BEKK for estimating covt−1(ruspi, recger)

parameters estimates s.e. est./s.e. p-value
µ1 0.232 0.183 -1.272 0.203
µ2 0.021 0.161 -0.130 0.897

ω11 0.227 0.221 1.028 0.304
ω12 0.064 0.167 0.381 0.703
ω22 0.271 0.287 0.946 0.344
a11 0.305∗∗∗ 0.040 7.671 0.000
a12 -0.018 0.031 -0.578 0.563
a21 -0.039 0.053 -0.737 0.461
a22 0.218∗∗∗ 0.053 4.148 0.000
b11 0.897∗∗∗ 0.021 42.139 0.000
b12 0.828∗∗∗ 0.074 11.223 0.000
b11 0.926∗∗∗ 0.039 24.084 0.000

ln(L)§= -2065.352 Q12(z2)‡ for h11=0.800
Q12(z)† for r1=0.452 Q12(z2)‡ for h12=1.000
Q12(z)† for r2=0.129 Q12(z2)‡ for h22=0.982

Table reports estimation results from bivariate BEKK as specified in Equations (8) and
(10) using returns on the US equity index and euroDM deposits for the estimation of their
conditional covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.
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Table 9: BEKK for estimating covt−1(rukpi, recger)

parameters estimates s.e. est./s.e. p-value
µ1 0.354 0.257 -1.374 0.169
µ2 -0.011 0.160 0.070 0.944

ω11 0.468 0.293 1.596 0.110
ω12 0.511 0.551 0.927 0.354
ω22 0.282 0.353 0.798 0.425
a11 0.192∗∗∗ 0.063 3.031 0.002
a12 0.010 0.020 0.525 0.600
a21 0.096 0.113 0.853 0.393
a22 0.178∗∗∗ 0.065 2.757 0.006
b11 0.933∗∗∗ 0.023 39.834 0.000
b12 0.789∗∗∗ 0.120 6.596 0.000
b11 0.939∗∗∗ 0.049 19.111 0.000

ln(L)§= -2189.057 Q12(z2)‡ for h11=0.906
Q12(z)† for r1=0.982 Q12(z2)‡ for h12=0.090
Q12(z)† for r2=0.112 Q12(z2)‡ for h22=0.984

Table reports estimation results from bivariate BEKK as specified in Equations (8) and
(10) using returns on the UK equity index and euroDM deposits for the estimation of their
conditional covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.

Table 10: BEKK for estimating covt−1(rukpi, rw)

parameters estimates s.e. est./s.e. p-value
µ1 0.233 0.192 -1.215 0.225
µ2 0.288 0.231 -1.248 0.212

ω11 1.132∗ 0.655 1.728 0.084
ω12 0.830∗ 0.444 1.869 0.062
ω22 0.373∗ 0.216 1.726 0.084
a11 0.272∗∗∗ 0.055 4.950 0.000
a12 -0.003 0.046 -0.075 0.940
a21 -0.033 0.027 -1.240 0.215
a22 0.174∗∗∗ 0.042 4.124 0.000
b11 0.869∗∗∗ 0.046 18.882 0.000
b12 0.906∗∗∗ 0.025 35.599 0.000
b11 0.951∗∗∗ 0.017 57.741 0.000

ln(L)§= -2103.256 Q12(z2)‡ for h11=0.511
Q12(z)† for r1=0.157 Q12(z2)‡ for h12=0.752
Q12(z)† for r2=0.988 Q12(z2)‡ for h22=0.853

Table reports estimation results from bivariate BEKK as specified in Equations (8) and
(10) using returns on the UK and world equity index for the estimation of their conditional
covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.
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Table 11: BEKK for estimating covt−1(rw, recuk)

parameters estimates s.e. est./s.e. p-value
µ1 0.257 0.187 -1.378 0.168
µ2 0.210 0.141 -1.493 0.135

ω11 0.727∗ 0.395 1.839 0.066
ω12 -0.072 0.279 -0.258 0.797
ω22 2.756∗∗ 1.096 2.515 0.012
a11 0.238∗∗∗ 0.047 5.062 0.000
a12 0.004 0.039 0.114 0.909
a21 0.135∗∗∗ 0.046 2.954 0.003
a22 0.460∗∗∗ 0.077 5.989 0.000
b11 0.875∗∗∗ 0.034 25.588 0.000
b12 0.743∗∗∗ 0.073 10.127 0.000
b11 0.511∗∗∗ 0.140 3.655 0.000

ln(L)§= -2020.214 Q12(z2)‡ for h11=0.559
Q12(z)† for r1=0.248 Q12(z2)‡ for h12=0.995
Q12(z)† for r2=0.591 Q12(z2)‡ for h22=0.925

Table reports estimation results from bivariate BEKK as specified in Equations (8) and (10)
using returns on the world equity index and euro£ deposits for the estimation of their condi-
tional covariance and the variance of the euro£ deposits as used for the ICAPM regressions
reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.

Table 12: BEKK for estimating covt−1(rgerpi, recuk)

parameters estimates s.e. est./s.e. p-value
µ1 0.146 0.267 -0.548 0.584
µ2 0.115 0.148 -0.776 0.438

ω11 1.737∗ 0.960 1.809 0.071
ω12 5.272∗∗∗ 1.994 2.644 0.008
ω22 -0.011 0.103 -0.104 0.917
a11 0.350∗∗∗ 0.050 6.988 0.000
a12 0.053∗∗∗ 0.013 4.037 0.000
a21 -0.039 0.093 -0.423 0.672
a22 0.112∗∗∗ 0.037 3.017 0.003
b11 0.840∗∗∗ 0.037 22.736 0.000
b12 -0.383 0.348 -1.101 0.271
b11 0.971∗∗∗ 0.016 59.238 0.000

ln(L)§= -2174.458 Q12(z2)‡ for h11=0.992
Q12(z)† for r1=0.708 Q12(z2)‡ for h12=0.127
Q12(z)† for r2=0.677 Q12(z2)‡ for h22=0.813

Table reports estimation results from bivariate BEKK as specified in Equations (8) and (10)
using returns on the German equity index and euro£ deposits for the estimation of their
conditional covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.
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Table 13: BEKK for estimating covt−1(rukpi, recuk)

parameters estimates s.e. est./s.e. p-value
µ1 0.326 0.245 -1.329 0.184
µ2 0.194 0.137 -1.413 0.158

ω11 0.632∗ 0.337 1.876 0.061
ω12 0.239 0.366 0.653 0.514
ω22 1.540∗∗ 0.642 2.400 0.016
a11 0.191∗∗∗ 0.048 3.965 0.000
a12 -0.013 0.022 -0.592 0.554
a21 0.199∗∗∗ 0.069 2.864 0.004
a22 0.424∗∗∗ 0.066 6.481 0.000
b11 0.908∗∗∗ 0.025 36.374 0.000
b12 0.800∗∗∗ 0.055 14.619 0.000
b11 0.672∗∗∗ 0.088 7.606 0.000

ln(L)§= -2130.493 Q12(z2)‡ for h11=0.881
Q12(z)† for r1=0.992 Q12(z2)‡ for h12=0.010
Q12(z)† for r2=0.572 Q12(z2)‡ for h22=0.974

Table reports estimation results from bivariate BEKK as specified in Equations (8) and
(10) using returns on the UK equity index and euro£ deposits for the estimation of their
conditional covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.

Table 14: BEKK for estimating covt−1(ruspi, recuk)

parameters estimates s.e. est./s.e. p-value
µ1 0.237 0.185 -1.281 0.200
µ2 0.160 0.143 -1.125 0.261

ω11 0.236 0.235 1.004 0.315
ω12 -0.074 0.206 -0.356 0.722
ω22 0.300 0.621 0.484 0.629
a11 0.291∗∗∗ 0.042 6.905 0.000
a12 -0.023 0.031 -0.751 0.453
a21 0.060 0.047 1.269 0.205
a22 0.294∗∗ 0.116 2.530 0.011
b11 0.902∗∗∗ 0.021 42.779 0.000
b12 0.693∗∗∗ 0.200 3.467 0.001
b11 0.883∗∗∗ 0.127 6.975 0.000

ln(L)§= -2041.598 Q12(z2)‡ for h11=0.798
Q12(z)† for r1=0.451 Q12(z2)‡ for h12=0.551
Q12(z)† for r2=0.649 Q12(z2)‡ for h22=0.968

Table reports estimation results from bivariate BEKK as specified in Equations (8) and (10)
using returns on the US equity index and euro£ deposits for the estimation of their conditional
covariance as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.
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Table 15: BEKK for estimating covt−1(recger, recuk)

parameters estimates s.e. est./s.e. p-value
µ1 0.021 0.147 -0.140 0.889
µ2 0.182 0.140 -1.299 0.194

ω11 0.776∗ 0.425 1.828 0.068
ω12 0.494 0.303 1.631 0.103
ω22 0.407 0.281 1.448 0.148
a11 0.211∗∗∗ 0.080 2.641 0.008
a12 0.083 0.052 1.594 0.111
a21 0.063 0.077 0.812 0.417
a22 0.239∗∗∗ 0.070 3.432 0.001
b11 0.859∗∗∗ 0.052 16.495 0.000
b12 0.823∗∗∗ 0.053 15.679 0.000
b11 0.865∗∗∗ 0.047 18.282 0.000

ln(L)§= -1834.310 Q12(z2)‡ for h11=0.974
Q12(z)† for r1=0.119 Q12(z2)‡ for h12=0.985
Q12(z)† for r2=0.615 Q12(z2)‡ for h22=0.970

Table reports estimation results from bivariate BEKK as specified in Equations (8) and (10)
using returns on euroDM and euro£ deposits for the estimation of their conditional covariance
as used for the ICAPM regressions reported in Tables 16–18.
For a detailed description of the reported statistics see caption of Table 4.

Table 16: Estimation results of ICAPM with constant prices of risk

parameters estimates s.e.† t-stat. p-value
δm 0.010 0.009 1.116 0.264
δger -0.045 0.030 -1.481 0.139
δuk 0.044 0.028 1.545 0.122

R̄2=0.001 R2=0.002 obs=6×383=2298

Robust Wald coefficient tests:

H0: No currency risk priced,
i.e. δger = δuk = 0 ⇒ χ2(2) =2.503, p-value: 0.286
H0: No risk priced at all,
i.e. δm = δger = δuk = 0 ⇒ χ2(3) = 4.932, p-value: 0.177

Table presents OLS estimates of the ICAPM with constant prices of market risk δm and
constant prices of currency risk δger and δuk as specified in Equation (13). 6 asset pricing
restrictions are considered (3 restrictions for the German, UK, and US equity price index;
2 for the euroDM and euro£ deposits and 1 for the world portfolio.) These restrictions are
stacked in order to impose the equality of coefficients during the OLS estimation. Data range
from March 1975 to January 2007 (383 observations per asset).
†Standard errors are calculated using the Newey-West covariance-matrix estimator.
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Table 17: Estimation results of ICAPM with constant prices of risk and fixed effects

parameters estimates s.e.† t-stat. p-value
α0 0.993∗ 0.524 1.894 0.058
α1 -0.436 0.435 -1.004 0.316
α2 -0.673 0.507 -1.326 0.185
α3 -0.181 0.577 -0.314 0.754
α4 -0.602 0.537 -1.122 0.262
α5 -0.444 0.439 -1.011 0.312
δm -0.016 0.025 -0.664 0.507
δger -0.109∗∗ 0.054 -2.022 0.043
δuk 0.055∗ 0.032 1.717 0.086

R̄2=0.000 R2=0.004 obs=6×383=2298

Robust Wald coefficient tests:

H0: No market segmentation,
i.e. αi = 0 ∀ i ⇒ χ2(6) =4.954, p-value: 0.550
H0: No currency risk priced,
i.e. δger = δuk = 0 ⇒ χ2(2) =4.544, p-value: 0.103
H0: No risk priced at all,
i.e. δm = δger = δuk = 0 ⇒ χ2(3) = 5.238, p-value: 0.155

Table presents OLS estimates of the ICAPM with constant prices of market risk δm and
constant prices of currency risk δger and δuk as specified in Equation (13) plus an asset-
specific ”fixed effect” reflecting mild market segmentation. 6 asset pricing restrictions are
considered (3 restrictions for the German, UK, and US equity price index; 2 for the euroDM
and euro£ deposits and 1 for the world portfolio.) These restrictions are stacked in order to
impose the equality of coefficients during the OLS estimation. α0 is a constant and the base
category (German equity index) for the five dummy variables. α1 to α5 measure the impact
of the dummy variables. Data range from March 1975 to January 2007 (383 observations per
asset).
†Standard errors are calculated using the Newey-West covariance-matrix estimator.
* and ** denote statistical significance at the 10% and 5% levels, respectively.
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Table 18: Estimation results of ICAPM with constant prices of risk and fixed effects and
market variance

parameters estimates std. errors† t-stat. p-value
α0 0.971∗ 0.568 1.710 0.087
α1 -0.430 0.439 -0.978 0.328
α2 -0.656 0.529 -1.239 0.215
α3 -0.162 0.601 -0.270 0.787
α4 -0.581 0.572 -1.015 0.310
α5 -0.420 0.499 -0.843 0.399
δm -0.018 0.029 -0.610 0.542
δger -0.109∗∗ 0.054 -2.027 0.043
δuk 0.054∗ 0.033 1.665 0.096
δvar 0.001 0.015 0.083 0.934

R̄2=0.000 R2=0.004 obs=6×383=2298

Robust Wald coefficient tests:

H0: No market segmentation,
i.e. αi = 0 ∀ i ∧ δvar = 0 ⇒ χ2(7) =4.956, p-value: 0.665
H0: No currency risk priced,
i.e. δger = δuk = 0 ⇒ χ2(2) =4.539, p-value: 0.103
H0: No risk priced at all,
i.e. δm = δger = δuk = 0 ⇒ χ2(3) = 5.137, p-value: 0.162

Table presents OLS estimates of the ICAPM with constant prices of market risk δm and
constant prices of currency risk δger and δuk as specified in Equation (14), i.e. including an
asset-specific ”fixed effect” as well as the variance of the respective asset (δvar) as factors
representing market segmentation. 6 asset pricing restrictions are considered (3 restrictions
for the German, UK, and US equity price index; 2 for the euroDM and euro£ deposits and
1 for the world portfolio.) These restrictions are stacked in order to impose the equality
of coefficients during the OLS estimation. α0 is a constant and the base category (German
equity index) for the five dummy variables. α1 to α5 measure the impact of the dummy
variables. Data range from March 1975 to January 2007 (383 observations per asset).
†Standard errors are calculated using the Newey-West covariance-matrix estimator.
* and ** denote statistical significance at the 10% and 5% levels, respectively.
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