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The Probability of Informed Trading
DAVID LÖW BEER

Abstract

In this article I investigate the probability of informed trading. Using
an empirical method developed by Easley et al. (1996), I estimate the risk
of information-based trading for a small sample of Toronto Stock Exchange
listed stocks. I use data on the cumulated transactions classified as buys
and sells respectively to determine how frequently new information occurs,
whether new information is good or bad news, and to estimate arrival rates
for informed and uninformed traders. My estimates confirm the empirical
results of Easley et al. (1996) in that information-based trading is more likely
for less traded stocks. Furthermore, I hint at the fact that the probability of
information-based trading seems to differ between industries.

1 Introduction

Apart from the intrinsic importance of having a sound knowledge about the prob-

ability of informed trading (PIT), the concept is also central to many fundamental

questions in finance, among others: Does the PIT differ between more and less

frequently traded stocks? Why do bid-ask spreads differ between securities? What

kind of investor holds which stock? Why do companies split stocks?

Due to the great practical interest, various techniques of estimating the PIT have

been developed in the history of financial markets econometrics. One possibility

is presented by Hasbrouck (1991), who applies a vector autoregression model to

quote and trade data. Thereby, he infers from trade innovations whether there is

private information or not in the market and hopes to avoid misleading inferences

due to inventory control or other transient liquidity effects. He concludes that, for

stocks with small market values, trade innovations have greater persistent price

impacts, which he interprets as arising from larger informational asymmetries,

stating that market makers should take larger orders as a signal for an increased

probability of informed trading.

The methodology developed by Easley et al. (1996) (hence EKOP) that will be

presented in detail in the third section is different in various aspects. Firstly, it

uses a likelihood function in order to estimate directly the market maker’s be-

liefs. Secondly, information events may at the maximum occur only once per day.
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Thirdly, it considers all order activities and not only those after trade innovations.

Fourthly, the estimation relies only on cumulated sell and buy order arrivals and

consequently needs fewer data.

The findings of the two estimating techniques do not differ widely, however the

EKOP can explain the greater informational asymmetries of the less frequently

traded stocks. Its empirical analysis shows that more frequently traded stocks

display higher probability of information events and greater arrival rates of in-

formed and uninformed traders. However, owing to the fact that the arrival rates

of uninformed traders are so dramatically lower for less frequently traded stocks,

the PIT is also lower for less active stocks. My empirical estimation of trade data

from Canada confirms these estimates.

This paper is organized as follows. In the next Section, I present a literary review

on some applications of EKOP. Then, there will be a summary of the structural

model developed by Easley et al. (1996). Section 4 discusses the features of the

Toronto Stock Exchange and the data. Results of the estimation are presented in

Section 5. Finally, Section 6 concludes.

2 Literary Review

Since 1996, the EKOP has become a standard model to estimate the probability

of informed trading. It has been applied and extended in many different analyses.

Some of the results of these studies are presented in this section. Already in the

original paper Easley et al. (1996) find that the higher probability of informed

trading is a decisive factor in explaining the large bid-ask spreads that less fre-

quently traded stocks normally display.

The work of Easley et al. (1998) investigates the role of financial analysts. The key

finding is a negative correlation between the number of financial analysts trading

with a stock and the probability of information-based trading. The paper shows

that stocks with more analysts do involve more informed trade, but that they

have even greater rates of uninformed trade. This suggests that while analysts’

clients may be trading based on information, analysts attract even more unin-

formed traders to a stock. It is this greater depth that reduces the probability of

information-based trading. Furthermore, their empirical evidence suggests that

the probability of private information events is the same across stocks with many

and few analysts.
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Using EKOP, Easley et al. (2001) show that stock splits attract uninformed as

well as informed traders. There is no overall significant effect in the information

content of trades after a split. The paper, however, is able to show that trading

costs rise after stock splits. This is due to an increase in volatility.

Easley et al. (2002) demonstrate that information-based trading has a large and

significantly positive effect on asset returns. Using EKOP, it is possible to falsify

traditional asset pricing models which assume that assets necessarily always in-

clude all information on the market. The results are robust, even when controlled

for the correlation with spreads, variability in returns, and turnover. The work

even reveals that the information variable and the firm size are the principal fac-

tors explaining returns.

Dennis et al. (2002) use EKOP to investigate the relation between ownership

structure and informed trading. First, they find that the relative spread is neg-

atively correlated to the amount of institutional ownership. This is attributed

to the preference of institutions for stocks with narrower spreads since they are

more liquid. Second, it is observed that information-based trading is significantly

positively related to the amount of both institutional and inside ownership.

3 The EKOP Model

3.1 The Trading Process

Easley et al. (1996) have developed a mixed discrete and continuous time sequen-

tial trade model of market making. Within the framework individuals trade a

single risky asset and money with a market maker over i = 1 , . . . , I trading

days. Time within the trading day is indexed by t ∈ [0,T].

Before a trading day starts, nature selects whether an information event relevant

to the value of the observed asset occurs (with probability α) or not (with prob-

ability 1-α). Information events are independently distributed. These events are

bad news with probability δ or good news with probability 1-δ.

Random variables (Vi)I
i=1 give the value of the asset at the end of the day. If, on a

given day, a bad event occurs, the value of the asset will be denoted Vi, if a good

event occurs Vi, if no event occurs V ∗
i .

Trade may involve informed (those who have observed any signal) and uninformed

traders. Arrival rates of informed and uninformed traders are modelled by two in-
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dependent Poisson processes 1 respectively. Uninformed buyers and sellers arrive

at rate ε. They arrive on all trading days, independent of whether an information

event has occurred or not. On days for which information events have occurred,

informed traders arrive, too. The informed traders are assumed risk-neutral and

competitive. In order to maximize her profits, the informed trader buys when ob-

serving a good signal and sells when observing a bad signal. All arrival processes

are assumed to be independent and the arrival rate for each process is µ.
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Figure 1. The structure of the trading process. The figure displays the trading process,

where α is the probability of an information event, δ is the probability of “bad news”, µ is the

rate of informed trade arrival, and ε is the rate of uninformed trade arrivals. Nodes to the left

of the vertical line occur once per day.

The tree given in Figure 1 illustrates this trading process. At the first node,
1A Poisson distribution is defined as the number of the occurrences of a event including a

great number (n→ ∞) of Bernoulli experiments, i.e experiments with only two possible results.

A Poisson process is modeled by

P (x) = e−λ λx

X!
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nature determines whether an information event occurs. If an event occurs, it

can be either good or bad news. There may be at the maximum one information

event per day. Then, given the node selected for the day, traders arrive according

to the Poisson process. That is, on a bad event day, trade arrival rates are ε for

buy orders and ε + µ for sell orders. On a good event day, trade arrival rates

are ε + µ for buy orders and ε for sell orders. On no event days only uninformed

traders will arrive. Consequently, trades will arrive with rates ε for both buy and

sell orders.

Prior to each trading day, the market maker knows the probabilities and the order

arrival processes attached to each of the three branches. Since nature selects which

of the three branches will be followed on a single day, the market maker does not

know ex ante whether a specific day is a bad-event day, a good-event day or a

non-event day. For information events are independent, the market makers prior

beliefs about the probabilities of an information event and the trade arrival rates

are equal for all days. Let P(t) = (Pb(t), Pg(t), Pn(t)) be the market makers prior

belief about the events “bad news” (b), “good news”(g) and “no news” (n) at time

t. So his prior belief at time 0 is P(0) = (αδ, α(1-δ), 1-α).

The EKOP model assumes a Bayesian 2 market maker who permanently revises

his beliefs with respect to new information. So the bid and ask at any point in

time t reflect both the history of the order process prior to the order arrival in t

and the fact that someone wants to buy or sell. Let St indicate the event that a

sell order arrives at time t and Bt the event that a buy order arrives. Let P (t|Bt)

be the market maker’s updated belief vector conditional on the trade history prior

to time t and on the event that someone wants to buy securities at time t. If an

order to buy arrives at time t, the market makers posterior probability on bad
2The theorem of Bayes assumes that an individual revises his expectations because of new

information. It establishes a connection between two conditional densities

P(A|B) and P(B|A)

Using the product rule for probabilities, this gives

P (A ∩B) = P (A) · P (B|A) = P (B) · P (A|B)

Dividing both sides by P(B), providing that it is non-zero, it is straightforward to obtain Bayes’

theorem in its most simple form:

P (A|B) =
P (A) · P (B|A)

P (B)
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event is, by Bayes rule:

Pb(t|Bt) =
Pb(t)ε

ε + Pg(t)µ
(1)

Alike, the posterior probability on good news is

Pg(t|Bt) =
Pg(t)ε + µ

ε + Pg(t)µ
(2)

Finally, the posterior probability on no news is

Pn(t|Bt) =
Pn(t)ε

ε + Pg(t)µ
(3)

It is straightforward to extend this to another moment in time when a sell order

arrives.

Using these posterior probabilities, the competitive market maker sets his ask and

bid prices at time t such that he expects profits to be zero. So, for the bid he will

condition on the history prior to the order arrival and on the fact that someone

wants to sell. Therefore the bid at time t on day i is

b(t) =
Pb(t)(ε + µ)Vi + Pg(t)εVi + Pn(t)εV ∗

i

ε + Pb(t)µ
(4)

Similarly, the ask is

a(t) =
Pb(t)εVi + Pg(t)(ε + µ)Vi + Pn(t)εV ∗

i

ε + Pg(t)µ
(5)

The expected value of an asset conditional on the trade history is, again by Bayes

rule:

E[Vi|t] = Pb(t)Vi + Pg(t)Vi + Pn(t)V ∗
i (6)

Substituting equation (6) into the bid and ask equations (4) and (5), respectively,

yields

b(t) = E[Vi|t]−
µPb(t)

ε + µPb(t)
(E[Vi|t]− Vi) (7)

and

a(t) = E[Vi|t]−
µPg(t)

ε + µPg(t)
(Vi − E[Vi|t]) (8)
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Equations (7) and (8) show the decisive role of informed and uninformed trade

arrivals when determining trading prices. If there are no informed traders (µ=0),

then trading prices equal the prior expected value of the asset because trading

does not convey any information. If there are only informed traders (ε=0), then

one obtains b(t) = Vi and a(t) = Vi. Normally, both informed and uninformed

traders will be in the market. So the bid is below E[Vi|t] and the ask is above

E[Vi|t]. The spread that the market maker sets rises with a growing share of

informed traders, because a larger share of informed traders signify greater risks

of losses to informed traders. The resulting spread s(t) can be written explicitly by

s(t) =
µ(Pg(t))

ε + µPg(t)
(Vi − E[Vi|t]) +

µ(Pb(t))
ε + µPb(t)

(E[Vi|t]− Vi) (9)

The spread at time t is the probability that the buy is information-based times

the expected loss to an informed buyer, plus a symmetric term for sells. Therefore

the probability that any trade occurring at time t is information based is the sum

of these probabilities

PIT (t) =
µ(1− Pn(t))

µ(1− Pn(t)) + 2ε
(10)

At the opening it is reasonable to assume that a good news event and a bad news

event are equally likely. So, we have

PIT ≡ PIT (0)

=
µ(αδ + α − αδ)

2ε + µ(αδ + α − αδ)
[Vi − Vi]

=
αµ

αµ + 2ε
[Vi − Vi] (11)

using the unconditional probabilities.

3.2 The Likelihood Function

Easley et al. (1996) constructed a structural model to estimate the relevant pa-

rameter vector θ = (α, δ, ε, µ). The difficulty of this estimation lies in the fact

that the outsider can only observe buys and sells. It is impossible to know which

traders are informed and which are uninformed. Furthermore, we do not know
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whether an information event has occurred and if so, whether it is bad or good

news. However, since the data reflect the underlying information structure, it is

possible to estimate ex post whether an information event has occurred or not.

For example, if we assume a good news event day, then buy orders arrive at a

rate (ε + µ) because both informed and uninformed traders arrive, whereas sell

orders are at a rate ε only, reflecting that only uninformed traders will sell on

a good-event day. Thus, the likelihood of observing any sequence of orders that

contains B buys and S sells on a good-event day of total time T is given by

e−(ε+µ)T [(ε + µ)T )]B

B!
e−εT (εT )S

S!
(12)

Analogically, on a bad-event day both uninformed and informed trader will sell the

stock, but only uninformed traders will buy the stock. Accordingly, the likelihood

of observing any order sequence on a bad-event day is given by

e−εT (εT )B

B!
e−(ε+µT ) [(ε + µ)T ]S

S!
(13)

Finally, on a no-event day, only uninformed traders will buy and sell stocks, since

there is no incentive for an informed trader to get to the market. Therefore, the

likelihood of observing an order sequence with B buys and S sells on a no-event

day is

e−εT (εT )B

B!
e−εT (εT )S

S!
(14)

Equations (12), (13), and (14) show that it is only necessary to consider the

number of buys and sells in order to estimate the order arrival rates. Using these

three equations and weighting them with the probabilities of good-event days α(1-

δ), bad-event days αδ, and no-event days 1-α respectively, yields the likelihood

L((B,S)|θ) = (1 − α) · e−εT (εT )B

B!
e−εT (εT )S

S!

+αδ · e−εT (εT )B

B!
e−(ε+µ)T [(ε + µ)T ]S

S!

+α(1− δ) · e−(ε+µ)T [(ε + µ)T ]B

B!
e−εT (εT )S

S!
(15)

On the assumption that only one information event can occur per day the infor-

mation event parameters α and δ will either be 0 or 1. Whether an event occurred

or not can be estimated from the daily number of buys and sells. Because infor-

mation events are independent, the likelihood of observing the data M=(Bi,Si),
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which is the joint distribution of the daily data, over I days is just the product of

the individual densities given in the previous equation,

L(M |θ) =
I∏

i=1

L(θ|Bi, Si) (16)

To estimate the parameter vector θ from any data set M, it is necessary to max-

imize this likelihood. This provides direct estimates of the rate of informed and

uninformed trading in a particular asset, as well as of the information event struc-

ture surrounding that asset.

4 The Data

Fifteen stocks were randomly selected from the 1,500 stocks traded on the Toronto

Stock Exchange (hereafter TSX), the world‘s 7th largest Stock Exchange with a

market capitalization of 1.75 trillion US dollars. TSX is the global leader for

listing mining, and oil and gas companies operating around the world.

Stocks in Toronto are traded electronically only. The role of the Market Maker

on TSX is that of a passive liquidity manager. The idea is that the normal

trading process is organized via a continuous auction market. Orders are organized

by a computer-based central limit order book to which all market participants

have full access. Hence, the market seems to be highly transparent, however,

anonymous trades are possible and there are mechanisms to disguise“large”orders.

Following Grammig et. al (2001) who compare the probability of informed trading

between the non-anonymous traditional floor based exchange and the anonymous

computerized trading system and due to the high amount of international capital

on the TSX, I expect relatively high rates of informed trading.

For estimating the parameters trade data for the 15 stocks in my sample I consider

the first trading hour of the 64 trading days between 01/01/2004 and 31/03/2004.

There was one technical and one practical reason for selecting the first hour of

trading. From the technical perspective, it was necessary to restrict the number

of buys and sells to limit the factorial needed for the calculation of the likelihood

given in equation (16). Therefore, it seemed quite reasonable to select the first

trading hour, as it is the time when prices adjust after the non-trading period

during the night.

Following Easley et al. (1993) the period of 64 days is considered at the same
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time long enough to estimate the parameters correctly and short enough so that

the stationarity built in the trade model is not too unreasonable.

The list of the selected stocks, their respective industries, their average cumulated

number of buy and sell transactions in the first trading hour, and their average

prices during the first trading hour is provided in the Appendix (see Table A.1.)

To compute the likelihood function given in equation (16) and to consequently

determine the PIT, it is necessary to estimate the number of sells and buys on

each day for each stock.

Trades were classified using the algorithm developed by Lee and Ready (1991) If

the price is above (below) the prevailing midpoint quote, the trade is classified as a

buy (sell). Trades at midquote are called buys (sells) if the price is higher (lower)

than the price of the most recent trade. This procedure is standard. However

as Boehmer et al. (2007) show, the methodology misclassifies so many trades

that it causes a downward-bias of the PIT. The bias is particularly large for less

frequently traded assets.

Finally, I ranked all stocks by the sum of cumulated sells and buys. Since I did

not have access to the trading volume data, these numbers are taken as a proxy.

However, this approach is problematic, because each trade may include the selling

and buying of various stocks.

5 Estimation

In this section, I will present the results of my parameter estimates for the struc-

tural model. Recall that the trade process depends on the parameter vector θ,

which combines four parameters: α is the probability of an information event; δ

the probability that an information is bad news; ε the arrival rate of uninformed

traders; and µ the arrival rate of informed traders. Using the estimates, it is

possible to calculate the probability of informed trading applying equation (10).
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5.1 Parameter Estimates

The trade data for each stock in our sample is estimated by maximizing the like-

lihood which was developed in the previous section. All four parameters were

restricted to be non-negative, the information parameters α and δ were addition-

ally restricted to (0,1).

I maximize the unrestricted parameter estimates using various algorithms in the

GAUSS statistical package. Thereby the computer tests possible values for θ and

chooses the value that make the likelihood of the observed data largest. Put dif-

ferently, it chooses the value for θ, which, if it were the true parameter of the

distribution, would generate the sample results with the greatest probability com-

pared to all other possible values.

Parameter estimates and their robust standard errors for each stock are provided

in the Appendix (see Table A.2). The standard errors show that the model can be

estimated very precisely. Trade arrival rates ε and µ for all assets are significant

on any convenient significance level. The information parameters α and δ are

significant on the 1% significance level for all but one stock in the sample.

Table 1 provides the means, the medians and the mean standard errors of the es-

timated parameters. Since EKOP was developed to evaluate differences between

less and more active traded stocks, I present the results divided by three terciles,

the first includes the stocks with the greatest number of cumulated buys and sells

in the first trading hour, the second those with the 6th to 10th greatest number of

cumulated buys and sells in the first sixty minutes of trading, and the third tercile

is composed of the five assets of my sample, which display the smallest number of

cumulated buys and sells in the first trading hour of each day.

The parameter α is the probability of an information event to occur before the

opening of the stock exchange. It can take either the value 0 or 1. Table 1 shows

that the mean α is 0.327 for all stocks, 0.460 for the first tercile, 0.275 for the

second tercile, and 0.246 for the third tercile. Thus, the probability of information

events is highest for the most active stocks in the sample, and declines for the less

active ones. Cumulative distributions of α tend to differ across terciles, with that

of the most traded stocks higher than those of the less frequently traded stocks,

and still higher than the least traded stocks. 3 The original EKOP paper finds

similar results.

3However the data for all three categories show great variability. For the most active stocks,

α ranges between 0.29 and 0.63 and for the least active ones between 0.06 and 0.57. Thus, there

are infrequently traded stocks that often have new information, and there are frequently traded

stocks that rarely have new information.
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Table 1. Summary Parameter Estimate Statistics

This table presents means, medians, and mean sample standard deviations of

parameter estimates by volume tercile for the 15 stocks in my sample. The pa-

rameter α is the probability of an information event, δ is the probability that

new information is bad news, ε is the arrival rate of uninformed traders, and µ is

the arrival rate of informed traders. The parameter PIT is a composite variable

measuring the probability of information-based trade.

Parameter All First Tertile Second Tertile Third Tertile

Number in Sample 15 5 5 5

α

Mean 0.327077 0.459981 0.274766 0.246484

Median 0.284337 0.461272 0.272253 0.119486

Std. dev. 0.005127 0.004421 0.004272 0.006687

δ

Mean 0.237371 0.102034 0.311893 0.298186

Median 0.233881 0.085091 0.257103 0.359449

Std. dev. 0.281361 0.003799 0.010539 0.829744

ε

Mean 0.809126 1.583830 0.622800 0.220749

Median 0.711807 1.454631 0.459114 0.221676

Std. dev. 0.000084 0.000203 0.000030 0.000019

µ

Mean 1.178585 1.417456 1.152873 0.965427

Median 1.000072 1.122029 1.207071 0.671116

Std. dev. 0.001143 0.001652 0.001412 0.000365

PIT

Mean 0.195122 0.163455 0.200759 0.221153

Median 0.182157 0.151032 0.184949 0.210491

Std. dev. 0.009096 0.000573 0.001906 0.024810

The other information parameter in our model is δ, which measures the proba-

bility that a new information is bad news. It can also take either the value 0 or

1. From a theoretical perspective there is no reason to suspect any differences
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in the probability of bad news with regards to the size of a stock. Empirically,

Easley et al. (1996) cannot reject the hypothesis of no differences in the three

distributions. In my estimation, the δs are 0.102 for the five most traded stocks

in our sample, 0.312 for the five second most traded stocks, and 0.298 for the five

least traded stocks. The average δ is 0.237. So, although I did not test whether

those differences are significant, a superficial first look, indicates this. Yet, the

differences might be due to the small sample size. It should also be noted that the

cumulative distributions exhibit multiple crossings. So, there is only very limited

evidence against the theoretically posted hypothesis of δs, which do not differ

across the terciles.

I turn now to the arrival rates of informed and uninformed traders. Since these

are intensities and not probabilities, they could only be interpreted if they were

multiplied by a small period of time, ∆T. Both rates are only restricted to be

non-negative.

Table 1 shows huge differences in the arrival rates of uninformed traders, ε. The

estimated mean for all stocks is 0.809. It is 1.583 for tercile 1, 0.622 for tercile 2,

and 0.221 for tercile 3. Comparing the cumulative distributions within each tercile

yields the same results, i.e. all of the more active stocks display much higher εs

than the less active stocks. This is consistent with the analysis of Easley et. al

(1996), also showing that more active stocks attract more uninformed traders.

The results for informed order arrivals, µ, are quite similar, although the differ-

ences are less dramatic. The overall rate is 1.179. It falls from 1.417 for the

first tercile to 1.153 for the second tercile to 0.965 for the third tercile. Although

showing some crossings, distributions of δ tend to differ across the terciles being

higher for the more actively traded stocks and lower for the less actively traded

securities. Conforming again the results of the original EKOP paper, I find that

the informed arrival rate is higher for more active stocks. 4

5.2 The Probability of Informed Trading

As it is shown in equation (10) the probability of informed trade is a composite

variable reflecting the probability that new information exists and the trade arrival
4Notice, however, that, contrary to the data for uninformed traders, ε, the data for the arrival

rate of informed traders, µ, display great variance. The stock KFS, e.g., which is classified as

one of the five least traded stocks in the sample shows the highest trade arrival rate of informed

buyers and sellers.
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parameters. Table 1 shows that the estimated mean of PIT is 0.195 for all traded

stocks, 0.163 for the five most active stocks, 0.201 for the five second most active

stocks and 0.221 for the five least active stocks. Thus the risk of informed trading

is negatively correlated with the activity of a stock. For the more frequently

traded stocks, the higher probability of information events and the higher arrival

rates of informed traders are more than offset by the dramatically higher arrival

rates of uninformed traders. The results are consistent with the findings of Easley

et al. (1996).

5.3 Probability of Informed Trading and Industry Sector

The Toronto Stock Exchange classifies five of the fifteen randomly selected compa-

nies in the industrial category “mining”, five in “industrial”, three in “oil/gas”, and

one in “life sciences” and “communications” respectively. Table 2 provides sum-

mary statistics of the probability of informed trading grouped by the respective

industries.

Table 2. The Probability of Informed Trading and Industry Sector.

Standard errors are given in parenthesis.

Stocks in Category Industry PIT

5 Mining 0.18772

(0.00083)

5 Industrial 0.18278

(0.02453)

3 Oil/Gas 0.23220

(0.00279)

2 Others 0.18886

(0.00065)

Although the data base is far too small to make a serious statement, and even

though my knowledge on the ownership structure of the companies in the sample is

far too little to explain possible differences, a first glimpse at the empirical results

shows that this approach might be interesting for further research. Companies

trading with natural ressources might, in contrast to industrial firms, attract less

uninformed traders because of the presumably higher volatility or due to the fact



David Löw Beer 15

that small, local investors are more likely to buy stocks of less internationalized

companies.

6 Conclusion

Applying the empirical technique developed by Easley et al. (1996), I use data

from the Toronto Stock Exchange to estimate the probability of informed trading

for fifteen stocks. I divide the stocks into three groups with respect to the cumu-

lated number of transactions classified as buys and sells. This is used as a proxy

for trading volumes.

Conforming the results of Easley et al. (1996), I also find that the probability of

information-based trading is lower for more frequently traded stocks. Even though

less frequently traded stocks have lower probabilities of information events and

lower arrival rates of informed traders, these are more than counterbalanced by

the much lower arrival rates of uninformed traders.

Using the estimates provided by EKOP, it is possible to answer some of the core

questions in financial market econometrics. The data reveal that the bid-ask

spread is larger for less active stocks, because the ratio of informed to uninformed

traders is higher in those assets. Furthermore, it is possible to show that the

more financial analysts trade with a stock the lower is the probability of informed

trading.

The probability of informed trading (PIT) of the stocks in my sample differs

greatly between industries. Particularly the assets from the oil/gas sector show

much higher PIT than those from the mining and industrial sector. This could be

due to a great variety of reasons, among others the structure of investors might

differ across industries. However, these questions have to be left for further re-

search.
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7 Appendix

Table A.1

TSX Stocks Included in Sample

This table presents the stocks included in the testing of EKOP. Fifteen stocks of
the Toronto Stock Exchange were randomly selected. The firms were classified
into different industries with reference to the company information provided by the
TSX homepage. Data on the cumulated transactions classified as buys (Buys) and
sells (Sells) respectively and on the average price (AvgPrice) of the stock refer to
the first trading hour of the 64 trading days between 01/01/2004 and 03/31/2004.
Average Price is mean price of the first trading hour. Data is ranked by the sum
of cumulated buys and sells in the first trading hour.

Ticker Company Name Industry Buys Sells Price

AL Alcan Inc. Industrial 157.78 125.34 59.67
BCE Bell Canada Enterprises Inc. Communications 158.14 121.06 28.93
ABX Barrick Gold Corp. Mining 115.55 90.06 27.94
MFC Manulife Financial Corporation Industrial 109.53 75.72 46.63
PCA Petro-Canada Oil/Gas 112.2 62.31 60.88

NRD Noranda Inc Mining 71.42 88.91 21.17
NXY Nexen Inc. Oil/Gas 53.69 44.11 49.27
PKZ PetroKazakhstan Inc. Oil/Gas 43.97 25.7 34.06
AGE Agnico-Eagle Mines Ltd. Mining 35.61 33.05 17.76
GLG Glamis Gold Ltd. Mining 36.91 29.61 21.41

KFS Kingsway Financial Services Inc. Industrial 31.03 18.41 14.62
AGU Agrium Inc. Mining 26.06 20.7 19.81
MDS MDS Inc. Life Sciences 18.25 16.64 20.99
MWI Moore Wallace Incorporated Industrial 11.69 11.17 25.01
IPS IPSCO Inc. Industrial 10.34 6.58 23.09
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Table A.2

Continous Time Trading Model Parameter Estimates

This table presents the parameters estimated using EKOP. The parameter µ is the

arrival rate of informed traders, ε is the arrival rate of uninformed traders, α is the

probability of an information event, and δ is the probability that new information

is bad news. The parameter PIT is a composite variable measuring the probability

of information based-trade. Standard errors are given in parenthesis below the

parameter estimates. Maximum likelihood estimation is performed using various

algorithms in the GAUSS statistical package.

Ticker µ ε α δ PIT

AL 0.337893 2.064990 0.076956 1.742477 0.124772

(0.003922) (0.000430) (0.004222) (0.005347) (0.000400)

BCE 0.631149 2.000627 0.085091 1.033258 0.140143

(0.004421) (0.000484) (0.002211) (0.001842) (0.000181)

ABX 0.461272 1.454631 0.153472 1.122029 0.151032

(0.004839) (0.000040) (0.004922) (0.000629) (0.000409)

MFC 0,576212 1,276310 0,132526 0,928264 0,173240

(0.004684) (0.000046) (0.003937) (0.000323) (0.000319)

PCA 0.293382 1.122592 0.062122 2.261251 0.228086

(0.004197) (0.000015) (0.003701) (0.000119) (0.001555)

NRD 0.352981 1.116504 0.686416 1.244038 0.164334

(0.005332) (0.000027) (0.011825) (0.000211) (0.000850)

NXY 0.249743 0.664245 0.257103 1.207071 0.184949

(0.005755) (0.000017) (0.012630) (0.000327) (0.002290)

PKZ 0.171866 0.415959 0.090914 1.915889 0.283567

(0.003147) (0.000005) (0.007742) (0.000083) (0.004520)

AGE 0.326988 0.459114 0.346905 0.691280 0.197541

(0.003804) (0.000022) (0.011812) (0.001316) (0.000921)

GLG 0.272253 0.458181 0.178127 0.706087 0.173403

(0.003323) (0.000077) (0.008686) (0.001524) (0.000948)

KFS 0.062501 0.327554 0.000102 2.701608 0.204928

(0.015453) (0.000004) (4.006382) (0.000393) (0.105295)

AGU 0.401124 0.291381 0.296520 0.490261 0.252311

(0.004264) (0.000057) (0.008585) (0.000709) (0.001019)

MDS 0.571030 0.221676 0.435882 0.241946 0.237586

(0.007885) (0.000022) (0.008241) (0.000181) (0.001122)

MWI 0.119486 0.150386 0.398978 0.671116 0.210491

(0.003976) (0.000007) (0.060035) (0.000326) (0.008317)

IPS 0.078278 0.112748 0.359449 0.722206 0.200452

(0.001857) (0.000004) (0.065476) (0.000217) (0.008296)
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