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ABSTRACT

One of the driving forces behind the recent advances in deep learning is the development
of modern neural network architectures. These often rely on components from Transformers
and graph neural networks, which use linear layers with weight-sharing. An issue of mod-
ern deep learning is the cost associated with training increasingly large models. Improving
the efficiency of the training algorithms is one approach to decrease these costs, e.g., by using
second-order methods for deep learning, often motivated by Newton’s method or natural gradi-
ent descent. The quantities needed for second-order methods are typically intractable and ap-
proximations are necessary. A popular approximation of the Fisher information and generalized
Gauss-Newton matrix, both commonly used for second-order methods, is Kronecker-factored
Approximate Curvature (K-FAC). While K-FAC has been used with many model architectures,
there does not exist a framework for applying it to linear weight-sharing layers of the type used
in Transformers and graph neural networks.

Hence, here we focus on K-FAC in the context of linear weight-sharing layers to enable
methods using K-FAC for modern neural network architectures and to contribute to a better
understanding of their properties. We identify two different settings, the expand and the reduce
setting, which motivate two different flavors of the K-FAC approximation – K-FAC-expand and
K-FAC-reduce. Moreover, we show that they are exact in the same simple settings as K-FAC
is for regular linear layers and discuss the usage of the two approximations for Transformers
and graph neural networks. Finally, we provide a proof of concept showing that both variations
used for training a Vision Transformer on ImageNet can decrease the number of steps to a target
validation accuracy compared to a well-tuned baseline. We hope that this work lays a foundation
for future empirical and theoretical work to improve the efficiency of training algorithms and
other methods which rely on K-FAC approximations for modern neural network architectures.
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Chapter 1
Introduction

Recently, many applications of deep learning have received a lot of attention, from generative
models which can produce complex images from text prompts (Rombach et al., 2021; Ramesh
et al., 2022), to human-like text generation with language models (Brown et al., 2020) and
advances in protein structure prediction (Jumper et al., 2021). Many of the models used for these
applications rely on components of Transformer architectures, i.e. attention mechanisms, and
graph neural networks to perform well. These modern elements of neural network architectures
are therefore arguably one of the driving forces behind the recent dominance of deep learning for
all kinds of machine learning tasks. One thing Transformers and graph neural networks have in
common is that they use linear layers with weight-sharing, which means that the same weights
are applied across multiple input dimensions. For example in language translation tasks, the
same weights are applied to the features of each word in a sentence. weight-sharing is also used
in convolutional neural networks layers, which are a special instance of a linear weight-sharing
layer; however, they will not be the focus of this work. Overall, it seems fair to say that weight-
sharing is a crucial technique of almost all state-of-the-art neural network architectures. The
typical motivation to use weight-sharing is (i) increased efficiency, as fewer parameters have to
be trained, (ii) to enforce an invariance to the position of an element within the weight-sharing
dimension, and (iii) to allow for inputs with weight-sharing dimensions of varying size.

One issue with these modern model architectures is that they are typically expensive to train
due to their size. The cost of training and tuning these models goes into the millions of dollars
and requires training for weeks to months on large infrastructure (Strubell et al., 2020). The
increasing environmental impact of this is also a commonly raised concern. One approach to
decrease the costs of training large modern deep learning models is increasing the efficiency
of the training algorithms. Usually (adaptive) first-order methods are used to optimize neural
networks, but there is some evidence that using structured curvature estimates can speed up
training in terms of steps or even wall-clock time (Martens & Grosse, 2015; Ren & Goldfarb,
2021; Osawa et al., 2022). Typically Newton’s method, which uses the Hessian, or natural
gradient descent (Amari, 1998), which uses the Fisher information matrix, are used to moti-
vate these kinds of algorithms. The Hessian as well as the Fisher cannot directly be used as a
curvature estimate for large models since they are too expensive to compute, store, and invert.
Moreover, the Hessian is not guaranteed to be positive semi-definite (p.s.d.). Hence, in practice
approximations of the Hessian are often used, like the generalized Gauss-Newton matrix (GGN).
Moreover, for losses like the cross-entropy loss, the GGN is equivalent to the Fisher, connect-
ing Newton’s method to natural gradient descent. While the GGN/Fisher are guaranteed to be
p.s.d., they are still generally intractable for large models. One specific approach to estimating
the GGN/Fisher more practically is Kronecker-factored Approximate Curvature (Heskes, 2000;
Martens & Grosse, 2015, K-FAC). It uses a block-diagonal approximation, where each block
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1 Introduction

can be written as a Kronecker product of two smaller matrices. This approximation was devel-
oped for linear layers and later extended to convolutional and recurrent neural networks (Grosse
& Martens, 2016; Martens et al., 2018).

While some people have applied K-FAC to Transformers for natural language processing tasks
(Zhang et al., 2019; Pauloski et al., 2021; Osawa et al., 2022), to the best of our knowledge, no
previous work justifies or even just explicitly expresses the approximation implemented in these
cases; there seems to be no framework or derivation of K-FAC for linear weight-sharing layers
of the type used in Transformers and graph neural networks. Since K-FAC can potentially be
useful to improve the efficiency of training modern neural network architectures, the goal of this
work is to investigate the application of K-FAC to this type of linear weight-sharing layers. Here,
we focus on the use-case of improving the efficiency of optimization and learning, but the K-
FAC approximation of the GGN/Fisher is also useful for a other applications. In Bayesian deep
learning, the GGN is typically used as a Hessian approximation for Laplace approximations
(MacKay, 1992a; Daxberger et al., 2021) and natural gradient variational inference (Khan et al.,
2018; Zhang et al., 2018; Osawa et al., 2019). These methods can be leveraged for improving
predictive uncertainty quantification (Ritter et al., 2018; Kristiadi et al., 2020), online learning
(Kirkpatrick et al., 2017; Pan et al., 2020), and model selection (MacKay, 1992b; Immer et al.,
2021a). Additionally, the GGN/Fisher is used for model pruning and compression (LeCun et al.,
1990; Singh & Alistarh, 2020). Therefore, we see the extension of K-FAC to models with
linear weight-sharing layers as the first step in enabling these methods for modern deep learning
architectures.

To provide sufficient context to the main part of this work, in Chapter 2 we introduce deep
learning in general and motivate the idea of second-order optimization for deep learning, with a
focus on the methods relevant to this work. Moreover, we introduce the benchmarks which we
consider as examples for our more abstract framework and which we use for the experiments;
they are a subset of the AlgoPerf benchmark by MLCommons. In Chapter 3 we try to develop a
framework for thinking about K-FAC in the context of linear weight-sharing layers. Specifically,
we identify two different base cases, the expand and the reduce case, which each motivates
a variation of the K-FAC approximation – K-FAC-expand and K-FAC-reduce. We also look
at two more concrete cases, i.e. how linear weight-sharing layers are used within a simplified
dot-product attention mechanism and how to apply the framework of the two base cases to a
specific graph neural network. Besides the theoretical extension of K-FAC to these cases, we
also consider practical considerations, like the actual implementation and computational details.
Finally, in Chapter 4 we provide some experimental data as a proof of concept of the potential
usefulness of the here presented K-FAC approximations for optimizing neural networks, and
conclude with a discussion of the implications of the results in this work in Chapter 5.
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Chapter 2
Background

In this chapter, we provide the necessary background to follow this work. This includes a gen-
eral introduction to deep learning (Section 2.1), which covers common neural network architec-
tures (Section 2.1.1), the empirical risk minimization framework (Section 2.1.2), loss functions
(Section 2.1.3), and gradient-based optimization methods (Section 2.1.4). Moreover, we cover
second-order optimization in deep learning (Section 2.2) and the MLCommons AlgoPerf bench-
mark (Section 2.3).

2.1 Deep Learning

In this work, we focus on the standard supervised deep learning setup. It consists of a dataset
D of N independently and identically distributed (i.i.d.) samples {xn, yn}Nn=1, a (deep) neural
network ((D)NN) architecture, a loss function, and an optimization algorithm. In the following,
these concepts will be introduced in a brief, but self-contained manner.

2.1.1 Neural Network Architectures

A deep neural network is a nonlinear function fθ : RD → RC , parameterized with θ ∈ RP . It
typically has a layer-wise structure, i.e. it can be written as

fθ = fθL ◦ . . . fθ` ◦ · · · ◦ fθ1 , (2.1)

with θ = concat
(
θ1, . . . ,θ`, . . . ,θL

)
and L is the number of layers of the NN; concat(·, . . . , ·)

concatenates arbitrarily many vector inputs to a larger vector or arbitrarily many matrices with
the same number of rows into a larger matrix with the same number of rows and as many columns
as all input matrices combined.

In a fully-connected feed-forward network, we have fθ`(x) = φ(W `x + b`), where x ∈
RP`,in , W ` ∈ RP`,out×P`,in , b ∈ RP`,out , θ` = concat

(
vec(W `), b`

)
∈ RP` , and P` =

P`,outP`,in + P`,out; the operation vec(·) vectorizes a matrix my concatenating its column vec-
tors. This inner affine function is typically called linear layer. Additionally, φ is an element-wise
nonlinear function, called activation function. One of the most commonly used examples for φ
is ReLU(x) := max (0,x), where the max is defined element-wise. A fully-connected feed-
forward network is typically also called multilayer perceptron (MLP).

In this work, we are interested in linear layers with weights shared across an additional input
dimension, i.e. we now have inputsX ∈ RR×D, where we have an additional dimension of size
R. Ignoring the bias, the linear layer is applied to this input as XW T , so the weight matrix
W is shared across the additional first dimension, in the same way it is typically applied over a
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2 Background

mini-batch of data. We call linear layers applied to such inputs linear layers with weight-sharing
or linear weight-sharing layers. This type of linear layer appears in many increasingly important
neural network architectures, such as Transformer models and graph neural networks.

2.1.1.1 Transformers

The Transformer architecture (Vaswani et al., 2017) relies solely on the attention mechanism,
which has originally been used in conjunction with recurrent structures in sequence modelling
(Bahdanau et al., 2015). It allows modeling dependencies between all tokens in a sequence,
independent of their distance from each other. In contrast, in classical recurrent networks, it is
hard to model long-ranging dependencies (Hochreiter, 1991; Bengio et al., 1994).

Attention. An attention operation can generally be defined as a function of a query q ∈ RD
and a collection ofR pairs of keysK ∈ RR×D and values V ∈ RR×C , both stacked in matrices,
where vr ∈ RC denotes the rth row of V . Since attention operations are defined for sequences,
R is the sequence length, e.g. the number of words in a sentence.

Attention(q,K,V ) :=
R∑

r=1

αr(q,K)vr, (2.2)

with attention weights αr(q,K) ∈ [0, 1] and it holds that
∑R

r=1 αr(q,K) = 1; many different
functions have been proposed for these attention weights. Through this way of writing the
attention mechanism, it can be seen as a parametric version of the weighted sum used in Gaussian
process prediction. The query q corresponds to the input we want to predict the target for,K to
the collection of training inputs, so R = N , and V are the stacked training targets (Tsai et al.,
2019). Notably, from this formulation, it also becomes visible that an attention mechanism can
be seen as a graph neural network (c.f. Section 2.1.1.2) with a dense adjacency matrix (Joshi,
2020).

We can also stack M queries in a matrixQ ∈ RM×D and compute the attention operation via
matrix multiplication as

Attention(Q,K,V ) = α(Q,K)V . (2.3)

The attention mechanism used in the Transformer architecture is called scaled dot-product at-
tention and is defined as

Attention(Q,K,V ) = softmaxrow

(
QKT

√
D

)
V , (2.4)

where softmaxrow(·) is the softmax function (c.f. Equation (2.17)) which is applied row-wise
on a matrix. The scaling by 1/

√
D is applied to avoid vanishing gradients due to input values

to the softmax function with large magnitude for large D. Moreover, the Transformer uses self-
attention, i.e.Q,K, and V are all linear transformations of the same input matrixX ∈ RR×Din ;
note, that we learn separate linear transformationsWQ ∈ RD×Din ,WK ∈ RD×Din , andW V ∈
RC×Din for Q,K, and V . In the Transformer architecture, self-attention is combined with
multi-head attention, which is defined as

MultiHead(Q,K,V ) := concat(H1, . . . ,HH)WO, (2.5)
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2.1 Deep Learning

with Hh = Attention(QWQR

h ,KWKT

h ,VW V T

h ) and H heads. When combined with self-
attention, we would have MultiHead(X,X,X), i.e. Q = K = V . To avoid confusion, note
that self-attention does not mean that all three inputs to the attention operation are the same, but
they are linear combinations of the same input.

Crucially, here we can observe that the weight matrices are shared across the sequence dimen-
sion of size R: since the weight matrices are multiplied to the input, Q,K or V , from the right
side, we can interpret this as a batched matrix-vector product of the weight matrix with the rows
of the input, i.e. calculating WQ

h qr for all r ∈ {1, . . . , R} and stacking the results as rows of a

matrix is equivalent to calculatingQWQT

h .
Transformer architectures and their applications. The Transformer model introduced in

Vaswani et al. (2017) stacks multiple multi-head attention layers together with fully-connected
layers and has an encoder and decoder structure. Additionally, normalization layers, positional
encodings, and input masks are used.

While the Transformer has originally been introduced for natural language processing, e.g.
for translation tasks, they have also been applied to image classification tasks (Parmar et al.,
2018; Dosovitskiy et al., 2021). Since the attention operation scales quadratically in the se-
quence length R, interpreting the pixels of an image as a sequence does not scale to realistic
image sizes. As a solution, Cordonnier et al. (2020) and Dosovitskiy et al. (2021) propose to
reshape the input images into sequences of R flattened 2d patches. The Vision Transformer
(ViT) architecture (Dosovitskiy et al., 2021) then uses a typical Transformer encoder to pro-
cess the embedded sequence of image patches and classifies the images with a fully-connected
head based on the encoder outputs. Before the encoder output is passed to the head network,
global average pooling, i.e. a mean operation, is applied to reduce the sequence dimension. This
reduction is crucial for our results in Chapter 3.

2.1.1.2 Graph Neural Networks

A different class of model architectures that use linear layers with weight-sharing are graph
neural networks (GNNs).

Graph convolutional network for node classification. A popular type of GNNs is called
graph convolutional network (GCN). A GCN defines a convolution operation on graph struc-
tures, by repeatedly aggregating feature information over the neighborhood of a node. As a
regular convolutional neural network, it also uses weight-sharing; see Liu et al. (2020) for a
comprehensive discussion on weight-sharing in GCNs. However, in contrast to the other models
presented here, they utilize a slightly different type of weight-sharing, which will become ap-
parent in Equation (2.7). Nevertheless, we briefly mention this case here, since the only work on
K-FAC for GNNs has been on this model architecture and we will explicitly show how K-FAC
was applied in this case in Section 3.3; this relies on the notation introduced here.

A graph is defined as G := (V, E), where V is the set of N nodes and E the set of edges. The
edges can be encoded relative to the nodes in an adjacency matrix C ∈ RN×N with Cij = 0
if there is no edge and Cij = 1 if there is one. Typically, they are used for node and graph
classification tasks. Here, we focus on node classification, e.g. classifying scientific publications
which are represented as nodes in a citation network into topics (Sen et al., 2008).

The `th GCN layer is defined as

fθ`(X) = φ(ĈXW T
` ) (2.6)
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2 Background

which is identical to a regular dense linear layer from Section 2.1.1, but the input matrix X ∈
RN×P`,in ,which has theN node features xn of size P`,in stacked in the rows, is first transformed
by the normalized adjacency matrix Ĉ := (D+ IN )−

1
2 (C + IN )(D+ IN )−

1
2 , whereD is the

diagonal node degree matrix of the graph and IN is the N ×N identity matrix.

Defining

x̃n :=

N∑

j=1

Ĉnjxj =
∑

j∈N (n)

Ĉnjxj , (2.7)

we can express the forward pass for a single node and layer as

fθ`(x̃n) = φ(W `x̃n), (2.8)

where N (n) := {j ∈ {1, . . . , N}|Ĉnj 6= 0} is the neighborhood of the node with index n.
Notably, the forward pass for a single node xn depends on its neighborhood, i.e. we cannot
express the forward pass for the node without access to the feature information of the nodes in
its neighborhoodN (n).Moreover, we can now see that the forward pass through the linear layer,
i.e. the matrix multiplication of the weight matrix W ` with the transformed input x̃n, does not
need the notion of weight-sharing anymore, in the sense, that we do not need a batched matrix-
vector product over a weight-sharing dimension. This is because we aggregate over each node’s
neighborhood, over which the weights are shared, before the matrix-vector product. Hence, in
contrast to the Graph network introduced in the next paragraph, this model does not require
special consideration when applying K-FAC (c.f. Section 3.3).

Graph network for graph classification. One more general formulation of a GNN is an
instance of the graph network introduced in Battaglia et al. (2018). The graph network in its
general form takes a graph G = (u,V, E), where u ∈ RDu are the global features of the graph,
and V and E are the sets of nodes and edges, respectively, just as before. We can also write
the ith graph of a dataset of N graphs as a 5-tuple XGn := (xun,X

V
n ,X

E
n , rn, sn), with global

features xun ∈ RDu , node features XV
n ∈ RNV

n ×DV , and edge features XE
n ∈ RNE

n ×DE for all
n = 1, . . . , N. The two vectors rn ∈ RNE

n and sn ∈ RNE
n contain the indices of the receiving

and sending nodes of each edge, respectively. Using these indices, we defineXV
n,rn ∈ RNE

n ×DV

andXV
n,sn ∈ RNE

n ×DV which contain the node featuresXV
n at indices sn and rn, respectively.

Note, that these graph inputs unfortunately cannot trivially be batched by stacking them, since
the number of nodes NV

n or edges NE
n are not necessarily the same for all n ∈ {1, . . . , N}.

A graph network block updates the 3-tuple (xun,X
V
n ,X

E
n ) by using three update functions φ,

XE
n ← φE(XE

n ,X
V
n,rn ,X

V
n,sn ,x

u
n)

XV
n ← φV (XV

n , X̃
E
n ,x

u
n)

xun ← φu(xun, X̄
V
n , X̄

E
n ),

(2.9)

and three permutation-invariant aggregation functions ρ

X̃
E
n ← ρE→V (XE

n )

X̄
E
n ← ρE→u(XE

n )

X̄
V
n ← ρV→u(XV

n ).

(2.10)
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2.1 Deep Learning

Examples of these aggregation functions include element-wise summation, mean, or maximum.
One forward pass through a graph network block corresponds to the following steps, where

each step is executed for all n ∈ {1, . . . , N}:

1. Update edgesXE
n with φE(XE

n ,X
V
n,rn ,X

V
n,sn ,x

u
n).

2. Aggregate updated edges over all nodes in X̃
E
n ∈ RNV

n ×DE using ρE→V (XE
n ).

3. Update nodesXV
n using φV (XV

n , X̃
E
n ,x

u
n).

4. Aggregate updated edges over all graphs in X̄E
n ∈ RDE using ρE→u(XE

n ).
5. Aggregate updated nodes over all graphs in X̄V

n ∈ RDV using ρV→u(XV
n ).

6. Update global features xun with φu(xun, X̄
V
n , X̄

E
n ).

In this work, we consider graph classification; for example, molecules can be represented
as graphs and we could classify them according to some chemical property (c.f. the OGBG
workload in Section 2.3.1). We specifically consider a graph network instance with simple MLPs
for all update functions φ, and an element-wise sum for the aggregation functions ρ. Moreover,
multiple of these graph network blocks can be stacked on top of each other. To classify the input
graphs, an MLP is applied to the global features xun after they are updated by the last graph
network block.

To be more precise, the update functions are in this case specified as

φE(XE
n ,X

V
n,rn ,X

V
n,sn ,x

u
n) := concat(XE

n ,X
V
n,rn ,X

V
n,sn , repeatNE

n
(xun))WET

φV (XV
n , X̃

E
n ,x

u
n) := concat(XV

n , X̃
E
n , repeatNV

n
(xun))W V T

φu(xun, X̄
V
n , X̄

E
n ) := W uconcat(xun, X̄

V
n , X̄

E
n )

(2.11)

withWE ∈ RDE×(DE+2DV +Du),W V ∈ RDV ×(DV +DE+Du), andW u ∈ RDu×3Du .
Note, that this is a simplification, since in reality the update functions φ are MLPs with ReLU

activations, layer normalization (Ba et al., 2016), and dropout (Hinton et al., 2012b). Also, we
omit the potential bias vectors. However, these components are not relevant for deriving K-FAC
for the linear layers within these networks, which is why we can omit them here for simplicity.

More importantly, we can observe that this type of GNN shares its weights over each graph’s
edges and nodes: just as for the Transformer models, we apply the (transposed) weight matrices
from the right side of the input of the layers of type φE and φV , i.e. for updating the edge and
node features. However, since the number of edges NE

n and the number of nodes NV
n is not

necessarily the same for all N graphs, we now have a weight-sharing dimension of size Rn,
which depends on the nth input. We have specifically chosen this notation of the inputs to show
that this GNN indeed uses this type of weight-sharing. This is also necessary to easily express
our result in Section 3.3.

2.1.2 Empirical Risk Minimization

Supervised neural network training is typically formulated as empirical risk minimization. The
goal is to minimize a loss function ` : RC × RC → R by adjusting the parameters θ ∈ RP of
a neural network fθ : RD → RC on an i.i.d. training dataset D = {xn, yn}Nn=1 with xn ∈ RD
and yn ∈ R. The true risk is defined as

Ltrue(fθ) = Ex,y∼pdata(x,y)
[
`(y, fθ(x))

]
. (2.12)
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2 Background

Since we usually do not have access to pdata(x, y), but only to our dataset D, we minimize the
empirical risk

Lemp(fθ,D) =
1

N

N∑

n=1

`(yn, fθ(xn)), (2.13)

to find θ∗ = argminθ Lemp(fθ,D).

Since we are interested in learning and not just optimization, we want θ∗ to generalize to
unseen data, i.e. yield low empirical risk on unseen data points. Hence, we typically optimize a
regularized empirical risk

Lreg(fθ,D) =
1

N

N∑

n=1

`(yn, fθ(xn)) + r(θ), (2.14)

where r(θ) is an explicit regularizer, and use other implicit regularization methods such as data
augmentation (Baird, 1993; Wong et al., 2016) or dropout (Hinton et al., 2012b).

Moreover, we can connect learning via regularized empirical risk minimization to proba-
bilistic inference for losses `(yn, fθ(xn)) which correspond to a valid negative log-likelihood
− log p(yn|fθ(xn)) and a regularizer which is also a valid negative log density. In these cases,
empirical risk minimization is equivalent to maximum likelihood estimation and maximum a-
posteriori estimation (MAP) for the regularized case:

LMAP(fθ,D) = −
N∑

n=1

log p(yn|fθ(xn))

︸ ︷︷ ︸
NLemp

− log p(θ)︸ ︷︷ ︸
Nr(θ)

, (2.15)

where we can see that θ∗ coincides for Lreg(fθ,D) and LMAP(fθ,D), since NLreg(fθ,D) =
LMAP(fθ,D). Hence, in these cases θ∗ is the argmax of the intractable posterior distribution

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ) = p(θ)

N∏

n=1

p(yn|fθ(xn)). (2.16)

This correspondence holds, among others, for the common cross-entropy (CE) loss for classifi-
cation and the mean-square error (MSE) loss for regression, which are the only losses considered
here. Also, the popular weight decay or L2 regularizer corresponds to an isotropic Gaussian prior
over the weights (Hinton, 1987; Krogh & Hertz, 1991; MacKay, 1992c); we assume this prior
because its Hessian takes a simple (constant) form and we do not explicitly consider it from now
on.

2.1.3 Loss Functions for Classification and Regression

We consider the cross-entropy loss since it is used in all the benchmarks we discuss in this
work (c.f. Section 2.3.1 and Chapter 4) and the mean-square error loss since we use it for the
theoretical statements in Section 3.1. Also, we state the gradients and Hessians of the losses
w.r.t. the model outputs, because they appear in the derivation and definition of the generalized
Gauss-Newton matrix (Section 2.2.2), which we will use for our results in Chapter 3.
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2.1 Deep Learning

Cross-entropy loss. To use the cross-entropy loss, we first have to map the outputs f ∈ RC
of the neural network to probabilities via the softmax function

p(f)i =
exp(fi)∑C
c=1 exp(fc)

. (2.17)

The cross-entropy loss is equivalent to using a categorical likelihood, i.e.

p(D|fθ) =
N∏

n=1

C∏

c=1

p(fθ(xn))ỹnc
c , (2.18)

where ỹn = onehot(yn) ∈ {0, 1}C . Hence, the corresponding loss or the negative log-likelihood
is

LCE(fθ,D) = −
N∑

n=1

C∑

c=1

ỹnc log p(fθ(xn))c

=
N∑

n=1

log
( C∑

c=1

exp(fθ(xn)c)
)
− fθ(xn)∗,

(2.19)

where fθ(xn)∗ := {fθ(xn)i|ỹni = 1}. For this loss, the gradient w.r.t. fθ is sum of the residuals
rn

∇fθLCE(fθ,D) =

N∑

n=1

p(fθ(xn))− ỹn︸ ︷︷ ︸
=:rn

∈ RC . (2.20)

and the Hessian w.r.t. the model outputs is

HfθLCE(fθ,D) =
N∑

n=1

diag(p(fθ(xn)))− p(fθ(xn))p(fθ(xn))T ∈ RC×C ; (2.21)

the diag(·) operation constructs a diagonal matrix with the input vector on its diagonal.

Mean-square error loss. The mean-square error loss is equivalent to using a (multivariate)
Gaussian likelihood, i.e.

p(D|fθ) ∝
N∏

n=1

exp

(
−1

2
(fθ(xn)− yn)TΣ−1(fθ(xn)− yn)

)
, (2.22)

where Σ−1 ∈ RC×C is the noise precision and the targets are now in y ∈ RC ; we disregard
factors constant w.r.t. θ. The corresponding loss or the negative log-likelihood is then

LMSE(fθ,D) =
1

2

N∑

n=1

(fθ(xn)− yn)TΣ−1(fθ(xn)− yn), (2.23)

9
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the gradient w.r.t. the model outputs is the sum over the (weighted) residuals rn

∇fθLMSE(fθ,D) =
N∑

n=1

Σ−1(fθ(xn)− yn)︸ ︷︷ ︸
=rn

∈ RC , (2.24)

and the Hessian w.r.t. the model outputs is simply

HfθLMSE(fθ,D) = NΣ−1 ∈ RC×C . (2.25)

Note that for both, the categorical and the Gaussian likelihood, the loss Hessian w.r.t. the
model outputs does not depend on the labels at all, and for the Gaussian likelihood not even on
the inputs. This is relevant for the content of Section 2.2 and Chapter 3.

2.1.4 Gradient-Based Optimization

We want to learn from data via empirical risk minimization, or in our case equivalently MAP
inference, as introduced in Section 2.1.2. Typically, iterative gradient-based algorithms are used
to optimize these objectives. We simplify notation and writeL(θ) for our loss functionL(fθ,D),
to emphasize the loss as a function of the parameters. Gradient descent-based algorithms can
be derived by finding the minimizer to a local approximation to the actual problem. We use a
first-order Taylor expansion of the loss L(θt) around the current iterate of the parameters θt at
time step t, and add a quadratic term weighted by 1/2α with curvature C(θt) ∈ RP×P ,

mt(θ) = L(θt) + g(θt)
T (θ − θt) +

1

2α
(θ − θt)TC(θt)(θ − θt), (2.26)

where g(θt) = ∇θL(θt) is the (empirical) gradient evaluated at θt. The simple gradient descent
algorithm arises from setting C(θt) = IP . The local problem then becomes

mt(θ) = L(θt) + g(θt)
T (θ − θt) +

1

2α
‖θ − θt‖22, (2.27)

which can be seen as a first-order Taylor approximation with an added regularization term to
discourage large steps in parameter space. To find the next iterate, θt+1, we now minimize this
approximate local model,

θt+1 = argmin
θ

mt(θ) = θt − αg(θt), (2.28)

which is the classic gradient descent update with step size or learning rate α.
Since we are often interested in large datasets and models, it is prohibitively expensive to

calculate the gradient for the whole training set at each iteration. As a stochastic approximation,
we draw random subsets of M samples, called mini-batches Mt of the training data at each
training step and calculate the mini-batch gradient ĝ(θt) = ∇θL̂(θt) = ∇θL(fθt ,Mt). If
we replace the gradient with the mini-batch gradient, the update step in Equation (2.28) then
becomes stochastic gradient descent (Robbins & Monro, 1951, SGD).

Many additional heuristics have been proposed to further improve the properties of SGD. Mo-
mentum methods, such as heavy ball (Polyak, 1964) and Nesterov (Nesterov, 1983) momentum,
take the gradient information at different points into account. Adaptive methods, such as Adam
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(Kingma & Ba, 2015), AdaGrad (Duchi et al., 2011), and RMSProp (Hinton et al., 2012a),
adopt the learning rate for each parameter separately by leveraging quantities which change dur-
ing the training process. The most common quantity used for this purpose is the element-wise
squared mini-batch gradient ĝ(θt)� ĝ(θt). This can be seen as choosing a differentC(θt) (c.f.
Section 2.2). Hence, there is only a blurry line between first- and second-order methods, e.g.
people also refer to methods using structured approximations to the uncentered (average) mini-
batch gradient covariance ĝ(θt)ĝ(θt)

T as second-order methods (Anil et al., 2020). However,
methods using a diagonal C(θt), like Adam, are typically considered as first-order methods.

2.2 Second-Order Optimization

Second-order methods choose a different curvature matrix C(θt) to increase the quality of the
local approximation and therefore, of the update steps. Minimizing Equation (2.26), assuming
that C(θt) is positive definite (p.d.), we get the update step

θt+1 = argmin
θ

mt(θ) = θt − αC(θt)
−1g(θt). (2.29)

SinceC(θt) is quadratic in the number of parameters P , and its inversion of cubic computational
complexity, a full matrix is typically not a feasible choice in practice.

In the following, we will introduce different choices for C(θt).

2.2.1 Newton’s Method

The second-order Taylor expansion might be the obvious choice for a local quadratic approxi-
mation. We have

mt(θ) = L(θt) + g(θt)
T (θ − θt) +

1

2
(θ − θt)TH(θt)(θ − θt), (2.30)

where we set α = 1 and C(θt) = H(θt) := ∇2
θL(θt) ∈ RP×P is the Hessian of the loss w.r.t.

the parameters. The resulting update step,

θt+1 = argmin
θ

mt(θ) = θt −H(θt)
−1g(θt), (2.31)

together with a stopping condition and a rule to choose the step size, such as backtracking
line search, is well-known in convex optimization as Newton’s method (Boyd & Vandenberghe,
2004). Notably, we cannot generally assume that the Hessian is p.s.d., since we consider non-
convex problems in deep learning. This motivates p.s.d. approximations to the Hessian.
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2.2.2 Generalized Gauss-Newton

We can decompose the Hessian into two terms by applying the chain rule to the split ` ◦ fθ1,

Hθ`(y, fθ(x)) = Jθfθ(x)THfθ`(y, fθ(x))Jθfθ(x)︸ ︷︷ ︸
=:GGN(θ)

+

C∑

c=1

(∇fθ`(y, fθ(x))︸ ︷︷ ︸
=r

)cHθfθ(x)c,

(2.32)
where Jθfθ(x) ∈ RC×P is the model’s Jacobian matrix,Hfθ`(y, fθ(x)) ∈ RC×C the Hessian
of the loss function, ∇fθ`(y, fθ(x)) ∈ RC is the residual r, and Hθfθ(x)c ∈ RP×P the
Hessian of the model. We can observe that we have curvature information of the loss function
in the first, and of the model in the second term of the equation. Since our loss functions are
convex in fθ, the first term is always p.s.d. and we call it the generalized Gauss-Newton matrix
(GGN). Writing the empirical GGN for a dataset D, we have

GGN(θ) =
N∑

n=1

Jθfθ(xn)THfθ`(yn, fθ(xn))Jθfθ(xn). (2.33)

The HessianH(θt) in Equation (2.31) can be replaced by GGN(θt) to approximate Newton’s
method in a non-convex setting.

There are two cases when the GGN coincides with the exact Hessian. First, if we assume that
our model fθ is linear in the parameters θ, the HessianHθfθ(x)c = 0P becomes a P ×P zero
matrix. Hence, for a linear model the second term in Equation (2.32) vanishes and the Hessian
is thus equal to the first term – the GGN. Conversely, using the GGN as a p.s.d. approximation
to the Hessian for nonlinear models can be seen as implicitly linearizing fθ at iterate θt via
a first-order Taylor expansion. In deep learning, the GGN is a common approximation of the
Hessian (Schraudolph, 2002; Martens, 2010; Botev et al., 2017; Khan et al., 2018; Ritter et al.,
2018). In most cases, however, the model is not linearized for predicting even when the GGN
was used for optimization or approximate inference; it has been shown to be beneficial to be
consistent and predict with the linearized model when using the GGN as a Hessian replacement
for a Laplace approximation (Immer et al., 2021b).

Second, the gradient ∇fθ`(y, fθ(x)) is the residual r for the two losses considered here, as
presented in Equation (2.20) and Equation (2.24). Hence, when p(fθ(x)) = ỹ in the classi-
fication or fθ(x) = y in the regression case, the second term in Equation (2.32) will vanish.
However, this condition does usually also not hold in practice, just as the first one.

2.2.3 Natural Gradient Descent

Natural gradient descent (Amari, 1998, NGD) is typically derived by finding a direction of steep-
est descent using a specific metric – the Fisher information matrix (FIM), or short, the Fisher.
The resulting update uses the FIM as the curvature matrix C(θ) in Equation (2.29). One com-
mon motivation for using NGD is its well-known invariance to smooth invertible reparameteri-
zations of the model (Martens, 2014).

1In general, the GGN is ambiguous since it depends on the chosen split (Schraudolph, 2002); here, we always refer
to the GGN assuming this split.
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2.2 Second-Order Optimization

To introduce the concept of the direction of steepest descent, we first derive the classic gradi-
ent descent update (Equation (2.28)) from this alternative perspective. We define a direction of
steepest descent as

(δθ)∗ = lim
ε→0

1

ε
argmin
δθ:‖δθ‖≤ε

L(θ + δθ), (2.34)

where ‖·‖ is an unspecified norm on RP . Intuitively, it represents the direction of a step with
fixed infinitesimal length in terms of the chosen norm which results in the smallest possible loss.
For the Euclidean norm ‖·‖2, we can solve the constrained optimization problem by locally ap-
proximating L(θ+ δθ) with a first-order Taylor approximation and using Lagrange multipliers.
The result is simply the normalized negative gradient −∇θL(θ)/‖∇θL(θ)‖2.

This implies that we implicitly assume a Euclidean metric when optimizing the loss with gra-
dient descent. However, when our loss can be interpreted as a negative log-likelihood, which
is the case for our two losses considered here, we are optimizing in the space of probability
distributions. It is well known that the Euclidean distance is a bad similarity measure for dis-
tributions, e.g. the two mostly overlapping Gaussians N (0, 10000) and N (10, 10000) have an
Euclidean distance of 10, whereas the mean parameters of the two barely overlapping Gaussians
N (0, 0.01) and N (0.1, 0.01) have an Euclidean distance of only 0.1.

The key idea of NGD is to replace the Euclidean metric with a better suited alternative for
probability distributions – a local approximation to the Kullback-Leibler (KL) divergence be-
tween the likelihood and the likelihood after an infinitesimally small step δθ. Defining the
model’s joint distribution as h(θ) := pθ(x, y) = p(y|fθ(x))p(x), we have

DKL(h(θ)‖h(θ + δθ)) = Ex,y∼h(θ)[log h(θ)− log h(θ + δθ)]

≈ 1

2
(δθ)T −Ex,y∼h(θ)[∇2

θ log h(θ)]
︸ ︷︷ ︸

=:F (θ)

δθ, (2.35)

where we have used a second-order Taylor approximation and simplified it to get to this result
which includes the FIM F (θ). Expanding h(θ) = p(y|fθ(x))p(x), we can also express the
FIM as

F (θ) = −Ex,y∼pθ(x,y)[∇
2
θ log p(y|fθ(x))]

= Ex,y∼pθ(x,y)[∇θ log p(y|fθ(x))(∇θ log p(y|fθ(x)))T ],
(2.36)

which implies that the FIM is p.s.d.. In the machine learning literature p(x) is usually replaced
by the empirical data, i.e.

F (θ) = −
N∑

n=1

Ey∼p(y|fθ(xn))[∇
2
θ log p(y|fθ(xn))]

=
N∑

n=1

Ey∼p(y|fθ(xn))[∇θ log p(y|fθ(xn))(∇θ log p(y|fθ(xn)))T ],

(2.37)

where we still do not use the empirical labels yn; this is also what we will refer to as Fisher from
now on. In the case of also using the labels yn, the resulting quantity is called empirical Fisher
(EF); it is then simply the uncentered covariance of the empirical gradient. While it is commonly
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used as a replacement for the Fisher (Graves, 2011; Kingma & Ba, 2015; Chaudhari et al., 2017;
Zhang et al., 2018; Khan et al., 2018), they are generally not the same. Kunstner et al. (2019)
highlight potential pitfalls of using the Fisher and the EF as interchangeable quantities and offer
an alternative hypothetical explanation for the EF’s empirical success based on adaption to the
gradient noise in stochastic optimization.

While the KL divergence is not a valid metric since it is not symmetric, we can see from
Equation (2.35) combined with the insight that the FIM is always p.s.d., that it locally defines the
norm ‖δθ‖F (θ) =

√
(δθ)TF (θ)δθ. Following the initial motivation to use a more meaningful

metric to find a direction of steepest descent, we can now use this norm for our objective in
Equation (2.34) and according to Ollivier et al. (2017) have

lim
ε→0

1

ε
argmin

δθ:‖δθ‖F (θ)≤ε
L(θ + δθ) = − F (θ)−1∇θL(θ)

‖∇θL(θ)‖F (θ)−1

; (2.38)

note that ‖δθ‖F (θ) ≤ ε ⇐⇒ 1
2‖δθ‖

2
F (θ) ≤ ε2/2 (with ε ≥ 0) and from Equation (2.35) we

know that 1
2‖δθ‖

2
F (θ) ≈ DKL(h(θ)‖h(θ + δθ)). The resulting update sets the curvature matrix

C(θt) = F (θt) in Equation (2.29) and is called natural gradient descent.

Even though NGD is motivated by the concept of finding a direction of steepest descent in
distribution space, we can connect it to Newton’s method through the Fisher’s relationship to the
GGN. The Fisher and the GGN coincide for both losses we consider here and more generally, for
all likelihoods of the exponential family with natural parameterization (Wang, 2010; Martens,
2014). To see this, we rewrite the Fisher as

F (θ) =

N∑

n=1

Ey∼p(y|fθ(xn))

[
∇θ log p(y|fθ(xn))(∇θ log p(y|fθ(xn)))T

]

=

N∑

n=1

Jθfθ(xn)TEy∼p(y|fθ(xn))

[
∇fθ log p(y|fθ(xn))∇fθ log p(y|fθ(xn))T

]
Jθfθ(xn)

=

N∑

n=1

Jθfθ(xn)TEy∼p(y|fθ(xn))

[
−∇2

fθ
log p(y|fθ(xn))

]
Jθfθ(xn),

(2.39)

and by substituting −∇2
fθ

log p(y|fθ(xn)) withHfθ(`(y, fθ(xn))), we have

F (θ) =

N∑

n=1

Jθfθ(xn)TEy∼p(y|fθ(xn))[Hfθ(`(y, fθ(xn)))]Jθfθ(xn). (2.40)

Now the similarity to the GGN becomes apparent since we have the same expression as in Equa-
tion (2.33), but with an expectation over y ∼ p(y|fθ(xn)). As we have seen in Section 2.1.3,
for the cross-entropy and the mean-square error lossHfθ(`(y, fθ(xn))) does not depend on the
labels y at all. Hence, in both cases the Fisher and the GGN are identical.
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2.2.4 K-FAC

Kronecker-factored Approximate Curvature (Heskes, 2000; Martens & Grosse, 2015, K-FAC)
was proposed as an efficient approximation to a neural network’s Fisher information matrix
(Section 2.2.3). First, in all of this work, we focus on a layer-wise K-FAC approximation of the
Fisher, i.e. it is approximated by a block-diagonal matrix

F (θ) ≈ diag(F (θ1), . . . ,F (θ`), . . . ,F (θL)) ∈ RP×P , (2.41)

where F (θ`) ∈ RP`×P` and diag(·, . . . , ·) build a block-diagonal matrix with the input matrices
as blocks.

To derive K-FAC, we first note that the pre-activation for layer ` and the nth data point xn
can be expressed as s`,n = W `a`,n, with W ` ∈ RP`,out×P`,in and a`,n ∈ RP`,in , the input to
the `th layer (or equivalently, the activation of the ` − 1th layer). We have omitted an explicit
bias parameter b`, since it can always be subsumed in W `. Hence, by applying the chain rule,
the gradient of the loss w.r.t. the weights of the `th layer can be written as∇W `

L(y, fθ(xn)) =
∇s`L(y, fθ(xn))aT`,n =: g`,na

T
`,n ∈ RP`,out×P`,in .

Using these insights, K-FAC then replaces the sum of expectations over Kronecker products
with a Kronecker product of two sums of expectations, i.e.

F (θ`) =
N∑

n=1

Ey∼p(y|fθ(xn))[vec(∇W `
L(y, fθ(xn)))vec(∇W `

L(y, fθ(xn)))T ] (2.42a)

=
N∑

n=1

Ey∼p(y|fθ(xn))[vec(g`,na
T
`,n)vec(g`,na

T
`,n)T ] (2.42b)

=
N∑

n=1

Ey∼p(y|fθ(xn))[(a`,n ⊗ g`,n)(aT`,n ⊗ gT`,n)] (2.42c)

=
N∑

n=1

Ey∼p(y|fθ(xn))[a`,na
T
`,n ⊗ g`,ngT`,n] (2.42d)

≈

[
1

N

N∑

n=1

a`,na
T
`,n

]

︸ ︷︷ ︸
=:A`

⊗

[
N∑

n=1

Ey∼p(y|fθ(xn))[g`,ng
T
`,n]

]

︸ ︷︷ ︸
=:G`

, (2.42e)

whereA` ∈ RP`,in×P`,in andG` ∈ RP`,out×P`,out . For this derivation, we have used three conve-
nient properties of the Kronecker product (using matrices A,B,C,D with appropriate dimen-
sions): vec(ABC) = (CT ⊗A)vec(B) and (A⊗B)T = AT ⊗BT for Equation (2.42c), and
(A⊗B)(C ⊗D) = AC ⊗BD for Equation (2.42d).

We can see that the approximation is exact in the trivial case of a single data point, i.e.N = 1.
Moreover, it is also exact in the case of a single linear layer or a deep linear network and a
Gaussian likelihood (Bernacchia et al., 2018).

K-FAC is more efficient than a naive block-wise approximation because we only have to store
and invert two Kronecker factors instead of a larger dense matrix for each layer, which reduces
the memory complexity from O(P 2

`,inP
2
`,out) to O(P 2

`,in + P 2
`,out) and the computational com-
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plexity of the preconditioning of the gradient with the approximate Fisher from O(P 3
`,inP

3
`,out)

to O(P 3
`,in + P 3

`,out), since

F (θ`)
−1g(θ`) ≈ (A` ⊗G`)

−1g(θ`)

= vec
(
G−1` ∇W `

L(y, fθ(xn))A−1`
) (2.43)

with g(θ`) = vec(∇W `
L(y, fθ(xn))) and the property (A⊗B)−1 = A−1 ⊗B−1.

Alternatively, we can derive K-FAC for the GGN (Botev et al., 2017), which will recover
the same result as for the Fisher in Equation (2.42) for the losses we consider here, as we have
learned in Section 2.2.3. We define Jθ`(xn) := Jθ`fθ(xn) = Js`,nfθ(xn)Jθ`s`,n ∈ RC×P`

as the Jacobian of the model outputs w.r.t. the parameters of the `th layer and Λ(fθ(xn)) :=
HfθL(yn, fθ(xn)) ∈ RC×C as the Hessian of the loss w.r.t. the model outputs. Now we can
write s`,n = W `a`,n = (aT`,n⊗IP`,out

)vec(W `) and with this we have Jθ`s`,n = aT`,n⊗IP`,out
.

Additionally, by defining b`,n := Js`fθ(xn)T ∈ RP`,out×C as the transposed Jacobian of the
model outputs w.r.t to the pre-activations of the `th layer, we note that Jθ`(xn)T = (aT`,n ⊗
IP`,out

)Tb`,n = a`,n ⊗ b`,n.
Replacing the (transposed) Jacobians in the definition of the GGN by this expression, we have

GGN(θ`) =

N∑

n=1

Jθ`(xn)TΛ(fθ(xn))Jθ`(xn)

=

N∑

n=1

(a`,n ⊗ b`,n)Λ(fθ(xn))(a`,n ⊗ b`,n)T

=

N∑

n=1

(a`,na
T
`,n)⊗ (b`,nΛ(fθ(xn))bT`,n)

≈

[
1

N

N∑

n=1

a`,na
T
`,n

]

︸ ︷︷ ︸
=:A`

⊗

[
N∑

n=1

b`,nΛ(fθ(xn))bT`,n

]

︸ ︷︷ ︸
=:B`

.

(2.44)

This derivation is a bit more convenient for our purposes, as it does not require us to keep track
of the expectation over the labels y, while still being equivalent to the Fisher for the losses we
consider here. Moreover, it will be useful to have the Jacobians Jθ`(xn) separate from the loss
for our derivations in Chapter 3; therefore, we will only explicitly write our results for the GGN.

Finally, K-FAC has also been extended to convolution (Grosse & Martens, 2016) and recurrent
neural network layers (Martens et al., 2018).

2.3 Benchmarks

To evaluate and compare optimization methods such as the ones presented in Section 2.2, we
need benchmarks. Without them, it is impossible to determine if one optimization algorithm
provides any advantage over others; in fact, the lack of a consistent and large-scale bench-
mark seems to be a problem of the recent deep learning optimization literature (Schmidt et al.,
2021). One very recent benchmark which tries to address this issue is the MLCommons Al-
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goPerf benchmark. According to our focus, we are using a subset of its workloads which uses
models with linear weight-sharing layers for the examples and experiments in this work.

2.3.1 MLCommons AlgoPerf: An Algorithmic Efficiency Benchmark

The Algorithms Working Group of MLCommons wants to “create a set of rigorous and relevant
benchmarks to measure neural network training speedups due to algorithmic improvements"
(MLCommons, 2022). The benchmark, called AlgoPerf, consists of multiple workloads, where
one workload is defined as a loss function, a dataset, and a neural network model architecture.
A submission to the benchmark is a training algorithm together with a hyperparameter search
space. Performance is measured in terms of wall-clock time to reach a fixed target value of a
validation metric on fixed hardware. One submission has to run on all workloads and the final
score will contain the timing results on all workloads.

Since the benchmark is designed to provide meaningful comparisons between optimization al-
gorithms across contemporary and large-scale deep learning settings, running an algorithm using
K-FAC on the full benchmark would be a step towards increasing K-FAC’s potential practical
relevance. In multiple workloads models with linear weight-sharing layers, i.e. Transformers
and GNNs, are used. Hence, extending K-FAC to these types of models is a necessary step to-
wards a valid K-FAC submission to the benchmark. Since we focus on this extension of K-FAC
here, we only consider the following three workloads.

Vision Transformer on ImageNet. This workload also uses the cross-entropy loss, a Vision
Transformer architecture, and the LSVRC-2012 ImageNet (short: ImageNet) image dataset
(Russakovsky et al., 2015). The goal is to classify images into one of 1000 classes. There
are about 1.3 million training, 50k validation, and 10k test examples.

While we do not provide empirical results for the next two workloads, we provide all neces-
sary details to also conduct experiments on them.

Transformer on WMT. This workload consists of a the cross-entropy loss (c.f. Section 2.1.3),
a Transformer model architecture (c.f. Section 2.1.1.1), and the WMT14 (Bojar et al., 2014) and
WMT17 (Bojar et al., 2017) de-en translation datasets. The task is to translate German sentences
into English. The datasets contain data from multiple sources, like the Europarl corpus. The
WMT17 dataset is used for training and the WMT14 dataset for validation and testing. There
are about slightly below six million examples for training and about 3000 examples each for
validation and testing. The vocabulary size is 32k.

GNN on OGBG. The workload consists of a (binary) cross-entropy loss, the Graph net-
work instance described in Section 2.1.1.2, and the ogbg-molpcba molecular property prediction
dataset (Hu et al., 2020). Each molecule is represented as a graph, where atoms are nodes and
edges are chemical bonds. The task is to predict whether or not a molecule has certain chemical
properties; there are 128 different properties. For training, we have about 350k examples and
almost 44k for validation and testing.
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Chapter 3
K-FAC for Linear Weight-Sharing Layers

As introduced in Section 2.1.1, many contemporary neural network architectures, such as Trans-
formers and GNNs, use linear weight-sharing layers where the weights are shared over an ad-
ditional input dimension of size R. There can be arbitrarily many dimensions like this, but, for
simplicity, we will focus on the case of a single additional dimension.

In this chapter, we are trying to answer the question of how K-FAC can be applied to this layer
type. We identify two different scenarios of how linear weight-sharing layers can be used within
a model and show that each motivates a slightly different K-FAC approximation, which we call
K-FAC-expand and K-FAC-reduce. However, in practice, both approximations can be applied
to each of the two settings. Prototypical examples for the two scenarios are a Transformer for
language translation and a Vision Transformer for image classification. We also concretely dis-
cuss the application of the approximation to a simplification of the attention mechanism within
these Transformer architectures. Moreover, the two base cases also provide a recipe for deciding
which K-FAC approximation to use for model architectures that are not explicitly considered
here. As an example, we will consider an instance of the second case, the reduce setting, a GNN
as introduced by Battaglia et al. (2018), which is a bit more complex than the corresponding base
case, mostly due to the representation of the graph inputs and implementation considerations.

3.1 The Expand and the Reduce Setting

When we know there exists at least one weight-sharing layer in a model and the final loss is a
scalar value, we can deduce that there has to exist an aggregation function z which at some point
reduces the weight-sharing dimension of size R. We propose to classify linear layers within a
network that contains weight-sharing layers based on the point where the aggregation function
is applied. We can distinguish three different aggregation points, which will define the setting
for the `th layer:

(i) Before the `th layer, i.e. A`,n ∈ RR×P`,in is reduced to ã`,n ∈ RP`,in before being mul-
tiplied with the weight matrix of the layer W `. → The weight matrix is applied like in
a regular linear layer, i.e. we are in the setting of a regular linear layer and no particular
considerations are necessary when using K-FAC.

(ii) After the per-example loss, i.e. there will be N ·R outputs of the model and N ·R labels.
The per-example loss is applied to each of the N · R output-label pairs and summed. →
This is what we call the expand case or setting, as the loss for each of the N data points
is expanded with R terms. The reduction function is always a simple sum in this case (at
least if we assume our loss corresponds to a valid density, which we do here).
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3.1 The Expand and the Reduce Setting

(iii) In between the pre-activation of the `th layer S`,n ∈ RR×P`,out and the final aggregation
over the per-example losses. In our case, this implies that the aggregation happens before
the model output fθ(xn), since we only consider the CE and MSE losses which do not
include any additional aggregation of the model outputs. In this case, the labels yn will
not have an additional dimension. → This is what we call the reduce case or setting, as
all weight-sharing dimensions have been reduced before the final aggregation over the
per-example losses.

We can see that depending on the setting, the loss will have a different number of terms, i.e. per-
example losses. Hence, if we assume a single weight-sharing dimension which will be reduced
once, the form of the loss function determines which setting applies to all linear weight-sharing
layers within a model. So for our purposes, we can identify the setting we are considering simply
by looking at the form of the loss.

There might exist model architectures that reduce the weight-sharing dimension of sizeR and
then recreate it during the forward pass, e.g. by stacking the outputs of two linear layers with the
same inputs, in which case we would have to different settings for different layers. Addition-
ally, it is possible that we have multiple weight-sharing dimensions and they are aggregated at
different points, leading to different settings for different weight-sharing dimensions. However,
we are not aware of such architectures and problems used in practice. In any case, the two base
cases presented here still offer a framework for reasoning about these more complex settings.

Starting with the form of the loss, we present the two settings and motivate one approximation
each. We explicitly state the derivations for the GGN, but they follow analogously for the Fisher,
see Section 2.2.4.

3.1.1 The Expand Setting and K-FAC-expand

The first base setting can be identified by a loss withN ·R terms, which corresponds to assuming
N ·R i.i.d. examples,

The Expand Setting

Lexpand(fθ,D) := −
N∑

n=1

R∑

r=1

log p(yn,r|fθ(xn)r), (3.1)

where fθ(xn)r is the rth row of the model output fθ(xn) ∈ RR×C ; the target of each data
point is now a vector yn ∈ RR. A typical example of this type of loss function is language
translation, e.g. the WMT workload presented in Section 2.3, where N is the dataset size and R
is the sequence length.

Note that we are not assuming our inputs xn to have an additional weight-sharing dimension,
since we only require that the input to the `th layer to have this additional dimension, i.e.A`,n ∈
RR×D. This does not exclude the case where xn already has this weight-sharing dimension, e.g.
sentences in translation tasks.

We can express the Jacobian of the rth row of the model output fθ(xn) ∈ RR×C w.r.t. the
parameters θ` as

(Jθ`(xn)r)ij =
R∑

m=1

P`,out∑

p=1

∂fθ(xn)ri
∂S`,n,mp

∂S`,n,mp
∂θ`,j

(3.2)
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3 K-FAC for Linear Weight-Sharing Layers

or in matrix form

Jθ`(xn)r =

R∑

m=1

Js`,n,m
fθ(xn)rJθ`s`,n,m. (3.3)

Since the weights θ` are shared across the weight-sharing dimension of size R, we can write the
rth row of S`,n as s`,n,r = W `a`,n,r and we have Jθ`s`,n,r = aT`,n,r ⊗ IP`,out

, as for regular
K-FAC (c.f. Section 2.2.4). We denote b`,n,r,k := Js`,n,k

fθ(xn)Tr . Hence, we have

Jθ`(xn)Tr =

(
R∑

m=1

bT`,n,r,m(aT`,n,m ⊗ IP`,out
)

)T

=
R∑

m=1

a`,n,m ⊗ b`,n,r,m.

(3.4)

On a high level, applying K-FAC to a model trained with this type of loss just requires treating
the problem as if we had N ·R independent examples and derive the approximation in the exact
same way as we would with N examples (c.f. Section 2.2.4),

GGN(θ`) =

N∑

n=1

R∑

r=1

Jθ`(xn)Tr Λ(fθ(xn)r)Jθ`(xn)r

=

N∑

n=1

R∑

r=1

(
R∑

m=1

a`,n,m ⊗ b`,n,r,m

)
Λ(fθ(xn)r)

(
R∑

m=1

aT`,n,m ⊗ bT`,n,r,m

)
.

(3.5)

However, we cannot directly write each of the N ·R loss terms as a Kronecker product without
any approximation. One approach could be to use a K-FAC style approximation to the Jacobians
Jθ`(xn)r, but then we would have to be able to access

∑R
m=1 b`,n,r,m. Moreover, this would

not even be exact in the simple settings we consider later. In practice, we only have access
to
∑R

r=1 b`,n,r,m (c.f. Section 3.4). In fact, this is what has been used in this setting, in the
context of Transformers for natural language processing (Zhang et al., 2019; Pauloski et al.,
2021; Osawa et al., 2022). However, the authors do not discuss this extension of K-FAC at all
(Pauloski et al., 2021; Osawa et al., 2022) or do not try to derive or justify it (Zhang et al., 2019).
What is actually implemented in practice is1

GGN(θ`) ≈
N∑

n=1

R∑

m=1

(
a`,n,m ⊗

[
R∑

r=1

b`,n,r,m

]

︸ ︷︷ ︸
=:b̂`,n,m

)
Λ(fθ(xn)m)

(
aT`,n,m ⊗

R∑

r=1

bT`,n,r,m

)

=
N∑

n=1

R∑

r=1

(
a`,n,ra

T
`,n,r

)
⊗
(
b̂`,n,rΛ(fθ(xn)r)b̂

T
`,n,r

)

(3.6)

Where we have replaced the exact expression for each of the N · R terms with something else,
which allows us to express each term as a Kronecker product. Consequently, we can apply the

1Although previous work seems to ignore the scaling by 1/R in Equation (3.7).
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3.1 The Expand and the Reduce Setting

regular K-FAC approximation over N · R terms instead of just N terms as usual. We call this
approximation K-FAC-expand:

K-FAC-expand

ˆGGN
expand
θ`

:=

[
1

NR

N∑

n=1

R∑

r=1

a`,n,ra
T
`,n,r

]

︸ ︷︷ ︸
=A`

⊗

[
N∑

n=1

R∑

r=1

b̂`,n,rΛ(fθ(xn)r)b̂
T
`,n,r

]

︸ ︷︷ ︸
=B`

.

(3.7)

There is one simple case where the exact expression in Equation (3.5) is identical to the ap-
proximation in Equation (3.6). When b`,n,r,m = 0 for all r 6= m, both expression are equivalent
to

N∑

n=1

R∑

r=1

(a`,n,r ⊗ b`,n,r,r)Λ(fθ(xn)r)
(
aT`,n,r ⊗ bT`,n,r,r

)
. (3.8)

With other words, when fθ(xn)r is independent from all pre-activations s`,n,m with m 6= r
the two expressions coincide. This is the case for a network that simply stacks multiple lin-
ear weight-sharing layers; however, it does not even hold for simplistic Transformer models
since the dot-product attention mechanism (Section 2.1.1.1) in Transformers directly correlates
elements across the weight-sharing dimension; we discuss this in more detail in Section 3.2.
Besides the connection of the two expressions in this simple case, there seems to be no obvious
motivation or justification for the approximation, besides that is easy to implement within cur-
rent implementations of K-FAC (c.f. Section 3.4). However, this case applies to networks that
simply stack linear weight-sharing layers, we can show that the approximation in Equation (3.7)
is exact in the same simple cases as regular K-FAC.

For a typical neural network with nonlinear activation functions, K-FAC is only an approxi-
mation. However, for regular individual linear layers and deep linear networks, K-FAC is known
to be exact assuming a Gaussian likelihood (Bernacchia et al., 2018). While this holds for the
full GGN/Fisher, we only focus on the block-diagonal case here. To motivate K-FAC-expand,
we want to show that similar statements hold for a single linear weight-sharing layer and deep
linear networks with weight-sharing in the expand setting. First, we state a simple condition for
which the approximation is indeed exact; this line of reasoning could also be applied to K-FAC
for regular linear layers, since only the effective number of data points changes fromN ·R toN .
Note, that we could also state more trivial sufficient conditions for the exactness of the approxi-
mation, i.e.N = R = 1 and when all inputs to a layer a`,n,r are the same for all n ∈ {1, . . . , N}
and r ∈ {1, . . . , R}. We do not state these types of conditions explicitly from now on.

Lemma 3.1 (Sufficient condition for exactness of K-FAC-expand in the expand setting).
Let C` ∈ RP`,out×P`,out be a constant matrix for layer `. If b`,n,r,m = 0 for all r 6= m and

b̂`,n,rΛ(fθ(xn)r)b̂
T
`,n,r = C` for all n ∈ {1, . . . , N} and r ∈ {1, . . . , R}, then the K-FAC

approximation in Equation (3.7) is equal to the exact GGN/Fisher of the `th layer in the expand
setting.
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3 K-FAC for Linear Weight-Sharing Layers

Proof. As mentioned before, when b`,n,r,m = 0 for all r 6= m the last line of Equation (3.5)
and the first line of Equation (3.6) both simplify to Equation (3.8), i.e. b̂`,n,r = b`,n,r,r. Hence,
we can directly show that the second and third approximation in Equation (3.6) equal the exact
expression for the GGN of layer ` from there. We have

(
1

NR

N∑

n=1

R∑

r=1

a`,n,ra
T
`,n,r

)
⊗

(
N∑

n=1

R∑

r=1

b`,n,r,rΛ(fθ(xn)r)b
T
`,n,r,r

)

=

(
1

NR

N∑

n=1

R∑

r=1

a`,n,ra
T
`,n,r

)
⊗ (NRC`)

=

(
N∑

n=1

R∑

r=1

a`,n,ra
T
`,n,r

)
⊗C`

=
N∑

n=1

R∑

r=1

(
a`,n,ra

T
`,n,r

)
⊗
(
b`,n,r,rΛ(fθ(xn)r)b

T
`,n,r,r

)
,

(3.9)

where we have used the assumption that b̂`,n,rΛ(fθ(xn)r)b̂
T
`,n,r = C` is the same for all n ∈

{1, . . . , N} and r ∈ {1, . . . , R}.

Leveraging this simple insight, we can provide an example of a single layer where the as-
sumptions of Lemma 3.1 are fulfilled.

Proposition 3.2 (Exactness of K-FAC-expand for single layer and Gaussian likelihood in
the expand setting). For a single linear weight-sharing layer and a Gaussian likelihood with
p.d. covariance matrix Σ ∈ RC×C , K-FAC-expand is exact in the expand setting.

Proof. We can write fθ(xn)r = W `xn,r and hence b`,n,r,m = 0 for r 6= m. Moreover, we
have Λ(fθ(xn)r) = Σ−1 and b̂`,n,r = IC (P`,out = C for a single layer). Hence,

b`,n,rΛ(fθ(xn)r)b
T
`,n,r = ICΣ−1IC = Σ−1

for all n ∈ {1, . . . , N} and r ∈ {1, . . . , R}. Therefore, the desired result follows from
Lemma 3.1.

A natural question might be if the same result also holds for deep linear networks. A deep
linear network is here defined as a model of the form

fθ(x) = W L . . .W ` . . .W 1x = Wx, (3.10)

where x ∈ RD and W L ∈ RC×PL,in ,W ` ∈ RP`,out×P`,in (with P`,in = P`−1,out), and W 1 ∈
RP1,out×D. While it might seem nonsensical to decompose a single weight matrix W into L
separate ones, it creates nonlinear training dynamics of gradient descent training algorithms,
while still having analytical solutions (Saxe et al., 2014; Bernacchia et al., 2018). We adopt the
notation of Bernacchia et al. (2018) and define

W a
` := W L . . .W `+1 (3.11)
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3.1 The Expand and the Reduce Setting

as the product of the weight matrices ahead ofW ` and

W b
` := W `−1 . . .W 1 (3.12)

as the product of the weight matrices behind ofW `. Hence, we can write fθ(x) = W a
`W `W

b
`x.

Note, that now
a`,n,r = W b

`xn,r ∈ RP`,in (3.13)

and
b̂`,n,r = W aT

` ∈ RP`,out×C . (3.14)

Using these insights, we can now easily state the result for deep linear networks.

Proposition 3.3 (Exactness of K-FAC-expand for deep linear network and Gaussian likeli-
hood in the expand setting). For layer ` of a deep linear network defined in Equation (3.10)
and a Gaussian likelihood with p.d. covariance matrix Σ ∈ RC×C , K-FAC-expand is exact in
the expand setting.

Proof. We can write fθ(xn)r = Wxn,r and hence b`,n,r,m = 0 for r 6= m. We have

Λ(fθ(xn)r) = Σ−1 and b̂`,n,r = W aT

` . Hence, b̂`,n,rΛ(fθ(xn)r)b̂
T
`,n,r = W aT

` Σ−1W a
`

for all n ∈ {1, . . . , N} and r ∈ {1, . . . , R}. Therefore, the desired result follows from
Lemma 3.1.

3.1.2 The Reduce Setting and K-FAC-reduce

The second base setting is characterized by a loss with just N loss terms, i.e.

The Reduce Setting

Lreduce(fθ,D) := −
N∑

n=1

log p(yn|fθ(xn)), (3.15)

where the crucial observation is that the weight-sharing dimension must have been reduced
somewhere in the forward pass of the neural network fθ. A typical instance where this type of
loss is used together with a model with linear weight-sharing layers is image classification with
a Vision Transformer, introduced in Section 2.1.1.1. Note, that the inputs xn and labels yn do
not have a weight-sharing dimension here; in general, it is also possible for the inputs to have
this additional dimension of size R already.

Since A`,n ∈ RR×P`,in is now a matrix, we have S`,n = A`,nW
T
` ∈ RR×P`,out . Hence,

Jθ`S`,n and JS`,n
fθ(xn) are now both tensors. Luckily, we can avoid dealing with tensors

directly by writing

(Jθ`fθ(xn))ij =
R∑

r=1

P`,out∑

p=1

∂fθ(xn)i
∂S`,n,rp

∂S`,n,rp
∂θ`,j

, (3.16)

or in matrix form

Jθ`fθ(xn) =
R∑

r=1

Js`,n,r
fθ(xn)Jθ`s`,n,r, (3.17)
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3 K-FAC for Linear Weight-Sharing Layers

where s`,n,r ∈ RP`,out is the rth row of S`,n and s`,n,r = W `a`,n,r.
Using this equivalence we can approximate the GGN for layer ` as

GGN(θ`) =
N∑

n=1

Jθ`(xn)TΛ(fθ(xn))Jθ`(xn)

=

N∑

n=1

(
R∑

r=1

Js`,n,r
fθ(xn)Jθ`s`,n,r

)T
Λ(fθ(xn))

(
R∑

r=1

Js`,n,r
fθ(xn)Jθ`s`,n,r

)

=
N∑

n=1

(
R∑

r=1

a`,n,r ⊗ b`,n,r

)
Λ(fθ(xn))

(
R∑

r=1

a`,n,r ⊗ b`,n,r

)T

≈
N∑

n=1

[
1

R

R∑

r=1

a`,n,r

]

︸ ︷︷ ︸
=:â`,n

⊗

[
R∑

r=1

b`,n,r

]

︸ ︷︷ ︸
=:b̂`,n

Λ(fθ(xn))

[
1

R

R∑

r=1

aT`,n,r

]
⊗

[
R∑

r=1

bT`,n,r

]

=

N∑

n=1

(
â`,nâ

T
`,n

)
⊗
(
b̂`,nΛ(fθ(xn))b̂

T
`,n

)

≈

[
1

N

N∑

n=1

â`,nâ
T
`,n

]

︸ ︷︷ ︸
=:Â`

⊗

[
N∑

n=1

b̂`,nΛ(fθ(xn))b̂
T
`,n

]

︸ ︷︷ ︸
=:B̂`

,

(3.18)

where we have applied an approximation à la K-FAC a second time to the sum over the R terms
of each of the N per-input Jacobians, before applying the same approximation as usual to the
sum over the N data points. The idea to approximate the Jacobians within the GGN with a
Kronecker-product has been proposed in the context of invariance learning with deep neural
networks via differentiable Laplace approximations in Immer et al. (2022). We call the approx-
imation in Equation (3.18) K-FAC-reduce and to highlight the difference to K-FAC-expand, we
can rewrite it as

K-FAC-reduce

ˆGGN
reduce
θ`

:=
[

1

NR2

N∑

n=1

(
R∑

r=1

a`,n,r

)(
R∑

r=1

aT`,n,r

)]

︸ ︷︷ ︸
=Â`

⊗

[
N∑

n=1

(
R∑

r=1

b`,n,r

)
Λ(fθ(Xn))

(
R∑

r=1

bT`,n,r

)]

︸ ︷︷ ︸
=B̂`

.

(3.19)

As for K-FAC-expand, we want to show that this approximation can be exact in the case of
a single layer or a deep linear network and a Gaussian likelihood. First, we state an analogous
condition to Lemma 3.1.
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3.1 The Expand and the Reduce Setting

Lemma 3.4 (Sufficient condition for exactness of K-FAC-reduce in the reduce setting). Let
D`,n ∈ RP`,out×C be a constant matrix for layer ` and data point xn. Further, let C` ∈
RP`,out×P`,out be a constant matrix for layer `. If it holds for each n that b`,n,r = D`,n for all

r ∈ {1, . . . , R} and b̂`,nΛ(fθ(xn))b̂
T
`,n = C` for all n ∈ {1, . . . , N}, then the K-FAC-reduce

approximation in Equation (3.19) is equal to the exact GGN of the `th layer in the reduce setting.

Proof. We start with the first approximation and derive the exactness of this step under our
assumptions. We have

N∑

n=1

(
1

R

R∑

r=1

a`,n,r ⊗
R∑

r=1

b`,n,r

)
Λ(fθ(xn))

(
1

R

R∑

r=1

a`,n,r ⊗
R∑

r=1

b`,n,r

)T

=
N∑

n=1

(
1

R

R∑

r=1

a`,n,r ⊗RD`,n

)
Λ(fθ(xn))

(
1

R

R∑

r=1

a`,n,r ⊗RD`,n

)T

=
N∑

n=1

(
R∑

r=1

a`,n,r ⊗ b`,n,r

)
Λ(fθ(xn))

(
R∑

r=1

a`,n,r ⊗ b`,n,r

)T
,

(3.20)

where we have used the assumption that for each n, we have b`,n,r = D`,n for all r ∈
{1, . . . , R}. Now we consider the second approximation in Equation (3.18). Analogously, we
have

(
1

N

N∑

n=1

â`,nâ
T
`,n

)
⊗

(
N∑

n=1

b̂`,nΛ(fθ(xn))b̂
T
`,n

)

=

(
1

N

N∑

n=1

â`,nâ
T
`,n

)
⊗NC`

=
N∑

n=1

(
â`,nâ

T
`,n

)
⊗
(
b̂`,nΛ(fθ(xn))b̂

T
`,n

)
,

(3.21)

where we have used that b̂`,nΛ(fθ(xn))b̂
T
`,n = C` for all n ∈ {1, . . . , N}.

Until now, we did not have to explicitly take the aggregation function z : RR×P`,out → RP`,out

into account, since its Jacobian is simply subsumed in b`,n,r. Since we want to verify that the
approximation in the reduce case is also exact in the simple scenarios from Proposition 3.3 and
Proposition 3.3, we now have to also check if the Jacobian Js`,n,r

z`,n with z`,n := z(S`,n) ∈
RP`,out is the same for all r ∈ {1, . . . , R}, to make sure the first condition in Lemma 3.4 is
fulfilled. Maybe the simplest case where this holds is a scaled sum, i.e.

z(S`,n) = c

R∑

r=1

s`,n,r

= cST`,n1R

=
(
1TR ⊗ cIP`,out

)
vec(ST`,n)

=
(
1TR ⊗ cIP`,out

)
K(R,P`,out)vec(S`,n)

(3.22)

25



3 K-FAC for Linear Weight-Sharing Layers

with c ∈ R and the commutation matrix

K(R,P`,out) :=

R∑

r=1

P`,out∑

p=1

(eR,re
T
P`,out,p

)⊗ (eP`,out,pe
T
R,r), (3.23)

where ei,j is the jth canonical vector of dimension i. This is a linear function in vec(S`,n) and
we have Js`,n,r

z`,n = cIP`,out
for all r ∈ {1, . . . , R}. In particular, when c = 1 the aggregation

function is a simple sum and when c = 1/R it is the mean. Notably, it is not sufficient for z
to be linear in vec(S`,n), because as soon as we have a weighted sum with weights cr ∈ and
they are not the same for all r ∈ {1, . . . , R}, the Jacobians Js`,n,r

z`,n will also not be the same
anymore. One example of an architecture that commonly uses a scaled sum as the aggregation
function is the Vision Transformer (with c = 1/R).

After clarifying the role of the aggregation function in the exactness of K-FAC-reduce, we
can now state a similar statement to Proposition 3.2.

Proposition 3.5 (Exactness of K-FAC-reduce for single layer and Gaussian likelihood in the
reduce setting). For a single linear layer, a Gaussian likelihood with p.d. covariance matrix
Σ ∈ RC×C , and a scaled sum as defined in Equation (3.22) as the aggregation function applied
to the output of the linear function, K-FAC-reduce is exact in the reduce setting.

Proof. We have Λ(fθ(xn)) = Σ−1 and b`,n,r =
(
Jz`,nfθ(xn)Js`,n,r

z`,n
)T

= cIC for all r ∈
{1, . . . , R} and n ∈ {1, . . . , N} (P`,out = C for a single layer). Hence, b̂`,nΛ(fθ(xn))b̂

T
`,n =

c2R2ICΣ−1IC = c2R2Σ−1 for all n ∈ {1, . . . , N}. Therefore, the desired result follows from
Lemma 3.4.

Just as for K-FAC-expand, we can extend this result to deep linear networks.

Proposition 3.6 (Exactness of K-FAC-reduce for deep linear network and Gaussian likeli-
hood in the reduce setting). For layer ` of a deep linear network defined in Equation (3.10),
a Gaussian likelihood with p.d. covariance matrix Σ ∈ RC×C , and a scaled sum as defined
in Equation (3.22) as the aggregation function applied after all linear layers, K-FAC-reduce is
exact in the reduce setting.

Proof. We have Λ(fθ(xn)r) = Σ−1 and b`,n,r =
(
Jz`,nfθ(xn)Js`,n,r

z`,n
)T

= cW aT

` for all
r ∈ {1, . . . , R} and n ∈ {1, . . . , N}. Hence,

b̂`,nΛ(fθ(xn))b̂
T
`,n = c2R2W aT

` Σ−1W a
`

for all n ∈ {1, . . . , N}. Therefore, the desired result follows from Lemma 3.4.

To summarize, the difference between the expand and the reduce setting is at what point
the aggregation over the additional weight-sharing dimension happens. If this dimension is not
aggregated before the per-example loss, i.e. if the loss can be expanded to N · R instead of N
terms, we call it the expand setting. If the aggregation happens inside the model, we call it
the reduce setting. Both settings motivate an approximation each, K-FAC-expand and K-FAC-
reduce. Moreover, we presented simple cases where the approximations are exact. In Section 4.1
we verify this numerically, and also show that using the inappropriate approximation results in
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3.2 Example: K-FAC for Transformers

an inexact computation. In practice, however, both approximations can be applied in each of the
two settings.

This point becomes even more relevant as the computational complexity of the calculation
of the Kronecker factors also differs between the two approximations: while the calculation of
A` costs O(NRP 2

`,in) for K-FAC-expand, it is reduced to O(NP 2
`,in + NRP`,in) for Â` in the

case of K-FAC-reduce. The same holds for B` and B̂`, since the complexity is reduced from
O(NRP`,outC

2 +NRP 2
`,outC) to O(NP`,outC

2 +NP 2
`,outC +NRP`,outC).

3.2 Example: K-FAC for Transformers

While we have mentioned (Vision) Transformers for translation and image classification as pro-
totypical examples for the expand and the reduce setting, we have mostly ignored how linear
weight-sharing layers are used within the architecture and how this affects the approximation
quality of K-FAC-expand and K-FAC-reduce. Linear weight-sharing layers are crucial for the
scaled dot-product attention mechanism in Equation (2.4). To get some intuition for models us-
ing this type of attention mechanism, we look at a network that only consists of one simplified
variation of this scaled dot-product self-attention mechanism used in Transformers (we ignore
the scaling and the softmax function), i.e.

fθ(Xn) = XnW
QT

︸ ︷︷ ︸
=:SQ,n

WKXT
n︸ ︷︷ ︸

=:ST
K,n

XnW
V T

︸ ︷︷ ︸
=:SV,n

. (3.24)

We can observe that it is no longer a linear function in the input Xn ∈ RR×D and that we
have three linear weight-sharing layers involved in this operation. First, we consider the expand
setting, i.e. the output fθ(Xn) is not reduced before the loss is applied.

Simplified dot-product attention in the expand setting. Since we want to understand if K-
FAC-expand can be exact in this case, we first derive the Jacobians appearing in the derivation of
K-FAC-expand in Equation (3.6) for all three involved layers, i.e. JsQ,n,mfθ(Xn)r for the layer
with weights WQ, JsK,n,mfθ(Xn)r for the layer with weights WK , and JsV,n,mfθ(Xn)r for
the layer with weightsW V .

We can simply write the rth row of the output of the layer with the weight matrix WQ as a
function of sQ,n,r as

fθ(Xn)r = sTQ,n,rS
T
K,nSV,n. (3.25)

Therefore, we have

JsQ,n,rfθ(Xn)r = STV,nSK,n = bTQ,n,r ∈ RC×PK,out , (3.26)

with C = PV,out and bQ,n,r,m = 0 for all m 6= r, which is the first assumption necessary for
Lemma 3.1 to hold. While bQ,n,r is not the same for all n ∈ {1, . . . , N}, it is the same for all
r ∈ {1, . . . , R} and hence, under the same assumptions as in Proposition 3.2, K-FAC-expand is
exact for the layer with weightsWQ in the special case of a single data point, N = 1.

For the other two involved linear layers, we cannot express the rth row of fθ(Xn) as a func-
tion of the rth row of SK/V,n, i.e. elements from all rows of SK/V,n contribute to the rth row
of the output matrix. We can also see this by directly deriving JsK/V,n,m

fθ(Xn)r which will
be generally non-zero and dependent on r and m. We omit the explicit derivation by taking the
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3 K-FAC for Linear Weight-Sharing Layers

partial derivatives and directly state the results. For the second layer with weight matrix WK ,
we have

JsK,n,mfθ(Xn)r = sV,n,ms
T
Q,n,r ∈ RC×PQ,out . (3.27)

Moreover, for the third layer with weight matrixW V , we have

JsV,n,mfθ(Xn)r = sTQ,n,rsK,n,mIC ∈ RC×C . (3.28)

This means that the assumption of Lemma 3.1 that the R elements along the weight-sharing
dimension are independent does not hold, since the Jacobians depends on r and m. The ap-
proximation leads to an inexact computation, even though only linear layers are involved and a
Gaussian likelihood is used. Similarly, we can inspect the corresponding reduce case.

Simplified dot-product attention in the reduce setting. Assuming we use a scaled sum
z with factor c as the aggregation function, we can further rewrite the Jacobians occurring in
Equation (3.18) as

Jθ`z(fθ(Xn)) =
R∑

r=1

Js`,n,r
z(fθ(Xn))Jθ`s`,n,r

=
R∑

r=1

a`,n,r ⊗ b`,n,r

=
R∑

r=1

a`,n,r ⊗

(
c

R∑

m=1

Js`,n,r
fθ(Xn)m

)
,

(3.29)

where Js`,n,r
fθ(Xn)m are the same Jacobians we have derived for the expand case. Since

according to Lemma 3.4 we need all b`,n,r to be the same for all r ∈ {1, . . . , R} for the first
approximation to be exact under the assumptions of Proposition 3.5, K-FAC-reduce is only exact
when N = 1 and only for the layer with weights WQ – just as K-FAC-expand in the expand
setting.

We can extend this scenario to a network consisting of L blocks as defined in Equation (3.24),
the above statements regarding the special case where K-FAC-expand and K-FAC-reduce are
exact for the layer with weights WQ only hold for the last block. While we omit an explicit
derivation, intuitively, this can be seen by the fact that we cannot rewrite the rth row of this
model’s output as a function of only the rth row of the layer’s output S`,Q,n of all layers with
weights WQ

` , besides for the layer in the last block, i.e. the layer in the Lth block with weights
WQ

L .

This shows that even without explicit nonlinear activation functions, the dot-product attention
mechanism in Transformer models breaks the two approximations. Hence, it is not inherently
clear how useful it is to consider the corresponding approximation in the expand and reduce
setting. This becomes especially relevant given that we know that the computational complexity
of K-FAC-reduce is smaller than of K-FAC-expand; we will continue this line of thought in
Section 3.4 and Chapter 4.
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3.3 Example: K-FAC for GNNs

3.3 Example: K-FAC for GNNs

Beyond Transformers, we have introduced GNNs as a class of models that also use linear weight-
sharing layers. There are many types of GNNs and we will only explicitly cover two of them
here.

Related work: node classification with GCN. We first consider a GCN layer, described in
Section 2.1.1.2. This specification of K-FAC for GNNs has been previously derived for semi-
supervised node classification in Izadi et al. (2020) and we include it for completeness, since it
is, to the best of our knowledge, the only case where K-FAC has been applied to GNNs. The
only difference to the normal derivation of K-FAC is that the inputs ã`,n to the `th layer for node
with index n now depend on its neighborhood N (n), since

ã`,n :=
∑

j∈N (n)

Ĉnja`,j ∈ RP`,in . (3.30)

Using this notation, the definition of the K-FAC GGN for node classification is simply

GGN(θ`) =
N∑

n=1

Jθ`(X)TnΛ(fθ(X)n)Jθ`(X)n

≈
[ 1

N

N∑

n=1

ã`,nã
T
`,n

]

︸ ︷︷ ︸
=:Ã`

⊗
[ N∑

n=1

b̃`,nΛ(fθ(X)n)b̃
T
`,n

]

︸ ︷︷ ︸
=:B̃`

,
(3.31)

where X ∈ RN×D, b̃`,n := J s̃`,nfθ`(X)Tn , and s̃`,n := W `ã`,n. Again, it is important to note
that we need to have access to the whole neighborhood of xn to be able to write the nth term
of the GGN, which is why the input to the model is the matrix X containing all nodes for each
loss term. Also, depending on the sparsity of Ĉ, i.e. the size of neighborhoods, we might have
multiple identical terms. In the extreme case of all neighborhoods being the same, e.g. in the
case of a fully connected graph, i.e. are values of Ĉ are the same, all terms of the GGN will be
the same.

According to our initial three cases, because we aggregate over each node’s neighborhood
before the forward pass through a linear layer, we do not need to think in terms of the expand
and reduce settings here – as opposed to the case of the graph network we consider next.

Graph classification with graph network. Now, we want to look at a more general archi-
tecture, an instance of the graph network introduced in Battaglia et al. (2018) and described in
Section 2.1.1.2. It is important to note that while the inputs and the graph network block struc-
ture look different from our standard input and linear layer, this case can be treated the same.
This architecture is therefore a good didactic example of how to apply the here presented frame-
work of thinking about K-FAC for linear weight-sharing layers to new model architectures. In
contrast to the original description in Battaglia et al. (2018), we already defined the inputs to
a graph network block according to our definition of an input that leads to weight-sharing, i.e.
with an additional weight-sharing dimension of size R. This is in fact the crucial step to be able
to apply our framework in this setting. As noted in Section 2.1.1.2, the inputs cannot be triv-
ially batched in this formulation. This is not an issue for our derivation, but it requires special
consideration in the implementation, which we will consider in Section 3.4.
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3 K-FAC for Linear Weight-Sharing Layers

First, we note that we consider the task of graph classification. Hence, our loss has the same
form as Equation (3.15), which means that the weight-sharing dimensions have to be reduced
at some point during the forward pass and we are in the reduce setting. Notably, this is the
setting of the OGBG workload of the AlgoPerf benchmark introduced in Section 2.3. Following
this line of reasoning, we would simply have to apply the corresponding K-FAC approximation.
Since the inputs take a more complex form than in our description of the reduce case, we still
have to adopt the notation from Section 2.1.1.2 to concretely write down the approximation.

To recap, a single graph input is defined as a 5-tuple XGn := (xun,X
V
n ,X

E
n , rn, sn), where

xun ∈ RDu are the global features, XV
n ∈ RNV

n ×DV are the node features, and XE
n ∈ RNE

n ×DE

are the edge features. The vectors rn ∈ RNE
n and sn ∈ RNE

n store the indices of the receiving
and sending nodes for each edge, respectively. The weight-sharing dimension of size Rn of
graph XGn depends on the input graph itself (indicated by the index n) and which update function
within a graph network block we want to derive K-FAC-reduce for. For φE this dimension is
going to be Rn = NE

n , whereas it will be Rn = NV
n for φV . In the case of φu we do not have a

weight-sharing dimension, as it has been reduced before this layer is applied, and we can simply
apply the regular K-FAC approximation. We can define the inputs to layer ` of type φE as

A`,n = concat(XE
n ,X

V
n,rn ,X

V
n,sn , repeatNE

n
(xun)) ∈ RN

E
n ×(DE+2DV +Du) (3.32)

and as
A`,n = concat(XV

n , X̃
E
n , repeatNV

n
(xun)) ∈ RN

V
n ×(DV +DE+Du) (3.33)

for φV . Correspondingly, we have b`,n = JS`,n
fθ(XGn )T ∈ RNE

n ×DE×C for φE and b`,n =

JS`,n
fθ(XGn )T ∈ RNV

n ×DV ×C , with S`,n = A`,nW
ET

` ∈ RNE
n ×DE and S`,n = A`,nW

V T

` ∈
RNV

n ×DV , respectively.

Using this notation, we can approximate the GGN for layer `, assuming its type is either φE

or φV , as

GGN(θ`) =

N∑

n=1

Jθ`(X
G
n )TΛ(fθ(XGn ))Jθ`(X

G
n )

≈
N∑

n=1

[
1

Rn

Rn∑

r=1

a`,n,r

]

︸ ︷︷ ︸
=:â`,n

⊗

[
Rn∑

r=1

b`,n,r

]

︸ ︷︷ ︸
=:b̂`,n

Λ(fθ(XGn ))

[
1

Rn

Rn∑

r=1

a`,n,r

]
⊗

[
Rn∑

r=1

b`,n,r

]T

≈

[
1

N

N∑

n=1

â`,nâ
T
`,n

]

︸ ︷︷ ︸
=:Â`

⊗

[
N∑

n=1

b̂`,nΛ(fθ(XGn ))b̂
T
`,n

]

︸ ︷︷ ︸
=:B̂`

,

(3.34)

analogously to Equation (3.18).
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1 # Check if there even is a weight-sharing dimension; if not, the Kronecker
2 # factors can directly be calculated.
3 if in_data.ndim == 3:
4 # Mini-batch size M, weight-sharing dimension R, feature dimension P`,in/out.
5 M, R, P_in = in_data.shape
6 P_out = out_grads.shape[2]
7 if approximation == 'expand':
8 # Flatten the weight-sharing dimension into the mini-batch dimension.
9 in_data = in_data.view(M*R, P_in) / math.sqrt(R)

10 out_grads = out_grads.view(M*R, P_out)
11 elif approximation == 'reduce':
12 # Reduce the weight-sharing dimension with mean and sum.
13 in_data = in_data.mean(dim=1)
14 out_grads = out_grads.sum(dim=1)
15 # Calculate Kronecker factors A`/Â` and B`/B̂`.
16 A = torch.matmul(in_data.T, in_data) / M
17 B = torch.matmul(out_grads.T, out_grads)

Listing 3.1: Illustration of K-FAC-expand and K-FAC-reduce with code. This piece of code calculates
the approximations on one mini-batch and for one layer. Here we assume that only one additional weight-
sharing dimension exists and that the first dimension is always the mini-batch dimension. The actual
implementation in ASDL is very similar, the logic is just separated into multiple functions and does not
make these simplifying assumptions. We receive the inputs to the layer, in_data, from a forward hook
and the gradients of the loss w.r.t. the outputs of the layer, out_grads, from a backward hook.

3.4 Practical Considerations

While we have discussed theoretically how to apply K-FAC to linear weight-sharing layers, we
now turn to implementation details and computational considerations that are crucial for the
practical application of the approximations.

Implementation details. There are multiple libraries that implement K-FAC for popular deep
learning frameworks like Jax (Bradbury et al., 2018) and PyTorch (Paszke et al., 2019), e.g.
KFAC-JAX (Botev & Martens, 2022) for Jax and BackPACK (Dangel et al., 2020), ASDL
(Osawa, 2021), and KFAC-PyTorch (Pauloski et al., 2021) for PyTorch. We focus on the
implementation of the expand and the reduce case within ASDL, which we also use for the ex-
periments in Chapter 4. K-FAC is implemented using forward and backward hooks, which allow
us to get the inputs to a specific layer and the gradients of the loss w.r.t. the layer outputs – which
are the ingredients we need for all K-FAC approximations. Notably, this requires that linear lay-
ers are implemented with torch.nn.Linear instances, since otherwise, the implementation
with hooks does not work. The default implementation of multi-head attention in PyTorch
does indeed not use the required linear modules, so the implementation has to be adjusted to
work with common K-FAC implementations like ASDL. In contrast, other methods like Sham-
poo (Gupta et al., 2018) and Tensor Normal Training (Ren & Goldfarb, 2021) are agnostic to the
architecture. Assuming the implementation of the model is appropriate, K-FAC-expand and K-
FAC-reduce in their simplest form only require a minor adjustment in the code base for regular
K-FAC, which is presented in Listing 3.1.

However, if we wanted to use K-FAC-expand in the expand and K-FAC-reduce in the reduce
setting, we would need to find a way of automatically determining the setting we are in. For
all models considered here, i.e. the (Vision) Transformer and GNN, only one of the two settings
applies to all linear layers with weight-sharing. Hence, using a single additional forward pass,

31



3 K-FAC for Linear Weight-Sharing Layers

we could check if any linear weight-sharing layers are used and what the shape of the model
output is. From this, we can deduce if the expand or the reduce case applies. As we mentioned
before, this might not even be desirable, as it is unclear if we should always use the approxima-
tion theoretically motivated by the setting. Alternatively, a single flag set by the user can just
determine if K-FAC-expand or K-FAC-reduce is applied to all linear weight-sharing layers.

This implementation obviously assumes that we even have an explicit weight-sharing dimen-
sion. In the case of K-FAC-reduce for the GNN in Section 3.3, we have to adopt our implemen-
tation due to the batching technique which is employed for graph inputs in practice. Since each
graph in a mini-batchM of size M might have a different weight-sharing dimension Rm, i.e.
the number of nodes and the number of edges of each graph, we cannot batch them trivially. As
a solution, the inputs for each graph as stated in Equation (3.32) and Equation (3.33) are simply
concatenated in the first dimension, which results in a dimension of size RM :=

∑M
m=1Rm.

To apply K-FAC-expand here, we do not have to modify anything, besides scaling the approx-
imation for each mini-batch by 1/RM instead of 1/M . To apply K-FAC-reduce, we can use a
scatter mean and sum, which aggregates tensor elements according to indices, to implement the
mean and sum operation without having an explicit weight-sharing dimension. Unfortunately,
this creates two issues. First, we have to know that this adjustment to K-FAC is even required
for a specific layer, since we cannot deduce it from the shape of the layer inputs. Second, the
scatter mean/sum requires additional information, since we need to know to which graphs the
nodes/edges in the input belong. One approach to resolve these issues is to define a custom layer
type for this type of linear layer, which has an attribute containing the indices of all nodes/edges
for each graph in the batch. However, this requires changes to the model architecture, because
regular linear layers would have to be replaced by this particular subclass of them.

Besides the changes necessary for K-FAC-expand and K-FAC-reduce, we can use the same
additional algorithmic tools often used for optimization with K-FAC. Typically, damping is used
(Martens & Grosse, 2015), i.e. a scalar is added to the diagonal of the two Kronecker factors
A and B or the diagonal of their product – the latter corresponds to adding the Hessian of
an isotropic Gaussian prior over the weights. Also, since we usually operate in the stochastic
setting and only compute the K-FAC approximation on mini-batches, sometimes an exponential
moving average over the Kronecker factors is used.

Computational considerations. Besides the implementation details, we also have to consider
the computational cost when deploying K-FAC approximations in practice. Here, we have to
respect the same constraints as with regular K-FAC. When we have a large output dimension C,
it is expensive or even unfeasible to propagate the C × C loss Hessian Hfθ`(yn, fθ(xn)) for
each of the N data points through the computation graph. Instead, we use the fact that we have

Ey∼p(y|fθ(xn))[∇fθ log p(y|fθ(xn))∇fθ log p(y|fθ(xn))T ] = Hfθ`(yn, fθ(xn)) (3.35)

for the losses considered here, c.f. Section 2.2.3, and take S Monte Carlo (MC) samples from
the model’s predictive distribution ys ∼ p(y|fθ(xn). Taking a single sample results in a rank-1
MC approximation of the true loss Hessian and only requires the propagation of a single vector
through the computation graph for each data point.

Also, to decrease the computational overhead of K-FAC the frequency of how often the Kro-
necker factors and the inverse for preconditioning are computed can be decreased, such that
these operations are not executed at every iteration. As noted in Section 3.1.2, K-FAC-reduce
has lower computational complexity than K-FAC-expand.
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While we have shown that using the corresponding approximation for each setting leads to
exact computations in the same simple cases as with regular K-FAC, one might ask if this also
holds for realistic nonlinear deep networks. We have seen in Section 3.2 that even for simpli-
fied self-attention mechanisms, the approximations are generally inexact. Hence, there is no
guarantee that choosing the, according to the setting, appropriate approximation leads to better
empirical results, and it is at least imaginable that using the “wrong” approximation provides
a comparable or even greater benefit in practice. If this were the case, it might be interesting
to apply K-FAC-reduce in the expand scenario, since it is simply faster. We therefore use both
approximation in Chapter 4, irrespective of the setting at hand.

33



Chapter 4
Experiments

The goal of our experiments is to (i) visualize our findings from Chapter 3, (ii) provide a proof of
concept that K-FAC can potentially be useful for optimizing models with linear weight-sharing
layers, in particular a Vision Transformer on ImageNet, and (iii) test if it provides any benefit
to use the theoretically motivated “correct” K-FAC approximation corresponding to the set-
ting at hand. In Section 4.2, to address points (ii) and (iii), we choose to focus on the Vision
Transformer ImageNet workload among the three workloads introduced in Section 2.3 because
it represents the reduce case, in which K-FAC, to the best of our knowledge, has never been
applied before.

4.1 Visualizations

As we describe in Chapter 3, there are two settings that motivate two different approximations.
In each setting, we expect the corresponding approximation to be exact in simple cases, in-
volving only (deep) linear networks and a Gaussian likelihood. However, both approximations,
K-FAC-expand and K-FAC-reduce, can be applied in each setting. To visualize the difference
between the two approximations and verify the claims in Section 3.1 numerically, we look at
the quantities involved in computing the K-FAC approximations for the third layer of a small
six-layer deep linear network. We show in_data and out_grads after the preprocessing
step for the two approximations, illustrated in Listing 3.1, has been applied.

In Figure 4.1, we consider the expand setting and show that while K-FAC-expand is exact for
this layer, K-FAC-reduce is not. We can observe that, as expected, the out_grads are the same
across the data and weight-sharing dimension of size N · R. Also, the only difference between
B in both approximations is a scalar factor of 1/R. Similarly, we can observe in Figure 4.2 that
K-FAC-reduce is exact in the reduce case, whereas K-FAC-expand is not. The observation about
out_grads andB from the expand case also holds here.

While choosing the appropriate approximation for the setting leads to exact computations in
these very simple cases, as soon as we consider even simplified Transformer models described
in Section 3.2, both approximations are usually inexact and there is no obvious “correct” choice
anymore. When we introduce nonlinearities and more complex operations, the choice becomes
even less clear. Hence, these simple toy cases do not provide us with much, if any, information
for the usage of the two approximations in practice – we need to consider proper benchmarks.
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Figure 4.1: Visualization of K-FAC-expand and K-FAC-reduce in the expand setting. The shown
quantities are for one of six layers of a deep linear network. We have N = 4, R = 2, P`,in = 8, P`,out =
8, and P` = P`,in ·P`,out = 64. As we have seen in Section 3.1.1, K-FAC-expand is exact for the expand
case in this setting and K-FAC-reduce is not. Note that the scale of gray tones is not the same for all
quantities for better visibility; however, it is the same for the two plots of the approximation error (black
is equivalent to zero).

4.2 Vision Transformer on ImageNet

To test the approximations in the reduce setting, where we have a loss of the type of Equa-
tion (3.15), we use both variations to train a Vision Transformer on the ImageNet dataset, a
workload of the AlgoPerf benchmark introduced in Section 2.31. We also stick to the setup of
this benchmark, i.e. we train until we reach a target validation accuracy of 0.77171. Evaluation
happens on the full validation dataset and a subset of the training data. The validation target
was set by running a baseline algorithm, NAdamW (Loshchilov & Hutter, 2019) (see Table 1
in Choi et al. (2019) for the specific implementation), with multiple different hyperparameter
settings, finding the hyperparameters leading to the best validation performance and taking the
average validation accuracy over multiple runs with different random seeds for this best setting.
We also use NAdamW with this hyperparameter setting as the baseline to compare the K-FAC
approximations against, as it represents a well-tuned first-order method. It uses a learning rate
of about 2e− 3, β1 = 0.7132, β2 = 0.9982, weight decay of 0.026595, ε = 1e− 8, and a batch
size of 1024. Moreover, it clips the gradients to keep their norm below 1.

For K-FAC-expand and K-FAC-reduce, we only tune the learning rate schedule, i.e. the warm-
up steps and the expected number of steps. Then we simply apply the baseline algorithm to the
preconditioned gradients, using the same hyperparameters. K-FAC-expand and K-FAC-reduce
use 10.5k warm-up steps and a step hint of 105k, whereas the baseline uses about 14k and 140k,
respectively, which simply corresponds to applying a factor of 0.75 to the baseline values. We
update the curvature estimate every step and the preconditioner every 10 steps. For the damping
value, we choose the ASDL default of 1e − 5 and an exponential moving average over the
Kronecker factors, with a factor of β2.

As presented in the first column of Figure 4.3, K-FAC-reduce and K-FAC-expand both con-
verge almost identically in terms of training steps and both outperform the baseline, as they only

1The code is available at https://bit.ly/algoperf.

35

https://bit.ly/algoperf
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Figure 4.2: Visualization of K-FAC-expand and K-FAC-reduce in the reduce setting. Otherwise, the
setting is the same as in Figure 4.1. As we have seen in Section 3.1.2, K-FAC-reduce is exact for the
reduce case in this setting and K-FAC-expand is not.

take about 80% of the steps to reach the validation target: NAdamW takes about 117.4k steps,
whereas K-FAC-expand takes about 92.6k and K-FAC-reduce takes about 93.7k steps.

However, when we consider the convergence to the target in terms of the wall-clock time,
shown in the second column of Figure 4.3, we can see that the baseline is still faster than the
K-FAC variants, despite taking more steps; NAdamW runs for about 25 hours, K-FAC-expand
for about 50 hours, and K-FAC-reduce for 37 hours. The huge increase in the runtime of the
two K-FAC approximations compared to the baseline can be easily explained by the overhead
of K-FAC and the gap could potentially be closed by decreasing the update frequency of the
curvature estimate and the preconditioner.

Moreover, we can see that while K-FAC-expand and K-FAC-reduce perform similarly in terms
of steps, the smaller computational complexity of K-FAC-reduce leads to faster convergence
than K-FAC-expand in terms of wall-clock time. The average wall-clock time of a single train-
ing step is 0.76 seconds for the baseline NAdamW, 1.94 seconds for K-FAC-expand, and 1.43
seconds for K-FAC-reduce. K-FAC-reduce costs about two times as much as the baseline, which
can be explained by the need for a second backward pass for the MC approximation of the Fisher,
as described below Equation (3.35). K-FAC-expand costs even more due to the multiplication
of larger matrices, which can be seen in Listing 3.1.

When we choose a more aggressive learning rate schedule for the two K-FAC approximations
by reducing the factor we multiply the baseline warm-up and expected steps with from 0.75
to 0.6875, K-FAC-expand reaches the target at only 88.2k steps, whereas K-FAC-reduce does
not reach the target anymore (it converges at about 76.5% and 77% in two trials with different
random seeds).

Since all trials are only run for one random seed (besides the just mentioned K-FAC-reduce
run), we cannot conclusively make statements about the difference in performance of the two
approximations; it might just be an artifact of the stochasticity in the training process. However,
even though these results are highly preliminary, it is still worth pointing out that K-FAC-expand
seems to have a slight edge over K-FAC-reduce here, despite the fact that the workload is an
example of the reduce setting.
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4.2 Vision Transformer on ImageNet
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Figure 4.3: Vision Transformer on ImageNet. K-FAC-expand and K-FAC-reduce behave almost iden-
tically and both outperform the baseline (NAdamW) in terms of steps to the target – they only need about
80% of the steps. We can see that the baseline is still the fastest algorithm in terms of wall-clock time,
due to the overhead of K-FAC. Moreover, K-FAC-reduce’s smaller computational complexity compared
to K-FAC-expand is also apparent.

Finally, since we only tune the learning rate schedule, as described here, it is possible that tun-
ing more hyperparameters for each approximation individually leads to improved performance
in steps and could potentially highlight an even greater discrepancy between the performance of
the two approximations – in either approximation’s favor.
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Chapter 5
Discussion and Conclusion

While the Vision Transformer on ImageNet experiment provides the first proof of concept that
both K-FAC approximations could be useful for optimizing Transformer models, we need more
experimental data to gain insight into the different behavior of K-FAC-expand and K-FAC-
reduce. This includes using both methods on different workloads, e.g. the WMT Transformer
and the OGBG GNN workload of the AlgoPerf benchmark. Moreover, more comprehensive
tuning of each method has to be performed.

Extrapolating from the ImageNet experiment at hand, one potential outcome could be that
both approximations converge comparably in terms of steps. In this case, it could make sense to
apply K-FAC-reduce in practice, due to its favorable computational complexity. Moreover, the
wall-clock time of K-FAC needs to be reduced to allow it to benefit from the faster convergence
in steps in practice. This could be achieved by tuning the update and inversion frequency of
the Kronecker factors. Additionally, Osawa et al. (2022) proposes to use K-FAC to improve the
utilization of accelerators during pipeline parallelism for training large language models, which
are based on Transformers. While they use the slower K-FAC-expand approximation in their
work, they can still significantly reduce the (simulated) training time by 50-75%. Therefore, an
interesting direction would be to see if we can get the same convergence per step with K-FAC-
reduce in this setting, which might be able to further reduce the wall-clock time.

While we have evidence for the potential of K-FAC-expand and K-FAC-reduce to improve
training efficiency, there still seem to exist gaps in the understanding of the underlying mecha-
nism. We have derived K-FAC as an approximation to the GGN/Fisher and motivated its poten-
tial benefit in optimization by its connection to natural gradient descent and Newton’s method.
However, it is unclear if the improved convergence in steps can really be explained by the prop-
erties of the true GGN or Fisher. Other methods using a structured preconditioner that is not di-
rectly connected to the GGN/Fisher, like Shampoo (Gupta et al., 2018), have also shown promise
for improving the efficiency of DNN training (Anil et al., 2020). Moreover, it has recently been
proposed that K-FAC’s potentially improved performance is due to its similarity to a first-order
method – at least when the damping value is added to each Kronecker factor individually, which
is the default in practice (Benzing, 2022). If this is indeed the case, much of the computational
and implementation overhead of K-FAC might not be necessary to get the practical benefits.

Besides the empirical investigation of K-FAC-expand and K-FAC-reduce, it seems useful to
try to improve our theoretical understanding of the approximations and their assumptions, e.g.
by relating them to the assumptions made for deriving K-FAC for convolutional layers in Grosse
& Martens (2016) and for recurrent neural networks in Martens et al. (2018), to create a uni-
fying framework for all types of K-FAC approximations. Additionally, it could be a promising
direction to investigate how to efficiently get access to other quantities from the backward pass,
using hooks or other tools, besides the one which is currently used in K-FAC. This could enable
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more accurate approximations, using weaker assumptions, which are also motivated by the same
settings we consider here.

Finally, as mentioned in Chapter 1, there are many more use cases of practical GGN/Fisher
approximations than just optimization, e.g. in Bayesian deep learning. The application of K-
FAC-expand and K-FAC-reduce to model selection and invariance learning via Laplace approx-
imations of the marginal likelihood (Immer et al., 2021a; 2022) for Transformer and GNN ar-
chitectures is a promising direction.

Conclusion. We have classified the setting in which linear weight-sharing layers are used
within a network based on the point of aggregation over the weight-sharing dimension of size
R. This lead to two simple base cases, the expand and the reduce setting. The expand setting
is characterized by N · R per-example losses and motivates the K-FAC-expand approximation.
This approximation has previously been used to train Transformer models in natural language
processing, but was not derived or justified. It is exact for single linear weight-sharing layers or
for deep linear networks with weight-sharing with a Gaussian likelihood, just as regular K-FAC
is for the corresponding simple models without weight-sharing. The reduce setting is charac-
terized by N per-example losses, which implies that the weight-sharing dimension is reduced
during the forward pass, inside of the model. The setting also motivates an approximation,
K-FAC-reduce, which is exact in the same settings as K-FAC-expand, assuming that a scaled
sum is used as the aggregation function (or another function with also fulfills the condition in
Lemma 3.4).

While each approximation is theoretically motivated by a specific setting and is only exact
in the simple settings mentioned above, in practice, both approximations can be applied in both
cases. If we consider slightly more involved settings than the (deep) linear networks, i.e. a
simplified dot-product attention mechanism, both approximations are generally inexact. For ar-
chitectures used in practice, with additional nonlinearities, it is even less clear how accurate
the approximations are. Hence, it does not directly follow which approximation we should use
in each setting; it could be that other factors are more important to determine the best choice
for a given purpose. Besides the question of the approximation quality, K-FAC-reduce has a
lower computational complexity than K-FAC-expand, adding an additional trade-off to con-
sider when deciding which approximation to use. Beyond Transformer models, we also showed
how to determine the setting of a GNN for graph classification; this is an example of how to
approach K-FAC for architectures with linear weight-sharing layers beyond the more straight-
forward Transformer cases.

The question of how K-FAC-expand and K-FAC-reduce behave in practice has to be answered
empirically. We have provided preliminary evidence for the claim that both approximations can
reduce the steps needed to reach a validation target compared to a well-tuned first-order method.
The baseline, NAdamW, is still faster in terms of wall-clock time, due to the overhead of K-
FAC. Interestingly, both approximations with the same hyperparameters converge practically
identically for a Vision Transformer on ImageNet, an instance of the reduce setting, in terms
of steps. In terms of wall-clock time, however, the lower computational complexity of K-FAC-
reduce becomes apparent. More experiments are necessary to (i) test if both approximations
still perform as similarly when tuned individually, (ii) see if the wall-clock time can be reduced
enough to be competitive with the baseline, and (iii) determine if the same conclusions also hold
for both methods in the expand case, e.g. for a Transformer on a language translation dataset
like WMT, and for other model classes like graph neural networks.
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5 Discussion and Conclusion

While there is plenty of, especially empirical, work to do before we can make more general
claims, we hope that this work can contribute to a foundation for K-FAC in the context of linear
weight-sharing layers, and open up new approximations and applications for optimization and
approximate inference in deep learning.
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