
Interventional SHAP Values and Interaction Values
for Piecewise Linear Regression Trees

Artjom Zern,1 Klaus Broelemann,1 Gjergji Kasneci2

1 SCHUFA Holding AG
2 University of Tuebingen

artjom.zern@schufa.de, klaus.broelemann@schufa.de, gjergji.kasneci@uni-tuebingen.de

Abstract

In recent years, game-theoretic Shapley values have gained
increasing attention with respect to local model explanation
by feature attributions. While the approach using Shapley val-
ues is model-independent, their (exact) computation is usu-
ally intractable, so efficient model-specific algorithms have
been devised including approaches for decision trees or their
ensembles in general. Our work goes further in this direc-
tion by extending the interventional TreeSHAP algorithm to
piecewise linear regression trees, which gained more atten-
tion in the past few years. To this end, we introduce a de-
composition of the contribution function based on decision
paths, which allows a more comprehensible formulation of
SHAP algorithms for tree-based models. Our algorithm can
also be readily applied to computing SHAP interaction values
for these models. In particular, as the main contribution of this
paper, we provide a more efficient approach of interventional
SHAP for tree-based models by precomputing statistics of the
background data based on the tree structure.

1 Introduction
In recent years, predictive models have found their way
into numerous applications. With the widespread dissemi-
nation and use, the wish to gain insights into the predic-
tions made has also increased. One notable method for doing
so are SHAP values (Lundberg and Lee 2017), which com-
pute the contribution of each input feature on the prediction.
These feature attributions can be used to analyze and explain
model predictions. Additionally, SHAP interaction values
were proposed to capture local interaction effects between
features allowing a better interpretation of the model (Lund-
berg et al. 2020).

While SHAP values build on game-theoretic concepts
for computing feature attributions, there exist variants as
to what exactly is explained. Notably observational SHAP
takes the underlying data distribution with its dependencies
into account by using (observational) conditional expecta-
tions. Whereas interventional SHAP breaks up feature de-
pendencies via interventions and therefore puts more em-
phasis on the model.

In case of independent features, observational and inter-
ventional SHAP coincide. Otherwise, they may differ sig-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nificantly. Both have their benefits and drawbacks depend-
ing on the concrete application (Chen et al. 2020; Kumar
et al. 2020; Miroshnikov, Kotsiopoulos, and Kannan 2021).
Observational SHAP depends only on the predictions on the
data manifold but it may assign contributions to features not
used by the model due to feature dependencies. So it puts
more emphasis on the data. The interventional SHAP, on the
other hand, focuses on the model itself, but may depend on
the predictions of the model outside the data distribution on
which the model is trained. Janzing, Minorics, and Blöbaum
(2020) discuss both variants from the causal perspective and
argue that interventional SHAP is the preferable variant for
feature attribution.

A major drawback of SHAP values in their original form
is that their computational costs grow exponentially with
the number of features. As a consequence model-agnostic
exact SHAP values are intractable for most modern appli-
cations where the number of features can easily count hun-
dreds or even thousands. For this reason multiple subsequent
works employ model-specific computations and approxima-
tions for the sake of practical use.

A notable approach in this direction is the path-dependent
TreeSHAP algorithm (Lundberg et al. 2020; Yang 2021),
which is widely used due to its computational efficiency.
It aims to approximate observational SHAP values of tree
models by using precomputed node counts, but it implic-
itly assumes feature independence. As a result, the computed
values depend not only on the prediction but also on the ac-
tual tree structure, which is an undesired property in terms
of explaining model predictions. Lundberg et al. (2020)
also present a variant for (exact) interventional SHAP. Both
TreeSHAP variants have polynomial time complexity, while
Van den Broeck et al. (2021) showed that there is in general
no polynomial time algorithm for computing (exact) obser-
vational SHAP values of tree models. Under the assumption
of feature independence, Arenas et al. (2021b,a) state that
SHAP can be computed in polynomial time for a variety of
models including decision trees.

Recently, piecewise linear regression trees and their en-
sembles have gained considerable attention (Guidotti et al.
2018). For instance, LightGBM added support for gradient
boosting trees with linear models at the leaves1. Despite the

1https://github.com/microsoft/LightGBM/releases/tag/v3.2.0



interest, these models lack efficient model-specific SHAP
implementations so far.

In this work, we address this problem and present an
approach for computing SHAP values for piecewise lin-
ear trees. We concentrate on interventional SHAP, which
puts more emphasis on the model than on the data and al-
lows a more efficient computation compared to observa-
tional SHAP.

1.1 Contribution
Lundberg et al. (2020) presented an algorithm to compute
interventional SHAP values for decision trees and decision
tree ensembles. Inspired by their work, we provide the fol-
lowing contributions:
1. We introduce a decomposition of contribution functions,

which facilitates the description of SHAP algorithms for
tree-based models. Using this new notation, we formulate
the interventional TreeSHAP algorithm in a more general
and comprehensible way.

2. Based on the reformulation, we extend the interven-
tional TreeSHAP to piecewise linear regression trees, for
which, so far, no efficient implementation of SHAP has
not been proposed yet. The extended approach that we
propose has polynomial time complexity.

3. Our formulation of interventional SHAP algorithms also
applies to interaction values resulting in more efficient
algorithms for computing SHAP interaction values for
tree-based models.

4. Eventually, we present an approach for aggregating
background data for interventional SHAP computation,
strongly mitigating the impact of the background data on
the runtime.

The rest of the paper is organized as follows: After an
overview of related work, with a focus on SHAP values
and tree-based models, we review SHAP values and intro-
duce the notations used in this work in Section 2. Section 3
introduces an additional notation which simplifies the for-
mulation of SHAP algorithms for tree-based models. This
notation is used to reformulate the existing interventional
TreeSHAP algorithm and extend it to piecewise linear re-
gression trees. Section 4 demonstrates the effectiveness and
efficiency of these algorithms in a series of experiments2,
before concluding in Section 5.

1.2 Related Work
Tree-Based Prediction Decision trees represent a popu-
lar tool for predictive modelling. While providing moder-
ate predictive power, their effectiveness can be considerably
improved by building ensembles, such as random forests
(Breiman 2001) and recently gradient boosted trees (Chen
and Guestrin 2016).

Model trees are an extension of decision trees that hold
predictive models in the leaf nodes. Model trees use the
tree-structure to map input samples to leaves and use the
leaf models for prediction. Model trees can be used with

2The source code for the presented algorithms is available at
https://github.com/schufa-innovationlab/pltreeshap

different leaf models, such as linear regression (Quinlan
et al. 1992; Wang and Witten 1997) or logistic regression
(Landwehr, Hall, and Frank 2005). While classical model
trees are trained like decision trees, there exist other ap-
proaches like gradient-based split criteria (Broelemann and
Kasneci 2019; Haug, Broelemann, and Kasneci 2022) or
fully trained models (Potts and Sammut 2005). Model trees
with linear leaf models have also been combined into ensem-
bles (de Vito 2017; Shi, Li, and Li 2019; Guryanov 2019).

In this work, we consider all these methods and present
novel algorithms for efficiently computing interventional
SHAP values.

Explanation of Predictive Models With an increased in-
terest in complex predictive models, there is also an in-
creased interest in explanation methods that can open the
otherwise closed black-box nature of the complex models.
There exists a plethora of methods for different models,
applications and use cases. We refer to surveys to get an
overview over this field (Du, Liu, and Hu 2019; Guidotti
et al. 2018).

Explanation approaches may differ in the representation
of explanations. For instance, logic-based representations
are considered in (Ribeiro, Singh, and Guestrin 2018; Ig-
natiev 2020). In contrast, feature contribution methods as-
sign to each feature a value describing its influence. In the
following, we concentrate on the latter. Datta, Sen, and Zick
(2016) presented Quantitative Input Influence (QII), which
breaks correlations between inputs by interventions to al-
low causal reasoning and computes the marginal influence
of inputs as Shapley values (Shapley 1953). Their frame-
work covers the computation of interventional SHAP val-
ues. Ribeiro, Singh, and Guestrin (2016) presented LIME, a
method to locally approximate models with linear models.
The coefficients of the linear approximation are interpreted
as local feature contributions.

Building on LIME, Lundberg and Lee (2017) combined
the idea of local linear models with the game-theoretic con-
cept of Shapley values naming their approach SHAP (SHap-
ley Additive exPlanation). While the original work is model-
agnostic, there exist extensions to specific models, such as
decision trees and ensembles (Lundberg et al. 2020) or deep
neural networks (Ancona, Oztireli, and Gross 2019).

To avoid exponential complexity, Lundberg and Lee
(2017) proposed a randomized algorithm for the computa-
tion of SHAP values by sampling subsets of features. This
approach is based on the observation that Shapley values
arise as a solution to a linear least squares problem (Covert
and Lee 2021). While Lundberg and Lee (2017) use this ap-
proach for interventional SHAP, Aas, Jullum, and Løland
(2021) consider observational SHAP. They use a kernel-
based approach to estimate the latent data distribution on a
reference dataset. Also based on the least squares approach
for Shapley values, Jethani et al. (2021) proposed to train a
surrogate model which approximates the SHAP values func-
tion for a given model.

While SHAP values provide the feature contribution of
the prediction for each individual sample, (Covert, Lund-
berg, and Lee 2020) proposed an approach, which, based



on Shapley values, computes the predictive contribution of
each feature for the whole dataset. Instead of explaining the
model output, they explain the loss of the model for a given
dataset.

2 Preliminaries
In this section, we briefly review the theory of SHAP val-
ues as a foundation for our method in Section 3. As already
mentioned, SHAP values are based on game-theoretic Shap-
ley values, which will be introduced first.

Notation We denote the number of features by n and the
set of feature indices by N = {1, . . . , n}. The power set of
N is denoted by 2N = {S ⊆ N} and the cardinality of a set
S ∈ 2N is denoted by |S|.

2.1 Shapley Values and Interaction Indices
Considering a cooperative game with n players and a con-
tribution function v : 2N → R attributing a payoff for each
coalition S ⊆ N = {1, . . . , n}, the Shapley values (Shapley
1953)

ϕi(v) =
1

n

∑

S⊆N\{i}

(
n− 1

|S|

)−1(
v(S ∪ {i})− v(S)

)
(1)

were introduced for distributing the total payoff v(N) to in-
dividual players i ∈ N depending on their contribution in
each coalition. These values uniquely result from the fol-
lowing four axioms:

• Efficiency: v(N) = v(∅) +∑
i∈N ϕi(v),

• Symmetry: if players i, j ∈ N have the same contribu-
tion, i.e. v(S ∪{i}) = v(S ∪{j}) for all S ⊆ N \ {i, j},
then ϕi(v) = ϕj(v),

• Dummy player: if player i ∈ N has no contribution, i.e
v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}, then ϕi(v) = 0,

• Linearity: ϕi(αv + w) = αϕi(v) + ϕi(w) for any con-
tribution functions v and w and a scalar α ∈ R.

Furthermore, Shapley interaction indices (Grabisch 1997)
were introduced to assign a payoff for the concurrence of
coalitions U ⊆ N in addition to the payoff of each player
i ∈ U . The Shapley interaction index of a coalition U is
given by

ϕU (v) =
1

n− |U |+ 1

∑

S⊆N\U

(
n− |U |
|S|

)−1

∆Uv(S)

with ∆Uv(S) =
∑

T⊆U

(−1)|U |−|T |v(S ∪ T ). (2)

In the case of singletons U = {i}, Shapley values and Shap-
ley interaction indices coincide. For U = {i, j}, we will
simply write ϕij instead of ϕ{i,j}.

Using the Möbius transform (Fujimoto, Kojadinovic, and
Marichal 2006)

v(S) =
∑

T⊆S

µT , µT =
∑

S⊆T

(−1)|T |−|S|v(S), (3)

Shapley values and Shapley interaction indices take the sim-
pler form

ϕU (v) =
∑

T⊇U

µT

|T | − |U |+ 1
. (4)

Especially for linear functions v(S) = µ0 +
∑

i∈S µi, this
leads to explicit Shapley values ϕi(v) = µi = µ{i}.

2.2 SHAP Values and SHAP Interaction Values
In regards of explaining a prediction f(x) of a model
f : Rn → R, the prediction is considered as an coopera-
tive game with the n features as players. In order to decom-
pose a prediction into feature contributions using Shapley
values, the following two contribution functions were pro-
posed (Lundberg and Lee 2017; Lundberg et al. 2020; Chen
et al. 2020):

vobsv(S) = E
X∼D

[f(X)|XS = xS ], (5a)

vintv(S) = E
X∼D

[f(xS , XN\S)]. (5b)

where D represents the latent data distribution.
The resulting Shapley values and Shapley interaction in-

dices are termed SHAP values and SHAP interaction val-
ues respectively, where we distinguish between the obser-
vational SHAP using vobsv and the interventional SHAP
using vintv. Both contribution functions fulfill v(∅) =
EX∼D[f(X)] and v(N) = f(x) so that by the efficiency
axiom the prediction is decomposed into

f(x) = E
X∼D

[f(X)] +
∑

i∈N

ϕi(v), (6)

i.e. ϕi(v) can be interpreted as the deviation of f(x) from
the mean prediction caused by feature xi.

In the following, we consider only the interventional
SHAP.

3 Framework
The major disadvantage of SHAP values as presented in Sec-
tion 2 are the computational costs. Iterating over all subsets
of n features, as Equation (1) implies, requires 2n evalua-
tions of the contribution function v.

On the other hand, Shapley values can be directly stated
for special contribution functions, e.g. linear functions. If it
is possible to decompose a contribution function v into few
such special contribution functions, the Shapley values of v
can be calculated efficiently. We propose such a decomposi-
tion for tree-based models like decision trees and piecewise
linear regression trees. Due to the linearity of Shapley val-
ues, ensembles of trees are also covered.

Our algorithms are based on the decomposition of the
power set 2N of features into intervals of subsets. We are
aiming especially for intervals on which SHAP values can
be computed without iterating over all subsets in the interval.
This effectively reduces the iteration of (1) into an iteration
over intervals.

In Subsection 3.1, we introduce the generic decomposi-
tion of the power set 2N into intervals of subsets and show



how this leads to a decomposition of Shapley values. In Sub-
sections 3.2, we then present a concrete decomposition to
compute interventional SHAP values for tree-based models.
Based on this decomposition, we propose an approach for
aggregating data to speed up SHAP value computation. Fi-
nally, we discuss the computational complexity of the pro-
posed algorithms as well as the difference to other feature
attribution methods in Subsection 3.4.

3.1 Decomposing Shapley Values
Our framework is based on the observation that for a tree-
based model not only the prediction function f : Rn → R
is piecewisely defined but also the contribution function
v : 2N → R as given in (5) can be represented piecewisely.
To this end, we use indicator functions 1U : 2N → {0, 1}
(U ⊆ 2N ), which gives 1U (S) = 1 iff S ∈ U , in combina-
tion with set intervals given by

[A,B] := {S : A ⊆ S ⊆ B} for A,B ⊆ N. (7)
Note that the interval [A,B] is non-empty if and only if A ⊆
B. Further, the Möbius transform (3) now takes the form

v(S) =
∑

T⊆N

µT1[T,N ](S). (8)

The goal of our approach is to decompose the contribution
functions (5) into the form

v(S) =
∑

[A,B]

v[A,B](S) · 1[A,B](S), (9)

where the number of intervals [A,B] is low (if possible) and
the functions v[A,B] are as simple as possible, e.g., constant
or linear. Thereby the contribution functions v[A,B] arise
from the data distributions and the predictive models at the
leaves. The computation of the intervals is based on
1[A,B] = 1[A,B\{i}] + 1[A∪{i},B] for i ∈ B \A, (10)

applied to splitting features i ∈ N of the tree. Thus, the de-
composition (9) results from the tree structure of the model.
Based on the decomposition (9), the Shapley values and in-
teraction indices are computed as follows. By linearity, the
Shapley values can be computed summandwise, i.e.

ϕU (v) =
∑

[A,B]

ϕU (v[A,B] · 1[A,B]). (11)

So the complexity of computing the Shapley value is the
complexity of computing ϕU (v[A,B] ·1[A,B]) times the num-
ber of intervals. Assuming v[A,B] to be of the form (8) and
by using the equation 1[A,B] · 1[C,D] = 1[A∪C,B∩D], we get

ϕU (v[A,B]1[A,B]) =
∑

T⊆B

µTϕU (1[A∪T,B]). (12)

Finally, the right-hand side of (12) can be computed with the
following proposition.
Proposition 1. The Shapley values and interaction indices
of 1[A,B] with A ⊆ B ⊆ N are given by

ϕU (1[A,B]) = (−1)|U∩(N\B)|·ω|A|−|B∩U |,|N\(B∪U)| (13)

if U ⊆ A ∪ (N \ B) and ϕU (1[A,B]) = 0 otherwise. Here,

the shortcut ωa,b =
1

a+b+1

(
a+b
a

)−1
was used.

A proof of this proposition can be found in the appendix.
In this paper, v[A,B] in (11) will be constant or linear. Ap-
plying the proposition to this case results in the following
corollary, whose proof can also be found in the appendix.
Corollary 1. Let A ⊆ B ⊆ N and let v(S) = µ0 +∑

j∈S µj be a linear function. Setting σA = µ0 +
∑

j∈A µj

and σB\A =
∑

j∈B\A µj , the Shapley values and interac-
tion indices of v · 1[A,B] are given by

ϕj(v · 1[A,B]) =




σA · ω|A|−1,|N\B|
+ σB\A · ω|A|,|N\B|,

if j ∈ A,

−σA · ω|A|,|N\B|−1

− σB\A · ω|A|+1,|N\B|−1,
if j ∈ N \B,

µj · ω|A|,|N\B|, if j ∈ B \A,

(14a)

ϕij(v · 1[A,B]) =



σA · ω|A|−2,|N\B|
+ σB\A · ω|A|−1,|N\B|,

if i, j ∈ A,

σA · ω|A|,|N\B|−2

+ σB\A · ω|A|+1,|N\B|−2,
if i, j ∈ N \B,

0, if i, j ∈ B \A,
−σA · ω|A|−1,|N\B|−1

− σB\A · ω|A|,|N\B|−1,
if i ∈ A, j ∈ N \B,

µj · ω|A|−1,|N\B|, if i ∈ A, j ∈ B \A,
−µj · ω|A|,|N\B|−1, if i ∈ N \B, j ∈ B \A.

(14b)

Now that we have outlined the basic idea of our approach,
we will discuss the exact computation of the decomposition
(9) for vintv in the following subsection.

3.2 Interventional SHAP
We follow the formulation in (Merrick and Taly 2020) and
consider the interventional SHAP values as expectations of
baseline Shapley values. More specifically, let

z(x, r, S) ∈ Rn, z(x, r, S)i =

{
xi, if i ∈ S,
ri, else,

(15)

be the composite input of x and a reference input r ∈ Rn.
Further let vx,r(S) = f

(
z(x, r, S)

)
be the single-reference

game for f . Then the interventional SHAP values are calcu-
lated by

ϕi(vintv) = E
R∼D

[ϕi(vx,R)]. (16)

In case of an empirical distribution given by a set of sample
points D ⊂ Rn, we get

ϕi(vintv) =
1

|D|
∑

r∈D

ϕi(vx,r). (17)

For a model tree, the contribution function vx,r takes the
form

vx,r(S) =
∑

ν∈leaf

vν,x,r(S)1[Aν,x,r,Bν,x,r](S), (18)

where vν,x,r(S) = fν
(
z(x, r, S)

)
is the single-reference

game of the predictive model fν at leaf ν. The interval



Algorithm 1: Interventional SHAP
Input: sample x ∈ Rn, background data D ⊂ Rn

Output: SHAP (interaction) values ϕ̂ of x
ϕ̂← vector of zeros
for r ∈ D do
{initialize stack with root node ν0}
put (ν0, [∅, N ]) on stack
while stack is not empty do

(ν, [A,B])← top element of the stack (removed)
if ν is inner node then

i← splitting feature for node ν
νx ← child node of ν according to xi

νr ← child node of ν according to ri
if νx = νr then

put (νx, [A,B]) on stack
else

put
(
νx, [A ∪ {i}, B]

)
on stack {only if i ∈ B}

put
(
νr, [A,B \ {i}]

)
on stack {only if i ̸∈ A}

end if
else
{update SHAP values using Corollary 1}
ϕ̂← ϕ̂+ 1

|D|ϕ(vν,x,r1[A,B])

end if
end while

end for

[Aν,x,r, Bν,x,r] collects all subsets S for which z(x, r, S)
lands in leaf ν and so it characterizes the features i ∈ N
for which the decisions for xi and ri differ on the path from
the root to the leaf ν. These intervals are given by
Aν,x,r = {i ∈ N : if an edge according to xi was taken},
Bν,x,r = N \ {i ∈ N : if edge according to ri was taken},

(19)

where features i ∈ Bν,x,r \Aν,x,r either do not occur on the
path or the decisions for xi and ri were the same. The de-
composition (18) is computed by traversing the tree from the
root to the leaves, so the decomposition (9) for vintv results
by |D| tree traversals. We have summarized the computation
of the Shapley values of vintv in Algorithm 1.

The algorithm is illustrated in Figure 1 by an example.
In that example, the composite input z(x, r, S) traverses the
node ν1 if only if 1 ∈ S. So, the set interval

[
{1}, {1, 2, 3}

]
containing all those subsets S is passed to the node ν1.

We note that if fν is constant, then vν,x,r is also constant
and ϕi(vν,x,r1[A,B]) vanishes for i ̸∈ A ∪ (N \ B). That
means, that only SHAP values of features on the path from
the root to the leaf node ν have to be updated. This is actually
used by the interventional TreeSHAP algorithm (Lundberg
et al. 2020, Algorithm 3), which traverse the tree from the
leaf nodes back to the root to update SHAP values. For a
linear model fν(x) = ⟨w, x⟩ + b the function vν,x,r is also
linear, i.e. vν,x,r(S) = ⟨w, r⟩+b+

∑
j∈S wj(xj−rj). In that

case it is not sufficient to consider only splitting features.
Algorithm 1 iterates over the background dataset D. This

might be already computationally expensive for medium
sized datasets. A remedy would be to use a subsample
D0 ⊂ D for the SHAP computation. Another approach is
presented in the following section.

x = (0, 1, 0)

r = (1, 0, 0)

ν0

x1 < 0.5

ν1

x2 < 0.5

ν3

leaf

ν4

leaf

ν2

x3 < 0.5

ν5

leaf

ν6

leaf

[
{}, {1, 2, 3}

]

[
{1}, {1, 2, 3}

] [
{}, {2, 3}

]

[
{1}, {1, 3}

] [
{1, 2}, {1, 2, 3}

] [
{}, {2, 3}

]

Figure 1: Illustrative example for Algorithm 1. For the in-
stance x = (0, 1, 0) and the background point r = (1, 0, 0),
the traversal of a tree is visualized. Paths taken by x are
highlighted with cyan solid lines. Paths taken by r are high-
lighted with magenta dashed lines. For each passed node ν,
the corresponding set intervals [Aν , Bν ] are also shown. By
taking the path for x (cyan line), the splitting feature is added
to the set A. By taking the path for r (magenta dashed line),
the splitting feature is removed from B. If both paths overlap
as from ν2 to ν5, then the interval is passed on unchanged.

3.3 Aggregating Background Data

Since multiple data points r ∈ D may take the same
decision paths and therefore produce the same intervals
[Aν,x,r, Bν,x,r], we may aggregate the data points accord-
ing to the decision paths they take. To this end, combining
eqs. (17), (18) and using the linearity of ϕU gives

ϕU (vintv) =
1

|D|
∑

r∈D

∑

ν∈leaf

ϕU (vν,x,r1[Aν,x,r,Bν,x,r])

=
∑

ν∈leaf

∑

[A,B]∈Iν,x

ϕU (vν,[A,B]1[A,B]),
(20)

where we summarized parts with the entities

Iν,x =
{
[Aν,x,r, Bν,x,r] : r ∈ D

}
, (21a)

vν,[A,B] =
|Dν,[A,B]|

|D| mean
r∈Dν,[A,B]

vν,x,r, (21b)

Dν,[A,B] =
{
r ∈ D : [Aν,x,r, Bν,x,r] = [A,B]

}
. (21c)

Since we regard linear leaf models, we further have

mean
r∈Dν,[A,B]

vν,x,r = vν,x,r

with r = rν,[A,B] = mean(Dν,[A,B]). (22)

The set Dν,[A,B] ⊂ D consists of all data points r ∈ D
such that A is the set of all splitting features on the path
from the root to the leaf ν for which the corresponding
edge is not chosen by r. In order to precompute the cov-
ers cν,[A,B] =

|Dν,[A,B]|
|D| and the mean vectors rν,[A,B], we

construct an additional tree structure using binary vectors
α ∈ {0, 1}depth(ν) indicating if the edge at depth k was
chosen by r (αk = 1) or not (αk = 0). Denoting the original



Algorithm 2: Aggregate Data

Input: tree T = (V ,E) and background data D ⊂ Rn

Output: covers c : V → R≥0 and mean vectors r : V → Rn

c(ν)← 0 for all ν ∈ V

r(ν)← 0 for all ν ∈ V
for r ∈ D do

put ν0 on stack {ν0 = νν0,() is the root node of T }
while stack is not empty do

νν,α ← top element of the stack (removed)
c(νν,α)← c(νν,α) + 1
r(νν,α)← r(νν,α) + r
if ν is inner node then

i← splitting feature for node ν
ν1 ← child node of ν according to ri
ν2 ← the other child node of ν
put νν1,(α,1) on stack
put νν2,(α,0) on stack

end if
end while

end for
for ν ∈ V with c(ν) > 0 do

r(ν)← r(ν)/c(ν)
c(ν)← c(ν)/|D|

end for

tree by T = (V,E), the new tree T = (V ,E) takes the form

V =
{
νν,α : ν ∈ V, α ∈ {0, 1}depth(ν)

}
, (23a)

E =
{
(νν1,α1

, νν2,α2
) :

(ν1, ν2) ∈ E, α2 ∈ {(α1, 0), (α1, 1)}
}
.

(23b)

Algorithm 2 describes the computation of covers c : V →
R≥0 and mean vectors r : V → Rn, whose values at the
leaf nodes of T represent the covers cν,[A,B] and mean vec-
tors rν,[A,B], respectively. Adjusting Algorithm 1 to use the
aggregated data instead of iterating over the background
dataset results in Algorithm 3.

3.4 Discussion
Computational Complexity Algorithm 1 traverses the
tree for every r ∈ D and updates the Shapley values at the
leaf nodes, resulting in O(|D| · |V |) Shapley updates. For
piecewise constant trees, only features on the path to the leaf
have to be considered. So the complexity of updating SHAP
values is O(d) with d being the depth of the tree. For SHAP
interaction values, the update is done in O(d2). In case of
linear leaf models, features used by the linear model have
also be considered leading to the complexity O(n) for up-
dating SHAP values. Updating the interaction values can be
done in O(dn), since the interaction values vanish if none of
the two features is on the path to the leaf node.

Aggregating the background data using Algorithm 2 takes
|D| traversals of the original tree. So computing the covers
takes O(|D| · |V |) time, while computing the mean vectors
is done in O(|D| · |V | · n). Note that for piecewise constant
trees only the covers are needed.

Algorithm 3 traverse the new tree, where at most three
paths at each inner node are taken. This leads to O(3d) up-
dates of Shapley values. In total, computing SHAP values of

Algorithm 3: Interventional SHAP with Aggregated Data

Input: tree T = (V ,E), cover c : V → R≥0, mean vectors
r : V → Rn, and sample x ∈ Rn

Output: SHAP (interaction) values ϕ̂ of x
ϕ̂← vector of zeros
put

(
ν0, [∅, N ]

)
on stack {ν0 is the root node of T }

while stack is not empty do(
νν,α, [A,B]

)
← top element of the stack (removed)

if ν is inner node then
i← splitting feature for node ν
ν1 ← child node of ν according to xi

ν2 ← the other child node of ν
if c(νν1,(α,1)) > 0 then
{path taken by x and by background data}
put

(
νν1,(α,1), [A,B]

)
on stack

end if
if i ∈ B and c(νν1,(α,0)) > 0 then
{path taken by x and not by background data}
put

(
νν1,(α,0), [A ∪ {i}, B]

)
on stack

end if
if i ̸∈ A and c(νν2,(α,1)) > 0 then
{path taken by background data and not by x}
put

(
νν2,(α,1), [A,B \ {i}]

)
on stack

end if
else

r ← r(νν,α)

ϕ̂← ϕ̂+ c(νν,α) · ϕ(vν,x,r · 1[A,B])
end if

end while

piecewise linear trees using Algorithm 3 is done in O(3dn),
while the interaction values are computed in O(3ddn). We
note that this complexity is per sample x ∈ Rn. The advan-
tage of Algorithm 3 is that we do not have to iterate over the
whole background dataset for each sample x. For instance,
computing the SHAP values of a piecewise linear tree for m
samples takes O(|D| · |V | · n ·m) using Algorithm 1, while
it takes O(|D| · |V | · n+ 3dnm) using Algorithms 2 and 3.
The discussed complexeties are summarized in Table 1.

Feature Attributions Regarding piecewise linear regres-
sion trees, one possible feature attribution approach would
be using the coefficients of the linear leaf model used for the
prediction. This approach would also be similar to LIME
(Ribeiro, Singh, and Guestrin 2016), which locally approx-
imates the model by a linear function and uses the coeffi-
cients for feature attributions. However, this approach would
ignore the contribution of features used in the decision paths.
The interventional SHAP on the other hand considers the
feature contributions for both decision paths and leaf mod-
els, as can be seen by the Shapley updates ϕ(vν,x,r1[A,B]).

4 Evaluation
In this section, we conduct a runtime evaluation of the pre-
sented algorithms using various datasets and instances of
(piecewise linear) gradient boosting trees.

All experiments were run on a dedicated workstation with
the following parameters: Intel Core i7-8700K CPU @ 3.7
GHz, 64 GB main memory.



Method SHAP values SHAP interaction
Algorithm 1 O(bldm) O(bld2m)
Algorithms 2+3 O(bl + 3ddm) O(bl + 3dd2m)
TreeSHAP (intv.) O(bldm) O(bldnm)
TreeSHAP (path) O(ld2m) O(ld2nm)
Algorithm 1 O(blnm) O(bldnm)
Algorithms 2+3 O(bln+ 3dnm) O(bln+ 3ddnm)

Symbols
m : number of explained instances x
n : number of features
b : number of background data points
l : number of nodes in the tree
d : depth of the tree

Table 1: Overview of computational complexities. The up-
per half of the table shows the complexities of SHAP al-
gorithms for piecewise constant trees including TreeSHAP
(Lundberg et al. 2020). The lower part shows the complexi-
ties of SHAP algorithms for piecewise linear trees.

Models and Parameters We evaluate the runtime of
the proposed algorithms on Stochastic Gradient Boosting
with Trees (Friedman 2002) as implemented through Light-
GBM (Ke et al. 2017). This includes piecewise constant
trees as well as piecewise linear trees. For each evaluated
dataset, we select the parameters of the model by a grid
search with n estimators ∈ {20, 50, 100, 250, 500, 1000}
and max depth ∈ {2, 4, 6, 8, 10}.

Datasets Since we focus on runtime evaluation, we simply
use publicly available datasets for which piecewise linear re-
gression trees can be readily applied. For this, we use the nu-
merical regression datasets provided by Grinsztajn, Oyallon,
and Varoquaux (2022, Sections A.1.2). These datasets are
tabular data, which were preprocessed for neural networks
and are publicly available on OpenML3. We have selected a
subset of these datasets for presentation based on the num-
ber of instances and number of features. Table 2 provides an
overview of the selected datasets.

Name ID # instances # features
cpu act 44132 8192 21
isolet 44135 7797 613
Ailerons 44137 13750 33
house 16H 44139 22784 16
sulfur 44145 10081 6
superconduct 44148 21263 79
year 44027 515345 90

Table 2: Overview of the datasets. The column ‘ID’ contains
the OpenML IDs of the datasets.

4.1 Runtime Experiments
We evaluate the runtimes of our SHAP implementations on
gradient boosting trees trained on different datasets. We con-
sider piecewise linear trees as well as piecewise constant

3www.openml.org

trees. For the latter, we compare the runtime with the path-
dependent TreeSHAP (Lundberg et al. 2020, Algorithm 2),
which uses aggregated data in form of node counts. We also
compare with interventional TreeSHAP (Lundberg et al.
2020, Algorithm 3). We used 75% of the data for the training
and as background dataset for SHAP computation. SHAP
(interaction) values were computed for 100 instances from
the remaining 25% of the data.

The resulting runtimes are presented in Table 4. In most
cases the approach with aggregated data (Algorithms 2+3)
is more efficient than iterating over 1000 subsampled data
points. For our approach, the computation of interaction val-
ues has almost the same runtime as for computing SHAP
values and the computation time is of similar order as the
interaction values computation by TreeSHAP.

4.2 Accuracy with Subsampled Background Data
We also evaluate the accuracy of the computed SHAP
values for piecewise linear trees when using subsampled
background data compared to using the whole background
dataset. For each feature, we measured the accuracy of the
SHAP values using the R2 score. We averaged these scores
to get a single R2 score for the computation. Table 3 shows
the results. As these suggest, subsampling the background
data might be an inappropriate approach for some datasets,
e.g. cpu act. So the approach using the whole background
dataset by aggregation (Algorithms 2+3) is clearly favorable
as it also takes less computation time.

Dataset time
(agg.)

time
(100)

avr R2

(100)
min R2

(100)
avr R2

(1000)
cpu act 28.3 30.4 0.79 0.69 0.983
house 16H 38.2 41.6 0.95 0.87 0.980
sulfur 68.6 148.2 0.98 0.94 0.998

Table 3: R2 scores of SHAP values computed with subsam-
pled background data of sizes 100 and 1000. Average and
minimum were computed over 10 computations. The com-
putation time (in seconds) is also included.

5 Conclusion
In this work, we have proposed a novel decomposition of
contribution functions that enables a more comprehensible
formulation of SHAP algorithms for tree-based models. Us-
ing this decomposition, we derived an efficient method for
computing interventional SHAP values and interaction val-
ues of piecewise linear regression trees. In addition, we have
presented an approach to aggregate data to speed up the
computation of SHAP values, which enables the tractable
calculation of SHAP values for larger datasets without the
need for subsampling. Compared to the path-dependent
TreeSHAP algorithm for piecewise constant trees, Tree-
SHAP is still more efficient in computing SHAP values,
while our algorithm computes exact interventional SHAP
values and therefore does not suffer from inconsistencies
that may arise from TreeSHAP approximations. Moreover,
the run time of our method for computing SHAP interaction
values is in the same order of magnitude as TreeSHAP.
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cpu act 500 4 0.009 8.38 4.84 0.38 0.09 0.72 6.32 0.15
isolet 1000 8 0.108 34.54 23.97 5.24 3.41 30.08 34.28 5.86
Ailerons 100 10 0.009 3.25 1.93 0.40 0.24 1.10 2.51 0.34
house 16H 50 6 0.004 1.67 1.12 0.28 0.08 0.44 1.52 0.13
sulfur 1000 8 0.054 28.65 13.60 2.26 0.96 3.00 16.37 1.29
superconduct 500 10 0.050 13.77 8.21 3.36 1.28 11.19 12.31 2.03
year 1000 10 0.129 19.88 13.86 207.00 7.57 30.90 20.08 13.95

p.
w

.l
in

ea
r

cpu act 100 8 - - 14.47 2.41 1.19 - 23.02 1.98
isolet 1000 8 - - 1590.40 608.99 216.69 - 3927.03 618.28
Ailerons 250 4 - - 18.55 5.94 0.50 - 27.63 0.85
house 16H 50 8 - - 7.04 2.68 0.62 - 10.39 0.96
sulfur 1000 6 - - 58.08 6.85 2.49 - 67.89 3.05
superconduct 500 4 - - 66.25 46.86 1.63 - 126.34 3.53
year 1000 6 - - 189.58 6116.39 19.70 - 431.37 54.17

Table 4: Average runtime (in seconds) for computing SHAP (interaction) values of 100 instances. The average value was
calculated for 10 computations. The upper half of the table contains the evaluation for piecewise constant trees. The lower half
is for piecewise linear trees. Evaluated methods are (from left to right) the path-dependent TreeSHAP, interventional TreeSHAP
and Algorithm 1 with a subsample of 1000 background data points, Algorithm 2 for data aggregation, and Algorithm 3 for SHAP
with aggregated data. The last three columns contain the runtime for computing interaction values.

A Proofs
In this section, we prove Proposition 1 and Corollary 1 stated
in the paper. For the proof of Proposition 1, we will need to
prove two lemmata first. The first lemma states the Möbius
transform of 1[A,B].
Lemma 1. For A ⊆ B ⊆ N , we have

1[A,B] =
∑

T⊆N\B

(−1)|T |1[A∪T,N ]. (24)

Proof. Let vrhs be the right-hand side of (24). If S ∈ [A,B],
then

vrhs(S) = 1[A,N ](S)︸ ︷︷ ︸
=1

+
∑

T⊆N\B
T ̸=∅

(−1)|T | 1[A∪T,N ](S)︸ ︷︷ ︸
=0

= 1.

For S ̸∈ [A,B] we have either A ̸⊆ S or S ∩ (N \ B) ̸= ∅.
If A ̸⊆ S, then

vrhs(S) =
∑

T⊆N\B

(−1)|T | 1[A∪T,N ](S)︸ ︷︷ ︸
=0

= 0.

Finally, if some i ∈ S0 := S ∩ (N \B) exists, then

vrhs(S) =
∑

T⊆S0\{i}

(−1)|T |
(
1[A∪T,N ](S)− 1[A∪T∪{i},N ](S)

)

︸ ︷︷ ︸
=0

.

Hence, the values of vrhs coincide with the values of 1[A,B].

Lemma 2. For n ∈ N0 and k0 ∈ N, we have
n∑

k=0

(
n

k

)
(−1)k

k + k0
=

1

n+ k0

(
n+ k0 − 1

n

)−1

. (25)

Proof. We give a proof by induction on n ∈ N0. The case
n = 0 is obvious and the induction step reads

n+1∑

k=0

(
n+ 1

k

)
(−1)k

k + k0

=
1

k0
+

(−1)n+1

n+ 1 + k0
+

n∑

k=1

(
n+ 1

k

)

︸ ︷︷ ︸
=(nk)+(

n
k−1)

(−1)k

k + k0

=

n∑

k=0

(
n

k

)
(−1)k

k + k0
+

n+1∑

k=1

(
n

k − 1

)
(−1)k

k + k0

=

n∑

k=0

(
n

k

)
(−1)k

k + k0
−

n∑

k=0

(
n

k

)
(−1)k

k + 1 + k0

(25)
=

1

n+ k0

(
n+ k0 − 1

n

)−1

− 1

n+ 1 + k0

(
n+ k0

n

)−1

=
1

n+ 1 + k0

(
n+ k0
n+ 1

)−1

.

Proof of Proposition 1. Equation (4) implies ϕU (1[T,N ]) =
1

|T |−|U |+1 for any T with U ⊆ T ⊆ N . Thus we get

ϕU (1[A,B])
(24)
= ϕU

( ∑

T⊆N\B

(−1)|T |1[A∪T,N ]

)

=
∑

T⊆N\B
T∪A⊇U

(−1)|T |

|T |+|A|−|U |+1 .



We assume U ⊆ A ∪ (N \ B), since otherwise the condi-
tion of the sum cannot hold and we get ϕU (1[A,B]) = 0.
Let U0 := U ∩ (N \ B). The condition T ∪ A ⊇ U
(with T ⊆ N \B) can be stated as T = U0 ∪̇ L with
L ⊆ (N \B) \ U0. So we get

ϕU (1[A,B]) =
∑

L⊆(N\B)\U0

(−1)|L|+|U0|

|L|+|U0|+|A|−|U |+1

=

n−|B|−|U0|∑

k=0

(
n−|B|−|U0|

k

) (−1)k+|U0|

k+|U0|+|A|−|U |+1

(25)
= (−1)|U0|

n−|B|+|A|−|U |+1

(
n−|B|+|A|−|U |
n−|B|−|U0|

)−1

= (−1)|U0| · ω|A|−|U |+|U0|,n−|B|−|U0|.

Using U \ U0 = B ∩ U and (N \ B) \ U0 = N \ (B ∪ U)
completes the proof.

Proof of Corollary 1. We have

v = µ01[∅,N ] +
∑

l∈N

µl1[{l},N ].

Using 1[A,B] · 1[C,D] = 1[A∪C,B∩D] and the linearity of ϕU

gives

ϕU (v · 1[A,B]) = ϕU

(
µ01[A,B] +

∑

l∈N

µl1[A∪{l},B]

)

=
(
µ0 +

∑

l∈A

µl

)
ϕU (1[A,B])

+
∑

l∈B\A

µlϕU (1[A∪{l},B]).

(26)

Note, that we also used 1[A∪{l},B] ≡ 0 if l ∈ N \ B. From
here on, the statement of the corollary results from simple
application of Proposition 1 on the equation (26) for every
case in (14). For example, let U = {j} ⊆ B \ A. This
implies U ̸⊆ A ∪ (N \B) and therefore ϕU (1[A,B]) = 0. It
also implies U ⊆ (A ∪ {l}) ∪ (N \ B) if and only if l = j.
Hence, we get

ϕU (1[A∪{l},B]) =

{
ω|A|,|N\B|, l = j,

0, l ̸= j,

by Proposition 1. So in total, ϕj(v ·1[A,B]) = µj ·ω|A|,|N\B|
for j ∈ B \A. The other cases are handled analogously.
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