
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik

Master Thesis Computer Science

Benchmarking Probabilistic ODE Solvers

Nina Sophie Effenberger

01.05.2021

Reviewers

Prof. Dr. Philipp Hennig
(Methods of Machine Learning)

Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Prof. Dr. Philipp Berens
(Data Science for Vision Research)

Institute for Ophthalmic Research

Universität Tübingen

Effenberger, Nina Sophie:
Benchmarking Probabilistic ODE Solvers
Master Thesis Computer Science
Eberhard Karls Universität Tübingen
Thesis period: 01.11.2020-01.05.2021

i

Abstract

Ordinary differential equations (ODEs) play an important role in modeling
dynamical systems in various scientific fields. Most ODEs cannot be solved
in closed-form but various approximate algorithms exist, for instance Runge-
Kutta methods. Usually, those methods neglect the fact that approximation
necessarily introduces errors and instead, the approximated solution is used as
if it was the true solution. Probabilistic numerical ODE solvers fix this short-
coming by augmenting the output of the solvers with appropriate uncertainty
estimates. One of these classes of algorithms randomly perturbs the behaviour
of non-probabilistic algorithms by a small amount. This results in a non-
deterministic approximate solution. By repeatedly solving the ODE with such
a randomized algorithm, the uncertainty associated with numerical approxi-
mation can be quantified. We ask two questions: 1) How well does the range
of samples quantify the numerical uncertainty? 2) How many repetitions are
required to reach asymptotic behavior? This work develops several metrics that
benchmark the calibration of a probabilistic ODE solver. These metrics are
then used to analyse the behaviour of two representative choices of such algo-
rithms. It turns out that – perhaps surprisingly – few samples (≤ 16) quantify
the numerical error as well as many samples do. Unfortunately, the quality
of the quantification depends crucially on specific parameters which need to
be chosen manually. Therefore, the descriptiveness of the range of samples
is ultimately problem- and user-dependent. These, and other phenomena are
studied in the present thesis.

ii

iii

Zusammenfassung

Mit gewöhnlichen Differentialgleichungen können dynamische Systeme mod-
elliert werden – Differentialgleichungen spielen deshalb in vielen naturwis-
senschaftlichen Bereichen eine wichtige Rolle. Die meisten Differentialgleichun-
gen haben keine geschlossen darstellbare Lösung, aber es existieren klassische
Verfahren, wie Runge-Kutta Methoden, die ihre Lösung approximieren. Die
meisten dieser Algorithmen beziehen dabei die numerische Unsicherheit, die
durch Approximationen entstehen, nicht mit ein. Die approximierte Lösung
wird verwendet, als wäre sie die richtige Lösung. Probabilistische Metho-
den versuchen diese Fehler durch Abschätzungen der Unsicherheit sichtbar zu
machen. In dieser Arbeit liegt der Fokus auf einer Klasse solcher probabilistis-
cher Differentialgleichungslöser, die während des Lösungsvorgangs Rauschen
induziert. Durch mehrfaches Lösen der Differentialgleichung kann dann die
numerische Unsicherheit, die durch approximative Methoden entsteht, quan-
tifiziert werden. Im Fokus dieser Arbeit stehen zwei Fragen: 1) Wie gut kann
die Verteilung der Samples die numerische Unsicherheit quantifizieren? 2) Wie
viele Samples sind nötig, um asymptotisches Verhalten zu erreichen? Es wer-
den mehrere Metriken verwendet, um das Verhalten dieser probabilistischen
Methoden zu quantifizieren. Repräsentativ werden Löser, die auf Methoden
von Conrad et al. (2017) und Abdulle und Garegnani (2020) basieren, evaluiert.
In der von Abdulle und Garegnani (2020) vorgeschlagenen Methode werden
die deterministischen Schrittweiten durch Zufallsvariablen ersetzt und in Con-
rad et al. (2017) werden Zwischenergebnisse mit dem skalierten Fehlerschätzer
verrauscht. Die verrauschten Löser sind nur nützlich, wenn bereits wenige
Durchläufe die Varianz aller möglichen Ergebnisse widerspiegeln. Anhand ver-
schiedener Benchmarks und Vergleiche kann festgestellt werden, dass bereits
sehr wenige (≤ 16) Samples aussagekräftig sind. Da sampling-basierte Löser
jede beliebige Verteilung über Ergebnisse darstellen können, sind im Gegen-
satz zu filterbasierten Lösern auch bimodale oder andere Verteilungen über
die Lösung möglich. Das ermöglicht einen interessanten und besonderen Ein-
blick in chaotische Systeme. Allerdings hängt die Aussagekraft der Verteilung
der Samples stark vom Problem selbst und der Parameterwahl ab. Diese und
andere Besonderheiten sind Teil der vorliegenden Masterarbeit.

iv

v

Acknowledgements

I want to thank Philipp Hennig for his continuous support during the process
of working on this thesis.
Many thanks to Nico Krämer! Thanks for your patience when I pushed to mas-
ter (again). Thanks for the weekly meetings and all the spontaneous meetings
in-between, after which I always had the feeling of knowing what I’m doing.
I’ve learned so much from you during the last months and I could not have
asked for a better supervisor. Your support was a real jim-dandy!
And lastly, thanks to Stephan Effenberger for always supporting my decisions
and having confidence in my skills.

vi

Contents

List of Figures ix

List of Abbreviations xi

1 Introduction 1

1.1 Ordinary Differential Equations 2

1.2 Classic ODE Solvers . 3

1.3 Probabilistic ODE Solvers . 4

2 Methods and Material 7

2.1 Overview . 7

2.2 Sampling-Based Solvers . 7

2.3 Noisy-State Solver . 8

2.4 Noisy-Step Solver . 10

2.5 Programming . 13

3 Benchmarking the Solvers 17

3.1 The Lorenz System . 17

3.2 Settings of the Lorenz System 18

3.3 Benchmarks . 18

4 Discussion 35

4.1 Bring out the Best of the Solvers 35

4.2 Choose a Useful Solver . 37

vii

viii CONTENTS

4.3 Why the Lorenz System? . 38

4.4 Limitations of the Solvers . 39

4.5 Simplify the Current Solvers . 39

4.6 Outlook . 40

4.7 Noisy or Not? . 41

A Further Tables and Figures 43

Bibliography 51

List of Figures

1.1 Samples of the Noisy-Step Solver of the Lotka-Volterra system . 6

3.1 LSODA solution and two samples of the Noisy-State Solver. . . 20

3.2 Kernel density estimates at the endpoint y(20). 21

3.3 Density over the sample-sample and sample-reference distances

of the Noisy-State Solver. 24

3.4 Density over the sample-sample and sample-reference distances

of the Noisy-Step Solver. 25

3.5 Quotient of sample-sample distance and sample-reference dis-

tance. 27

3.6 Quotient sample-sample distance and asymptotic sample-

sample distance. 29

3.7 Normaltests at the final state. 30

3.8 Benchmarks for the filtering-based method. 33

4.1 Trajectories over the dimensions of the Noisy-State Solver . . . 37

A.1 Density at the final state Y1(20) for various noise-scale and tol-

erance combinations. Expanded version of Fig. 3.2. 44

A.2 Density estimation of the SSD and SRD of the Noisy-State

Solver for various noise-scale and tolerance combinations. Ex-

panded version of Fig. 3.3. 45

A.3 Density estimation of the SSD and SRD of the Noisy-Step Solver

for various noise-scale and tolerance combinations. Expanded

version of Fig. 3.4. 46

ix

x LIST OF FIGURES

A.4 Quotient sample-sample distance and sample-reference distance

for various noise-scale and tolerance combinations. Expanded

version of Fig. 3.5. 47

A.5 Quotient of sample-sample distance and asymptotic sample-

sample distance for various noise-scale and tolerance combina-

tions. Expanded version of Fig. 3.6. 48

A.6 Normaltests for various noise-scale and tolerance combinations.

Expanded version of Fig. 3.7. 49

List of Abbreviations

GP Gaussian Process
IVP Initial Value Problem
KDE Kernel Density Estimation
LSODA Livermore Solver for Ordinary Differential Equations
ODE Ordinary Differential Equation
RK Runge-Kutta
RK45 Fourth-order Runge-Kutta method
SRD Sample-reference distance
SSD Sample-sample distance

xi

xii LIST OF ABBREVIATIONS

Chapter 1

Introduction

This thesis is structured as follows: In the first Chapter the work is motivated
and background information on ODE solvers and ODEs is given. In Chapter 2
the used methods as well as their implementation are described in detail. The
benchmarking results are given in Chapter 3. A discussion and short outlook
in Chapter 4 conclude this thesis.

Motivation

In our world many things are in motion. Having knowledge about some sce-
nario at one specific time point does therefore not imply that we have knowl-
edge about the same scenario at any point in the future or past. To model and
understand (continuous) processes that change over time, ordinary differential
equations (ODEs) can be used. ODEs play an important role in describing sci-
entific processes, for example in astrophysics to describe the joint movements
of celestial bodies or in molecular biology to forecast bacteria growth. While
most ODEs are not solvable in closed-form, various numerical solvers that ap-
proximate a solution iteratively exist. Especially for hard or chaotic systems
of ODEs the approximation of the solution is not always equal or even close
to the solution. In this thesis probabilistic solvers that try to tackle this issue
are explored. These solvers try to represent the uncertainty of the solution by
introducing random perturbations into the solving process.

1

2 CHAPTER 1. INTRODUCTION

1.1 Ordinary Differential Equations

A differential equation is an equation that involves an unknown function and
at least one of its derivatives (Särkkä and Solin (2019), Section 2.1). In ODEs,
the term ordinary refers to the fact that derivatives with respect to only one
dependent, in many cases time-dependent, variable appear in the differential
equation (Särkkä and Solin (2019), Section 2.1). An ODE that includes up to
the n-th derivative is an equation of order n (Teschl (2012), Section 3.5).

Initial Value Problems

One class of examples of ODE problems are initial value problems (IVPs).
Given initial conditions at one time point and information about how the sys-
tem changes (over time), future states can be approximated deterministically
in many cases (Chicone (2006), Section 1.1). Such problems are defined by a
differential equation (Teschl (2012), Section 2.2)

dy

dt
= f(y)

where f : Rd → Rd is Lipschitz continuous and the initial conditions are given
by:

y(0) = y0 ∈ Rd.

To solve such an IVP on a time span [t0, tmax] various methods exist. In the
following, all methods that are deterministic and do not provide a probabilistic
interpretation are referred to as classic solvers. Usually, the goal when solving
an IVP is one of the following:

• evaluate the solution of the ODE at one or multiple time points t∗ ∈
[t0, tmax], i.e. evaluate the continuous trajectory of the solution

• evaluate the solution at the final time point tmax

Those two goals are not disjoint, but their computational complexity is
different. The discrete solution of an IVP consists of state evaluations
{y(t0), y(t1), ..., y(tmax)} and their corresponding locations/time points T =
{t0, t1, ..., tmax} (Butcher and Goodwin (2008), Section 212). The output
of a classic solver is a finitely large set of discrete evaluations that are di-
rectly accessible. To access the solution at intermediate locations t∗ ∈
[t0, tmax]\{t0, t1, ..., tmax} an additional computation has to be performed. The
interpolation between the discrete evaluations yields the dense output of the
solution (Butcher (1996)). In this work, the focus lies on the evaluation at the
time point tmax.

1.2. CLASSIC ODE SOLVERS 3

1.2 Classic ODE Solvers

The easiest way of solving an ODE is integrating both sides of the equation ana-
lytically (Teschl (2012), Section 1.1). However, for most ODEs the closed-form
solution is intractable (Teschl (2012), Section 1.1) and approximate methods
are used to solve the ODE iteratively on a pre-defined time span [t0, tmax].
Such methods are called ODE solvers and the most basic ones are explicit
and iterative, the solution y(t) at a time point t depends on previous function
evaluations and information on how the function changes over time. While
explicit methods only use the solution at previously evaluated time points,
implicit methods can also include later states of the system (Butcher and
Goodwin (2008), Section 204). One important family of such classic meth-
ods are Runge-Kutta-methods (RK-methods) (Butcher (1996)). Those classic
RK-methods build the base of the probabilistic solvers that are used in this
work.

Understand Stepsize Selection and Error Estimates

Most classic methods come with some form of error estimate. Those error
estimates give information about the local truncation error and by assuming
that the approximation y(t−1) at the previous position is correct, i.e. y(t−1) =
ytrue(t − 1), the local error estimate at position t is computed (Butcher and
Goodwin (2008), Section 211). This does not imply that the true global error
is covered by the local error tolerance of the solver (Shampine (2005)). One
of the most prominent RK-methods is RK45, an ODE solver of order 4 with
a local truncation error (the error that is caused by one iteration) of O(h5)
where h is the stepsize of the solver (Butcher (1996)). The total accumulated
error of an RK-method of order n is in O(hn) (Butcher and Goodwin (2008),
Section 318), the total error of RK45 is therefore in O(h4).
This implies that, when using classic iterative methods, there must be a trade-
off between the number of state evaluations, which increases computational
complexity, and the accuracy of the solution. To decrease the local and total
accumulated error, the size of the steps has to be decreased. The stepsize
can also be reduced indirectly by decreasing the relative and absolute error
tolerances of the adaptive steprule (e.g. Dormand and Prince (1980)). To use
iterative ODE solvers a steprule has to be defined that suggests and, when
certain conditions are fulfilled, accepts a step. There are two classic ways of
defining such a steprule. The easiest way of performing steps on the time
span [t0, tmax] is to divide the time span into an equidistant grid of n steps by
choosing a constant stepsize h. The evaluation times T are then defined by

T = {t0, t0 + h, ..., t0 + h(n− 1), tmax} (1.1)

4 CHAPTER 1. INTRODUCTION

where tmax = t0 + hn or tmax = t0 + h(n − 1) + h∗, h∗ < h if tmax

n
6= h, i.e. a

smaller last step is performed if the evaluation grid is not alignable with the
stepsize. When using constant steps every proposed step is accepted. If the
stepsize is chosen too large, this can cause problems and it might be the case
that no solution can be found (Butcher and Goodwin (2008), Section 201). To
tackle this problem, adaptive steps can be used. With an adaptive steprule the
solver sets each stepsize such that the error estimates are small enough and
absolute and relative error tolerances are not exceeded (Dormand and Prince
(1980)). By defining thresholds for those error estimates the evaluation grid
is no longer equidistant and the stepsize hk, k ∈ {1, .., n} is unique for each
performed step (Butcher (1996)). The evaluation grid is defined by

T = {t0, t0 + h1, ..., t0 + hn−1, tmax}

and the number of performed steps n depends on the ODE and the chosen
absolute and relative error tolerances. In adaptive steprules a step is accepted
if the error estimate is within a relative and absolute tolerance, otherwise, the
stepsize is reduced proportionally to the expected tolerances until the step can
be accepted (Dormand and Prince (1980)). Additionally, a safetyscale α that

scales the proposed stepsize h̃ down, such that the actual stepsize is h =α
h̃, can be included (Butcher and Goodwin (2008), Section 203). A common
choice is α = 0.9 (Butcher and Goodwin (2008), Section 203).

1.3 Probabilistic ODE Solvers

The classic methods described in the previous sub-chapter introduce numeri-
cal errors: By approximating the solution y(t + 1) at position t + 1 with the
approximation y(t) at time point t, local approximation errors are propagated
through the solver which leads to imprecision in the solution. The output of a
classic solver is usually an approximation y(t) and an error estimate ξ(t) that
aims to represent the estimate of the current local error (Butcher and Goodwin
(2008), Dormand and Prince (1980), sci).
One way of improving the solution of an ODE is to increase the number n of
state evaluations. This improves the approximations, i.e decreases the (esti-
mated) errors and comes with increased runtime. Solving the ODE with an
accuracy that is comparable to a closed-form solution is impossible with classic
iterative methods as it would involve approximations at infinitely many loca-
tions (Butcher and Goodwin (2008), Section 213). So instead of trying the im-
possible, i.e. coming up with accurate point estimates such that y(t) = ytrue(t),
the solution of an ODE can be interpreted probabilistically, including infor-
mation about the uncertainty of the solver (Abdulle and Garegnani (2020),
Conrad et al. (2017), Tronarp et al. (2019)).

1.3. PROBABILISTIC ODE SOLVERS 5

1.3.1 Sampling-based ODE Solvers

Approximations are based on a number n of discrete evaluations y(t) at
timesteps t ∈ T = {t1, .., tn} which introduces errors into the solution (Butcher
and Goodwin (2008), Section 201). Classic methods take this information
of the error approximation only indirectly into account. They allow keeping
track of those error estimates, but their output is deterministic and does not
include any probabilistic interpretation or uncertainty quantification (Butcher
and Goodwin (2008), Chicone (2006), Teschl (2012)). In classic methods step-
size adaptation is often based on those error estimates and the error estimates
are used to improve the solution of an ODE by increasing the number n of
evaluations without interpreting the actual meaning of those error estimates
(Butcher and Goodwin (2008), Section 201).
The in this work evaluated non-deterministic ODE solvers tackle this problem
and use the fact that what is often called the solution of classic methods is
actually just an approximation of the true solution (Teschl (2012), Chicone
(2006)). There are generally two types of variables in ODEs (Särkkä and Solin
(2019), Section 2.1.), the independent variables which are often referred to as
locations or time points t ∈ T and the dependant variables which depend on
t and are often called states y(t). Both of those variable types influence the
solution and by introducing noise ξ into one of them, the deterministic solver
becomes probabilistic (Conrad et al. (2017), Abdulle and Garegnani (2020)).
In classic solvers y(t) is interpreted as the solution of the ODE and ξ(t) is the
error that the solver estimates after having performed the step to t. Wherever
the error estimate is high, the solver is less certain about the correctness of
the solution. Given that the order of the error depends on the stepsize of the
solver, it can be inferred that the solution of an ODE does also depend on the
evaluation positions (Butcher and Goodwin (2008), Section 201). Another way
of interpreting the solution of a classic solver probabilistically is therefore to
evaluate the ODE at perturbed time points (Abdulle and Garegnani (2020)).
Both solvers are sampling-based probabilistic versions of classic methods that
aim to quantify the uncertainty of approximate methods and will be called
Noisy Solvers. Those Noisy Solvers are described in detail in Chapter 2. In
sampling-based solvers, the ODE has to be solved multiple times, once for
each sample (Abdulle and Garegnani (2020), Conrad et al. (2017)). To draw
the connection to samples of filtering-based methods and to make the non-
determinism of the Noisy Solvers explicit, the term solution will not be used
for the output of one solver run but for the distribution over several samples.

6 CHAPTER 1. INTRODUCTION

0 5 10 15 20 t

5

10

15

20

25

Y(t)

Figure 1.1: 100 Samples of the Noisy-State Solver of the Lotka-Volterra system
(Lotka (2002)). The output of the solver is non-deterministic and the width of
the solution visualizes the uncertainty of the solver indirectly.

1.3.2 Filtering-based ODE Solvers

Another way of interpreting iterative ODE solvers probabilistically is to use
Gaussian Process (GP) regression to solve the ODE (Schober et al. (2014),
Skilling (1992), Hennig and Hauberg (2014). By defining the measurement se-
quence in a specific way, Bayesian filtering and smoothing techniques, such
as Kalman filtering or Rauch-Tung-Striebel smoothing, become applicable
(Tronarp et al. (2019)). GP regression infers a probability distribution over the
possible solutions of the ODE and allows to sample from the posterior Schober
et al. (2014). The estimate of the solution is the mean of the solution and its
variance, which quantifies the corresponding uncertainty. In Gaussian filtering
methods, this uncertainty is always Gaussian-distributed (Särkkä (2013)).

Chapter 2

Methods and Material

2.1 Overview

In this chapter sampling-based ODE solvers as proposed by Conrad et al.
(2017) and Abdulle and Garegnani (2020) and their implementation are de-
scribed. Using such methods leads to a non-deterministic output of classic
methods by perturbing either the state or evaluation location while solving
the IVP. The samples and the stepsizes of the solvers still fulfill some conver-
gence criteria and the solvers are therefore useful to describe the uncertainties
of the underlying deterministic solution.

2.2 Sampling-Based Solvers

Sampling-based ODE solvers are non-deterministic, probabilistic ODE solvers.
Non-determinism is achieved by introducing noise, either by using the error
estimate of the solver (Conrad et al. (2017)) or by varying the evaluation posi-
tion (Abdulle and Garegnani (2020)), into the system. The solver that is based
on Conrad et al. (2017) will be called Noisy-State Solver as it introduces noise
on the states. The solver based on Abdulle and Garegnani (2020) introduces
noise on the stepsize and is therefore named Noisy-Step Solver.
Instead of solving the ODE once it is then solved multiple times and the so-
lution is a distribution over the samples. In contrast to filtering-based ODE
solvers (Schober et al. (2014)), sampling-based solvers allow for a non-Gaussian
output distribution and can for example detect bifurcations or chaotic behavior
of the ODE. The quality and runtime of the solvers depend on the number of
samples that have to be drawn to get a solution that covers most of the sample
variance. Both solvers have at least one additional parameter compared to the
underlying classic method. This parameter scales the noise and will therefore

7

8 CHAPTER 2. METHODS AND MATERIAL

be called noise-scale.

2.2.1 Scale the Perturbation

Sampling-based methods are non-deterministic methods. Their non-
determinism arises from a noise-scale that affects the extent of the pertur-
bations. Setting that noise-scale to 0 results in a solver that is equivalent to
the underlying deterministic solver. In the Noisy-State Solver the incorporated
noise-scale is called σ, in the Noisy-Step Solver it is called τ . Both parame-
ters scale the perturbation similarly, i.e. both noise-scales correlate positively
with the extent of perturbation but intervene differently. In the following, it
is always assumed τ, σ > 0. The stepsize plays, independently of the noise-
scale, an important role to the extent of perturbation that is introduced into
the system. In the Noisy-Step Solver this dependency arises directly with the
perturbed stepsizes (Abdulle and Garegnani (2020)), in the Noisy-State Solver
this dependency arises indirectly due to higher error estimates for larger steps
(see 1.2). In the following ŷ(t) is the noisy, non-deterministic output of one
solver run at location t.

2.3 Noisy-State Solver

Make Error Estimates Explicit

One possibility of improving the solution of an ODE is to not only care about
improving the overall error but to think about how the error estimate can
improve our understanding of the ODE solution. Most classic solvers provide
a solution to the ODE and additionally, without further computation, some
form of error estimate. In classic iterative methods, this error estimate is often
used to adapt the stepsize of the solver and therefore indirectly influences the
solution. The deterministic solution y(t) of the classic method does not take
the corresponding error estimate ε(t), which most ODE solvers provide with-
out further computation (e.g. SciPy Integrate Documentation), into account.
Conrad et al. (2017) propose to include a scaled version of that error estimate
directly into the solution as Gaussian-distributed noise ξσ(t) ∼ N (0, σε(t))
scaled by the noise-scale σ. Each approximated discrete evaluation of the
solver at a location t ∈ {t0, t1, ..., tn} can then be described by

ŷ(t) = y(t) + ξσ(t) (2.1)

i.e. the solver takes the proposed deterministic step, followed by a non-
deterministic random draw of noise. For the continuous case at location

2.3. NOISY-STATE SOLVER 9

t∗ ∈ [tk, tk+1) between two grid points tk and tk+1 it holds that

ŷ(t∗) = y(tk) +

∫ t∗

tk

f(ŷ(s))ds (2.2)

where f(ŷ(s)) is an unknown function of time (Conrad et al. (2017)). To in-
clude the knowledge about the uncertainty of f(ŷ(s)) in the continuous dense
output for s ∈ [tk, tk+1), f(ŷ(s)) can be approximated stochastically, including
Gaussian-distributed noise:

y(t∗) = y(tk) + ξk(t
∗ − tk) (2.3)

with

ξk(t
∗ − tk) =

∫ t∗−tk

0

χk(τ)dτ (2.4)

The functions {χk} represent the uncertainty about f(ŷ(s)) and are described
by

χk ∼ N (0, Ch) (2.5)

They denote GPs with zero-mean and a covariance kernel that models the
uncertainty. Ch shrinks to zero for small stepsizes h (Conrad et al. (2017)).
For the implementation, this means that interpolation between the discrete
evaluation locations can be performed with GP Regression. One way of imple-
menting this interpolation according to Conrad et al. (2017) includes fitting one
GP to every two consecutive discrete approximations. For a set of evaluations
{y(t1), y(t2), ..., y(tn)} at discrete time points {t1, t2, ..., tn} the continuous so-
lution can then be described as a concatenation of n − 1 independent GPs.
The ODE solution at a time point t∗ ∈ [tk, tk+1) can then be approximated
stochastically as

y(t∗) = y(tk) + χk(t
∗ − tk) (2.6)

where χk ∼ N (0, ξ(t)), i.e. each χk is defined on [0, hk] where hk is the size
of the step that is performed by the solver, that is hk = tk+1 − tk and the
n-th evaluation y(t∗n) with t∗n ∈ [tk, tk+1) has to be conditioned on all previous
evaluations {y(t∗1), ..., y(t∗n−1)} ∈ [tk, tk+1).

Interpolation - Alternative

The discrete states are computed using a classic RK-method, the dense output
is computed using Kalman filtering and smoothing. The proposal by Conrad
et al. (2017) and current implementation of the interpolation of the Noisy-
State Solver includes n independent Kalman posteriors for n steps of the solver.

10 CHAPTER 2. METHODS AND MATERIAL

The result of this is a dense output that is not differentiable at the discrete
evaluation points, the final solution is a concatenation of independent Kalman
posteriors and does not look smooth. It might therefore be more efficient and
straightforward to evaluate the discrete solution using a classic method and
fit one GP to the solution with a stepwise variance function. This adaptation
affects only the dense output and is currently not evaluated.

2.4 Noisy-Step Solver

Change the Output by Perturbing the Evaluation Position

Another sampling-based approach is to not take the error estimates into
account but to evaluate the function at slightly different positions with each
solver run. Instead of perturbing the states, perturbations along the t-axis are
introduced. The output is therefore, like the one of the Noisy-State Solver, no
longer deterministic. The Noisy-Step Solver is based on a method by Abdulle
and Garegnani (2020). The idea is to not only shift the evaluation time points
but also project the evaluations back to the originally proposed time points.
There are different ways of perturbing the steps s.t. the distribution of the
i.i.d. random variables Hk that describe the stepsize of the k’th step satisfy
the following assumptions:

1. Hk > 0

2. ∃h > 0 : E(Hk) = h

3. ∃p ≥ 1/2 and C > 0 independent of k s.t. E(Hk − h)2 = Ch2p+1

In Abdulle and Garegnani (2020) two such distributions are proposed. Without
further restrictions lognormally distributed i.i.d random variables can be used:

Hk ∼ logN (log(h)− log
√

1 + τh2p, log(1 + τh2p)) (2.7)

It can be shown that all of the above described criteria are fulfilled for HK ∼
logN (µ, σ2), where µ is the mean of the Log-normal distribution and σ2 the
variance as given in equation 2.7:

1. Hk > 0 is fulfilled due to the properties of the Log-normal distribution
(Crow and Shimizu (1987))

2.4. NOISY-STEP SOLVER 11

2.

E(HK ∼ logN (µ, σ2)) = exp(µ+
σ2

2
)

= exp(log(h)− log
√

1 + τh2p +
log(1 + τh2p)

2
)

= exp(log(h)− 1

2
log(1 + τh2p) +

log(1 + τh2p)

2
)

= exp(log(h))

= h

3.

E((Hk − h)2) = exp(µ+
σ2

2
)
√

exp(σ2)− 1

= h
√

exp(log(1 + τh2p)− 1

= h(τh2p)

= τh2p+1

The assumption is therefore fulfilled for C = τ > 0.

Another choice of i.i.d. random variables is

Hk ∼ U(h− τhp+1/2, h+ τhp+1/2) (2.8)

where we have to make sure that 0 < h < 1 and p ≥ 1/2. This steprule will
be called uniform noisy steprule. Given a uniform distribution U(a, b) the
assumptions are again fulfilled:

1. Hk > 0 is fulfilled due to the restrictment of the stepsize 0 < h < 1

2.

E(HK ∼ U(a, b)) =
a+ b

2

=
h− τhp+1/2 + h+ τhp+1/2

2

=
2h

2
= h

12 CHAPTER 2. METHODS AND MATERIAL

3.

E((Hk − h)2) =
1

12
(b− a)2

=
1

12
(2τhp+1/2)2

=
1

12
(4τh2(p+1/2))

=
1

3
τh2p+1

The assumption is therefore fulfilled for C = 1
3
τ .

Both distributions were used and evaluated and as suggested by the authors
p = q, where q is the order of the solver. Analogously to the previously defined
Noisy-State Solver the discrete solution of the Noisy-Step Solver at the time
points t ∈ {t0, t1, ..., tn} can be defined as

y(t) := y(t+ ξq,τ (h)) (2.9)

where ξq,τ (h) are perturbations that depend on the order of the solver q, the
chosen noise-scale τ and the stepsize h. Interpolation is performed with a
quartic interpolation polynomial after the k’th step between the grid-points
[t̂k−1, t̂k] for k ∈ {1, .., n} where n is the number of performed steps. To
evaluate the continuous solution all interpolants have to be projected to their
corresponding original time span [tk−1, tk], i.e. to the time points that were
proposed and accepted by the steprule. As the state y which is evaluated at the
perturbed time point t̂ is projected to the original time point t, the interpolants
between [t̂k−1, t̂k] for k ∈ {1, .., n} have to be rescaled to match the original
time span [tk−1, tk]. To access a time point t∗ ∈ [tk−1, tk] the relative position
within the interval [tk−1, tk] has to be calculated which leads to

t∗rel =
t∗

tk − tk−1
(2.10)

The time point t̂ at which the computed interpolant has to be evaluated is
then defined by

t̂∗ = t∗rel(t̂k − t̂k−1) + tk (2.11)

2.5. PROGRAMMING 13

2.4.1 Noisy Steprule

Only Perturb the Stepsize

Abdulle and Garegnani (2020) provide suggestions for a class of random vari-
ables Hk (see 2.4) to perturb the stepsizes of the samples. Instead of projecting
the state evaluation at time point t + ξq,τ , where ξq,τ is chosen such that the
described criteria are fulfilled, back to the originally proposed position t, we
can also only use the perturbed step h ∼ Hk and solve the ODE multiple
times. This noisy steprule can be applied to the original deterministic solver
and leads to a probabilistic output, which is similar to the Noisy-Step Solver
but does not need the introduction of a new solver. Interpolation can then be
performed without further post-processing.

2.5 Programming

In this sub-chapter, the implementation, accessibility, and the underlying code
base are explained. The implementation combines classic methods, which are
mainly based on SciPy (SciPy Integrate Documentation), with a probabilistic
interpretation. This probabilistic interpretation is highlighted by using Prob-
Num as the framework for the solution of the IVP. Like this, the solution is
analogously defined to the output of filtering-based methods and the discrete
states (and also the states at evaluated intermediate time points) are con-
stant random variables. This interpretation does not change the solution but
makes the probabilistic manner of sampling-based methods and their analogy
to filtering-based methods clear.

2.5.1 Code Base

ProbNum

ProbNum is a python package that implements methods from probabilistic
numerics (ProbNum Documentation). Among others, it contains a module for
differential equations (probnum.diffeq) which includes probabilistic solvers that
are filtering-based, such as extended Kalman filtering. Within the ProbNum-
framework an IVP of dimension d is defined by a time span [t0, tmax], an initial
value that is a d-dimensional random variable and the right-hand side function

f : [0, T]× Rd → Rd (2.12)

of the ODE system. When using filtering-based solvers the Jacobian and Hes-
sian can also be provided to the IVP-object. To solve the IVP an ODESolver
object, which could be for example a Noisy-Step Solver, a Noisy-State Solver

14 CHAPTER 2. METHODS AND MATERIAL

or a filtering-based solver, has to be instantiated which includes the IVP and
the order of the solver. To solve the IVP with the selected solver, a steprule
has to be specified. The solution of an IVP is an instance of the ODESolution
class. It provides dense output, makes the solution be callable, and collects
the discrete time grid with its corresponding solution over the states. In both
solvers the interpolation between the discrete evaluations is non-trivial.

SciPy

SciPy is a python library that contains modules for classic mathematical sub-
fields, among others it implements various explicit and implicit methods to
solve ODEs (SciPy Integrate Documentation). To use a Noisy-State or Noisy-
Step Solver an underlying classic solver has to be defined, for this purpose,
the Runge-Kutta solvers which are implemented in SciPy (sci) are wrapped.
The discrete output of RK23 and RK45 are used by both, the Noisy-State and
the Noisy-Step Solver, and a scaled version of the dense output is used for the
interpolation of the continuous solution of the Noisy-Step Solver.

2.5.2 Implementation and Accessibility

All code is written in python. Everything is implemented in the ProbNum-
Style and the solvers will be integrated into the ProbNum-repository. Both
methods, the Noisy-State Solver and the Noisy-Step Solver will be accessible
and usable within the ProbNum-framework. The Noisy-Step Solver is inde-
pendent of the rest of the ProbNum-code, while the Noisy-State Solver uses
the implementation of Kalman filtering and smoothing for dense output inter-
polation. The underlying classic solvers are based on Runge-Kutta methods
implemented in SciPy. Both sampling-based methods are expandable to dif-
ferent kinds of classic ODE solvers.

2.5.3 Solve an IVP

Set up the Classic Solver

Both solvers can be set up analogously. First of all, an IVP has to be specified.
This IVP consists of the right-hand side of an ODE, initial values, and a time
span. With that information, a SciPy solver, for example, based on an RK45-
method can be specified. This builds the base of the wrapped SciPy solver.
In the ProbNum-framework the state of an ODE is described by a random
variable ∈ Rd where d is the dimensionality of the ODE. In the case of those
classic solvers, the state can simply be defined as a constant that equals the
state approximation. The size of the first step has to be defined as well. The
adaptive steprule of ProbNum chooses a stepsize that minimizes absolute and

2.5. PROGRAMMING 15

relative errors and is only applicable after the first error estimate is accessible,
i.e. after the first step was performed. The Noisy-State Solver as well as the
Noisy-Step Solver are both based on a noise-free method that wraps a classic
SciPy solver.

Introduce Noise

Both Noisy Solvers get as an input a classic noise-free solver and a noise-
scale σ or τ that specifies the amount of noise, i.e. a solver with σ, τ = 0 is
a deterministic solver without introduced noise. As there are different ways
of introducing noise into the Noisy-Step Solver, implemented are uniform or
lognormally distributed stepsizes, the Noisy-Step Solver additionally takes a
parameter that describes this distribution.

Solve the IVP

To solve the IVP a steprule has to be specified. As constant steps are quite
restrictive, the preferable choice are adaptive steps and all experiments were
therefore performed with adaptive steps and various tolerances. Solving the
IVP is performed within the ProbNum-Framework. For a time span from
[t0, tmax] the solver starts at t0 and iteratively performs steps until tmax is
reached. The stepsize is chosen according to the specified step rule, in the
case of adaptive steps a step(size) is accepted if it fulfills the relative and
absolute tolerance criteria – otherwise, the stepsize is reduced. The solution
of the IVP consists of the evaluated time points {t0, ..., tn}, the corresponding
states {y0, ..., yn} and interpolants that allow evaluating the continuous dense
output in between the discrete evaluations. Computing the discrete states is
quite similar in both sampling-based solvers but the interpolation is performed
differently. Details on the mathematical background of the interpolation can
be found in 2.3 and 2.4. The final ODE Solution has an intuitive interface:
the discrete time points and states can be accessed directly by a getter-method
and the dense output for every intermediate result can be called after the ODE
is solved. During the evaluation of the ODE at time point t∗ 6∈ {t0, ..., tn} the
Kalman posteriors of the Noisy-State Solver are updated automatically by
conditioning the posterior on the current evaluation.

2.5.4 Filtering-based Solvers

Filtering-based solvers as described in 1.3.2 build the counterpart to the solvers
described in the previous chapters and are accessible in ProbNum. Their
output is probabilistic but deterministic and can be compared to the sampling-
based solvers. Their solution is Gaussian-distributed and samples from the
posterior can be drawn.

16 CHAPTER 2. METHODS AND MATERIAL

Chapter 3

Benchmarking the Solvers

3.1 The Lorenz System

The Lorenz system is a chaotic, three-dimensional system of ODEs and a math-
ematical model for atmospheric convection. It is a relatively simple chaotic
system; Lorenz himself defines it in the related paper (Lorenz (1963)) as ”the
simplest example of deterministic nonperiodic flow” of which he was aware. It
is defined through:

f(t, y) =

 a(y2 − y1)
y1(b− y3)− y2
y1y2 − cy3

 (3.1)

for some parameters (a, b, c) where y1, y2, y3 are time dependant variables in a
three-dimensional space. The parameters (a, b, c) are proportional to physical
properties and for most choices, the system becomes unstable and diverges
quickly (James Hateley). For (a, b, c) = (10.0, 28.0, 8/3), proper initial con-
ditions, a sufficient small stepsize (or sufficient small absolute and relative
tolerances when using adaptive steps) and a time span [t0, tmax] = [0.0, 20.0]
the Lorenz system is solvable, i.e. a classic deterministic solver finds a value
y(t = 20.0) that fulfills the given criteria. To compare the three different
solvers the Lorenz system is chosen as an exemplary ODE system. It is of
special interest due to its chaotic behaviour, i.e. its exponential sensitivity
with respect to the initial conditions. In chaos theory, this high sensitivity to
the initial conditions is often called butterfly effect (Lorenz (2000)).

17

18 CHAPTER 3. BENCHMARKING THE SOLVERS

3.2 Settings of the Lorenz System

The parameters are set to (a, b, c) = (10.0, 28.0, 8/3), the initial conditions are
(y1(0), y2(0), y3(0)) = (0.0, 1.0, 1.05) and the time span is [t0, tmax] = [0.0, 20.0].
The time span is chosen such that it is long enough to show the variance of
the samples. The same time span is chosen in Conrad et al. (2017) and is
therefore considered to be representative. All experiments were performed
using adaptive steps, the stepsize of the first step is h = 0.01 setting atol =
rtol ∈ {10−4, 10−6, 10−8, 10−10} and σ, τ ∈ {10−1, 100, ..., 106}.
σ is the noise-scale of the Noisy-State Solver and τ is the noise-scale of the noisy
steprule and therefore the corresponding noise-scale for the Noisy-Step Solver.
Both scales correlate positively with the amount of noise and uncertainty that
is introduced but are not comparable in a numerical sense. For some settings,
the solvers are not able to find a solution. There are no solutions for the
Noisy-State Solver with σ ≥ 104 and for the Noisy-Step Solver with τ ≥ 104

only solvers with small error tolerances were applicable.
The safetyscale is used to adapt the stepsize further: For the Noisy-State Solver
the safetyscale is set to 0.8, for the Noisy-Step Solver and the noisy steprule it
is set to 0.6. As the adaptive step is in the best case the maximum stepsize that
still fulfills relative and absolute error tolerances and on average almost every
second noisy step is larger than the suggested step, this makes sure to not lose
too many samples. For each setting 512 samples were evaluated. It can be seen
in 3.6 that this, for a Monte-Carlo method low number of samples, seems to be
more than sufficient to cover the solver variance in all settings. As a reference
solution the LSODA solution with an absolute tolerance of atol = 10−15 and
the in SciPy smallest relative tolerance of rtol = 2.220446049250313 · 10−14 is
chosen, which equals

yref (20) = (y1(20), y2(20), y3(20)) ≈ (8.53507, 11.70335, 22.54430) (3.2)

The adaptive steprule which is used, always uses a relative and absolute error
tolerance which is in all cases set to the same value. Tolerance does therefore
always include the relative and absolute error tolerance.

3.3 Benchmarks

Both solvers have several input parameters. Finding solvers, parameters, and
settings with which the solutions are useful and bringing out the best of the
solvers, is of huge interest when using those probabilistic solvers in practice.
There are several questions that one might ask when searching for a probabilis-
tic sampling-based method that is considered to be useful. How many samples
are needed to represent the largest part of the sample variance? As the com-
putational complexity increases linearly with the number of solver runs, i.e.

3.3. BENCHMARKS 19

samples, answering this question yields an insight into the efficiency of these
methods.
Filtering-based methods also provide a probabilistic interpretation of the
states, their output is always Gaussian-distributed. The output of the Noisy
Solvers does not need to be Gaussian. A density estimate over the samples of
one state evaluation at a single location can potentially be any distribution.
But maybe they are also Gaussian? Given the Log-normal rule (equation 2.7)
in the Noisy-Step Solver and Gaussian-distributed noise in the Noisy-State
Solver it is interesting to evaluate the Gaussianity of the solution of the
solvers.
Regardless of the type of distribution, the solution of the probabilistic solvers
should, in the best case, have a meaningful structure that represents the un-
certainty of the underlying mathematical method. But how can we measure
whether the probabilistic solution can cover the uncertainty of the deter-
ministic solution? This question is the hardest one to answer and there is not
one metric that allows quantifying this ability of a probabilistic solver. While
the theoretic evaluation of the methods can give interesting insights into them,
their possible practical benefits should not be forgotten. From this viewpoint,
the main goal is to use as few samples as possible while still covering most of
the possible outcomes and to find parameters for which the solvers work best.

3.3.1 Density estimate

Evaluate One Dimension of a Single State

To evaluate the output of the three solvers a set of benchmarks was developed
that allows comparing the different solvers to each other but also the different
settings among each other. First of all the densities over the first dimension of
the 512 Samples for each setting were evaluated. Two samples of the Noisy-
State Solver with σ = 100 and rtol = atol = 10−6 and the LSODA reference
solution of the Lorenz attractor are visualized in Fig. 3.1. As described in
the previous chapters we use n functions as an approximation of the distribu-
tion over the solution instead of taking one value as the solution of the IVP.
Multiple samples allow determining whether there are patterns within the dis-
tribution.
In Fig. 3.2 the kernel density estimates KDE(y(tmax)) with a Gaussian ker-
nel over the set of final states y(tmax) := {y(tmax0), y(tmax1), ..., y(tmax511)},
where y(tmaxi) is the the final state of the first dimensions of the i’th sam-
ple, are plotted. Each of the kernel density estimates (KDEs) is plotted on
an equidistant grid within the time span [min(y(tmax)),max(y(tmax))] respec-
tively, i.e. the leftmost point of the plotted distribution equals the small-
est and the rightmost point equals the largest y(tmaxi)∀i. To make the re-
sults better comparable, the density estimates are normalized such that the

20 CHAPTER 3. BENCHMARKING THE SOLVERS

0 10 20
t

−15

0

15

0 10 20
t

−15

0

15

0 10 20
t0

20

40

Y1

Y2

Y3

Figure 3.1: LSODA solution and two samples of the Noisy-State Solver. In
black on the left, the trajectory proposed by LSODA is visualized. On the right
the three dimensions Y1, Y2, Y3 of two Noisy-State samples with tol = 10−6 and
σ = 100 are plotted against the time t. The colored crosses on the left mark the
evaluation at the endpoint y(20) respectively.

largest KDE max(KDE(y(tmax))) := 1. E.g. in the setting with σ = 100
and rtol = atol = 10−6 all of the 512 sample states y(20) are in the range
(−18.96, 16.59). For better interpretability the high tolerance LSODA solu-
tion as well as the solution of the underlying deterministic RK45 solver with
the same tolerance are plotted. In contrast to filtering-based methods, the
sampling-based solution does not need to be Gaussian-distributed and can
therefore show bifurcations or other non-Gaussian distributions over the states.
This can for example be seen in the Noisy-State Solver for σ ∈ {1, 10} (Fig
3.2 (a),(b)). For σ = 100 and tol = 10−4 (Fig 3.2 (c)) the solution is neither
unimodal nor bimodal but shows almost uniformly distributed samples on a
broad range of values.
The density of the Noisy-Step Solver solution does also show bimodal en-
dresults for τ = 100 and τ = 103 and a tolerance of 10−4 (Fig. 3.2 (a) and Fig
A.1). Overall the range of samples of the Noisy-Step Solver is, especially for
small tolerances tol < 10−4 smaller than that of the Noisy-State Solver (Fig.
3.2 (a),(b),(c) and Fig A.1). For small σ = 0.1 all of the sample solutions
of y1(20) are too large for all of the tolerances, with increasing σ the solver
solution becomes capable of covering the reference solution and for σ ≥ 10 the
Noisy-State Solver is, independent of the tolerance, capable of covering the
reference solution (Fig. 3.2 (b),(c),(e),(f),(h),(i)). Due to the small variance

3.3. BENCHMARKS 21

Y
0.0

0.5

1.0

to
l=

10
−

4 (a)

σ = 1, τ = 1, 000D

Y

(b)

σ = 10, τ = 10, 000D

Y

(c)

σ = 100, τ = 100, 000D

Y
0.0

0.5

1.0

to
l=

10
−

6 (d)

D

Y

(e)

D

Y

(f)

D

−20 −10 0 10
Y

0.0

0.5

1.0

to
l=

10
−

10

(g)

D

Noisy-State Solver
Noisy-Step Solver
same tol
LSODA

−20 −10 0 10
Y

(h)

D

−20 −10 0 10
Y

(i)

D

Figure 3.2: Kernel density estimates over the first dimension at the endpoint
y(20). Y is the sample result at the endpoint t = 20 and D the respective
normalized density over the samples. For high tolerances the introduced noise
is larger, the variance of the samples is higher. For low tolerances the introduced
noise is really small and the corresponding variance is small, too. The density
over the final state of the Noisy Solvers, a deterministic solution with the on the
left indicated error tolerance, and the LSODA reference solution are plotted.

of the Noisy-Step Solver with small τ < 103 and tol < 10−4 none of the solu-
tions covers the reference solution (Fig. A.1). With decreasing tolerance the
range of the samples, i.e. their variance decreases. For tolerances < 10−4 the
variance increases for increasing noise-scales.
For some settings in Fig. 3.2 (e.g. (h),(i)), the deterministic and probabilis-
tic solutions are so similar that they are no longer visually separable. This
is the case for the Noisy-Step Solver, where the solutions in (b) and (i), For
tol ≤ 10−6 and τ = 105 and for tol = 10−4 and τ = 104 the Noisy-Step Solver
fails and there are no results to be visualized in Fig. 3.2 (c) and (f). The
above-described density estimates give a good feeling for the influence of the
noise-scale and the error tolerances. While the noise-scales cannot be com-
pared numerically directly, the results suggest that there are better and worse
settings for both solvers respectively. To use the solvers efficiently, if possible,
the capability of covering the reference solution, the number of needed sam-
ples for an expressive solution and the advantages or disadvantages compared

22 CHAPTER 3. BENCHMARKING THE SOLVERS

to other probabilistic solvers have to be evaluated. The focus of the follow-
ing sections lies on determining whether and how the solver’s uncertainties
can and should be taken into account to interpret and use the classic solvers
probabilistically and usefully.

3.3.2 Sample-Sample vs. Sample-Reference Distance

Quantify the Errors of the Solver

Ideally, the sample-sample distance of several samples represents the mean
deviance of those samples to the reference solution at a single evaluation (or
interpolation) location t. A useful probabilistic solver should therefore cover
the true solution Strue. As the Lorenz system is not solvable in closed-form
(Hashim et al. (2006)), Strue can only be approximated by a reference solution
Sref that is given by a solver with low error tolerances and is therefore assumed
to be close to Strue. For all samples S = {s1, ..., sn} the sample-sample distance
(SSD) is the normalized distance of the solution y(t) of one sample sk and every
other sample in the subset S \ sk :

SSD(yk(t)) =
1

n− 1

∑
s∈S\sk

‖yk(t)− ys(t)‖

where ‖ · ‖ is the Euclidean norm. With this definition, the sample-sample
distance is equivalent to the intersample root-mean-square error of one sample
to every other sample. By averaging the SSD(yk(t))∀k ∈ S we get the mean
SSD. As the sample-sample distance between two samples i and j is included
in two SSDs, i.e. in SSD(yi(t)) and SSD(yj(t)), it has to be divided by two
to get the mean sample-sample distance.

MSSD(y(t)) =
1

2n

∑
s∈S

SSD(ys(t))

The sample-reference distance (SRD) is the deviation of one sample to the
solution Sref which we assume to be close to the underlying truth. As described
in 3.2 we get Sref by using SciPy’s LSODA method with low error tolerance.
The mean SRD is then defined as

MSRD(y(t)) =
1

n

∑
s∈S
‖yref (t)− ys(t)‖

To make the sample-reference distance and the sample-sample distance com-
parable we again choose ‖ · ‖ to be the the Euclidean norm. In fact there are
several options of choosing ‖ · ‖ in both metrics. As our problem is three-
dimensional, the Euclidean norm is an intuitive choice of making the measures

3.3. BENCHMARKS 23

interpretable as a distance in the three-dimensional space. When only using
non-deterministic sampling-based solvers, the reference solution and, therefore
the SRD, are unknown. In the best case, the SSD should be able to represent
it, i.e. the variance of the samples should be able to cover the error (estimate)
of the solver. To measure this property we can compare the SRD to the SSD
in different ways.

Density Estimate of the SSD and SRD

For each sample sk ∈ S we can evaluate the endresult yk(t) and compute the
sample-sample distance SSD(yk(t)) to all of the other samples S \ sk and the
sample-reference distance SRD(yk(t)) to the reference solution yref (t). Using
those metrics as individual results for each sample a kernel density estimate
over them can be computed. There are several possibilities of comparing two
density distributions taking the position and width of the corresponding val-
ues, their overlap, and the shape of the distributions into account.
The position of a function represents the order of the error estimates, for sam-
ples with a large average error or a large intersample variance, the mean of
the distribution is higher and centered on the right when looking at the plot.
Overlapping areas indicate that the SSD can represent the SRD while non-
overlapping areas and density estimates that are far away from each other
indicate that the sample-sample distance is not able to cover the mean error
of the samples. The shape of the SRD distribution gives information on how
the endresults of the samples are distributed and represents the broadness of
the density estimate of the states at the corresponding location. A broad dis-
tribution of the individual SRDs indicates that at least some samples are far
away from the reference solution.
The shape of the SSD can give, for example, information about outliers within
the samples. A broad range of the individual SSDs indicates that the sam-
ples are not equally distributed, i.e. a small number of samples is not able
to represent the variety of the samples that the solver produces. The density
estimates of the SSDs and SRDs of both solvers are shown in Fig. 3.4 and Fig.
3.3 respectively. The densities are normalized such that the largest density
equals 1, the range of the plotted density is from the largest to the smallest
value of the distances.
For error tolerances ≤ 10−6 and σ ≥ 1 of the Noisy-State Solver, the den-
sity estimates of the SSDs and the SRDs are centered around 1 (Fig. 3.3
(a),(b),(c),(d),(e),(f)). For lower error tolerances both distributions are shifted
to the left (Fig. 3.3 (g),(h),(i), indicating a lower mean SSD and a lower mean
SRD for results with higher accuracy. In those solvers, the distributions over
the SSD and SRD are shifted to the right with increasing noise-scale σ, i.e.
introducing more noise yields higher SSDs and SRDs. This indicates that
for small tolerances both, the mean SSD and the mean SRD, become larger

24 CHAPTER 3. BENCHMARKING THE SOLVERS

E
0.00

0.25

0.50

0.75

1.00

to
l=

10
−

4

(a)

σ = 1D

SSD
SRD

E

(b)

σ = 10D

E

(c)

σ = 100D

E
0.00

0.25

0.50

0.75

1.00

to
l=

10
−

6

(d)

D

E

(e)

D

E

(f)

D

10−610−6 10−4 10−2 100 102

E
0.00

0.25

0.50

0.75

1.00

to
l=

10
−

1
0

(g)

D

10−610−6 10−4 10−2 100 102

E

(h)

D

10−610−6 10−4 10−2 100 102

E

(i)

D

Figure 3.3: Density over the sample-sample (SSD) and sample-reference dis-
tances (SRD) of the Noisy-State Solver. E is the respective error estimate and
D its normalized density estimation. With increasing noise-scale σ, the aver-
age distances within the samples and the distances to the reference solution get
larger. With decreasing tolerance the average errors get smaller. The density
estimates show overlapping areas in most of the settings.

with increasing noise-scale and decreasing tolerance. For smaller σ ≤ 100 and
≥ 10−6 decreasing the tolerance by factor 102 decreases the SSD and the SRD
also by a factor ≈ 102. The overlap of the densities is high for most combina-
tions of tolerances and noise-scales, indicating that most of the error is covered
by the variance of the samples. Only for small σ = 0.1 and tol ≤ 10−4 the
density estimates do not overlap.
The Noisy-Step Solver shows similar results (Fig. 3.4), with lower error tol-
erances the SRDs and the SSDs get smaller and for larger noise-scales τ , the
mean SRD and SSD get larger. While the mean values of the densities deviate,
independent of the tolerances, for small τ ≤ 103, the densities overlap in all
settings where τ ≥ 104 at least partially (Fig. 3.4 (b),(e),(f),(h),(i)). With
increasing noise-scale τ ≥ 104 the SSD and SRD highly overlap, for τ = 105

and tol = 10−6 the solver fails (Fig. 3.4 (c)). The density distributions of the
Noisy-State Solver are of the same order in many settings. For fixed noise-
scales (or tolerances) a corresponding tolerance (or noise-scale) such that the
sample-sample distances can cover the error can be found in all cases. The

3.3. BENCHMARKS 25

density distributions of the Noisy-Step Solver indicate that the noise-scale has
to be large to get that property and the solver fails for large noise-scales and
low error tolerances. The lowest order of the distances where the densities
overlap is the same for both solvers. The mode of the SSD and the SRD den-
sity estimates of the Noisy-Step Solver with the lowest tolerance is ≈ 10−4 for
τ = 104 (Fig. 3.4 (h)). The same result can be achieved with the Noisy-State
Solver for the lowest tolerance and a noise-scale σ = 1 (Fig. 3.3 (g)).

E
0.00

0.25

0.50

0.75

1.00

to
l=

10
−

6

(a)

τ = 1, 000D

SSD
SRD

E

(b)

τ = 10, 000D τ = 100, 000

E
0.00

0.25

0.50

0.75

1.00

to
l=

10
−

8

(d)

D

E

(e)

D

E

(c)

D

10−610−6 10−4 10−2 100 102

E
0.00

0.25

0.50

0.75

1.00

to
l=

10
−

1
0

(g)

D

10−610−6 10−4 10−2 100 102

E

(h)

D

10−610−6 10−4 10−2 100 102

E

(f)

D

Figure 3.4: Density over the sample-sample (SSD) and sample-reference (SRD)
distances of the Noisy-Step Solver. With increasing noise-scale σ the average
distances within the samples and the distances to the reference solution get
larger. With decreasing tolerance the average errors get smaller. The density
estimates show overlapping areas in only a few settings, indicating that the
solution is sensitive to the parameters.

Quotient of the SSD and SRD

If the mean SSD, i.e. the mean deviation between every sample to every other
sample and the mean SRD, i.e. the mean deviation of every sample to Sref are
similar, the SSD is able to cover the reference solution and we call the solution
well-calibrated. To interpret the SSD and the SRD with one metric, we can

26 CHAPTER 3. BENCHMARKING THE SOLVERS

test the calibration of the solver by evaluating the quotient

Q =
MSSD(y(t))

MSRD(y(t))
(3.3)

of both metrics. If this ratio is in O(1) the result is said to be well-calibrated,
i.e. the mean sample distance is in the order of the error. A solver with
a quotient Q that is not in O(1) but still closer to being in O(1) is better-
calibrated than a solver with a much larger or smaller Q. For values < 1 the
solver is overconfident: The variance of the samples is too small to cover the
reference solution. A ratio > 1 represents underconfidence of the solver, the
probabilistic solver induces too much uncertainty. The quotients of the mean
SSD and the mean SRD are visualized in Fig. 3.5 for different tolerances
and noise-scales. The SSD and SRD are evaluated for sample subsets of size
n ∈ {2, 22, ..., 29} and in all settings, the order of the quotient did not change
for subsets of size n ≥ 4.
Both solvers, the Noisy-State Solver as well as the Noisy-Step Solver, are well-
calibrated for large noise-scales, i.e. by introducing a lot of noise, we can
be almost sure that the reference solution is covered by the solver (Fig. 3.5
(c),(f)). The Noisy-State Solver is well-calibrated for σ ∈ {10, 102, 103} for all
of the tested tolerances, for smaller values of σ ∈ {0.1, 1} the solver is well-
calibrated for the largest tolerance tol = 10−4 (Fig. 3.5 and Fig. A.4). While
the calibration of the solver does not show any trend when comparing the large
choices of σ, the best-calibrated solvers for smaller choices of σ are the solvers
with the largest and the smallest tolerance.
This trend can also be seen in the Noisy-Step Solver. When increasing the
noise-scale, the solver with the largest error tolerance is for all σ and τ always
the first one to be well-calibrated. This can be explained by the fact that more
errors are tolerated by the steprule which leads to a broader range of samples
and can also be seen in Fig. 3.2 where setting the tolerance to tol = 10−4

results in negative values y1(20) < 0 in both solvers. While the Noisy-State
Solver solution is already well-calibrated for small σ ≥ 10 and the solver fails
for σ ≥ 104 (Fig. 3.5 (b)), the first setting where the solution of the Noisy-Step
Solver is well-calibrated, independent of the error tolerance, is τ = 104 (Fig.
3.5 (e)). This suggests that the noise-scale of the Noisy-Step Solver must be set
higher compared to the noise-scale of the Noisy-State Solver. When increasing
the noise-scale τ ≥ 104, the error tolerance should be decreased. To fulfill the
convergence criteria of the uniform noisy steprule (equation 2.8), the stepsize
has to be ≤ 1, this is not given when using large tolerances and the solver
fails. Within the given framework for τ ≥ 104 increasing τ by factor 10 could
be compensated by decreasing tol by factor 2, for lower tolerances the solver
fails in all cases except for τ = 106 and tol = 10−8 where the solver fails in 155
of 512 cases. For better comparability, only settings where all solver runs were
successful are being taken into account. It can be seen that the Noisy-Step

3.3. BENCHMARKS 27

Solver can be well-calibrated, but there is no setting that works for all of the
error tolerances and it is not straightforward to determine whether there is an
intermediate solution that allows calibrating each Noisy-Step Solver without
limiting possible values for the error tolerance.

N
10−7

10−4

10−1

102

N
oi

sy
-S

ta
te

(a)

σ = 1, τ = 1, 000Q

0.0001
1e-06
1e-08
1e-10

N

(b)

σ = 10, τ = 10, 000Q

N

(c)

σ = 100, τ = 100, 000Q

101 102
N

10−7

10−4

10−1

102

N
oi

sy
-S

te
p

(d)

Q

101 102
N

(e)

Q

101 102
N

(f)

Q

Figure 3.5: Quotient of sample-sample distance (SSD) and sample-reference
distance (SRD). Q is the quotient of the SSD and the SRD, N is the number
of samples, both are plotted on a log-scale. For Q ≈ 1 (shaded in green) the
solver is said to be well-calibrated. For larger noise-scales both solvers are
well-calibrated, i.e. when increasing the overall error, the reference solution is
captured by the samples – ignoring the absolute error that might be introduced
into the system.

Choose the Best Calibrated Solver

The idea is to use the above-described metrics to calibrate the solvers by
choosing the noise-scales σ and τ such that the SSD is able to represent the
SRD. This can be achieved by combining the information from the quotient Q
of the SSD and the SRD and their density estimate. As described above all of
the solvers where Q ≈ 1 are considered to be well-calibrated. If several solvers
are well-calibrated, the solver with the smallest SRD is the solver that is still
able to cover the reference solution without introducing too much uncertainty.
This means that a well-calibrated solver is not necessarily a useful solver.
While Q allows claims about whether the reference solution is covered by the
solver, it neglects the fact that a broad range of samples results in a large SSD
where many samples have a large SRD. The quotient of those metrics might

28 CHAPTER 3. BENCHMARKING THE SOLVERS

therefore be ≈ 1 but mainly due to the fact that the SRD, i.e. the average
error, is large. The best of several well-calibrated solvers is in the previously
described settings always the solver with the lowest noise-scale and an SSD
that covers the SRD. For the Noisy-State Solver this means that the solver
in Fig. 3.5 (b) is considered to be more useful than 3.5 (c). For the Noisy-
Step Solver the choice of τ is more dependent on the chosen error tolerance.
Regarding calibration for tol = 10−4 the best choice for τ is 100 (see Fig. A.4)
and for lower tolerances, the noise-scale has to be increased.

3.3.3 Sample-Sample vs. Asymptotic Sample-Sample
Distance

How Many Samples Do You Need?

The efficiency and usefulness of sampling-based methods highly depend on the
number of samples that have to be drawn to get a representative range of
samples (Marshall (1996)). The process of choosing the number of samples is
a trade-off between minimizing the number of samples, i.e. the computation
time, and keeping the variety of of the samples as large as possible. One way
of tackling this issue is to think about how large a subset of samples has to be
to show most of the variability of a large number of possible samples.
This can be evaluated by comparing the sample-sample distance (SSD) of a
small subset to the asymptotic SSD – as soon as the SSD of a small sample
subset is converged to the asymptotic SSD of a large sample subset if it covers
the largest part of the intersample variance. We say that the SSD of k samples
is converged to the asymptotic SSD if it is in the order of the asymptotic SSD
of n samples, i.e. the quotient QSSD(k, n) of the SSD and the asymptotic
SSD is ≈ 1. We define the mean SSD of k samples {y1(t), ...yk(t)} at location
t = 20 as SSD(k). The corresponding quotient of the sample-sample distance
and the asymptotic sample-sample distance is then defined by:

QSSD(k, n) =
SSD(k)

SSD(n)
(3.4)

When drawing i.i.d. samples it can be expected that

QSSD(k, n) < QSSD(n, n) = 1∀k < n (3.5)

in most cases including more samples should increase the intersample variance.
As first evaluations with 1024 samples suggested that a really small amount
of samples already covers the intersample distances sufficiently, the following
experiments were performed with 512 samples. In Fig. 3.6 the quotients
QSSD(k, 29) are visualized for sample subsets of size k ∈ {21, 22, ..., 29}. As the
results are really similar for all tolerances and noise-scales the settings with

3.3. BENCHMARKS 29

N
10−3

10−1

101

to
l=

10
−

4 (a)
σ, τ = 0.1Q

Noisy-State Solver
Noisy-Step Solver

N

(b)
σ, τ = 1000Q

101 102 N
10−3

10−1

101

to
l=

10
−

10 (c)
Q

101 102 N

(d)
Q

Figure 3.6: Quotient sample-sample distance (SSD) and asymptotic SSD. Af-
ter at most 16 samples, the SSD captures most of the variance of all samples. Q
is the quotient of SSD and asymptotic SSD, N ≤ 512 is the number of samples,
both axes are log-scaled. Q = [0.5, 1.5] is shaded in green and marks the area
where the SSD is said to be converged to the asymptotic SSD.

the lowest and highest noise-scales, where samples of all solvers are available,
are shown, see A.4 for full results. All of the results show, on average, the
expected trend of a slightly increasing QSSD(k, n) for increasing k. For really
small k ≤ 8, the largest slope can be observed, i.e. the first samples are the
most informative ones. k ≥ 4 samples were in all cases sufficient to achieve
QSSD(k, n) ∈ O(QSSD(n, n)) for n = 512. With k ≥ 16 all QSSD(k, n) are in
the range (0.5, 1.5), indicating that more samples are providing almost no new
information.

3.3.4 Normaltests

Are the Samples Gaussian Distributed?

In general sampling-based solvers can represent every distribution over the
different ys(t), s ∈ {S}. Their main advantage, compared to filtering-based
methods, is their possibility of modeling non-Gaussian distributed solutions.
Therefore it is interesting to test the distribution over the states ys(t) for the
different samples {s1, ..., sn} at the one time point t for Gaussianity. This is
performed for the first dimension y1(t) using the in scipy.stats implemented
normaltest which is based on D’AGOSTINO and Pearson (1973) and includes
skew and kurtosis of the given distribution. It performs a chi-squared test as
proposed in d’Agostino (1971). X1, ..., Xn are a set of random samples of size
n and X1,n < ... < Xn,n the ordered observations from it. The test statistic D

30 CHAPTER 3. BENCHMARKING THE SOLVERS

N
0.0

0.5

1.0

to
l=

10
−

6 (a)

σ = 1, τ = 1, 000P

N

(b)

σ = 10, τ = 10, 000P

Noisy-State Solver
Noisy-Step Solver

N

(c)

σ = 100, τ = 100, 000P

N
0.0

0.5

1.0

to
l=

10
−

8 (d)

P

N

(e)

P

N

(f)

P

102
N

0.0

0.5

1.0

to
l=

10
−

10

(g)

P

102
N

(h)

P

102
N

(i)

P

Figure 3.7: Normaltests at the final state. The crosses mark the result of
the different subset sizes N ∈ {20, 25, 26, ..., 29}. The y-axis P describes the
p-values of the normaltest, the grey background marks the range [0, 0.05] where
the Gaussianity assumption can be rejected.

is then given by

D =
T

n2S
(3.6)

where

T =
n∑
i=1

(i− 1

2
(n+ 1))Xi,n (3.7)

and

S2 =

∑
(Xi −mean(X))2

n
(3.8)

with mean(X) being the sample mean. The expected value of D for samples
that are drawn from a normal distribution is approximately

E(D) = (2
√
π)−1 (3.9)

3.3. BENCHMARKS 31

As the kurtosistest is only valid for n ≥ 20, the smallest subset that is tested
is of size n = 20. For each configuration, a normaltest is performed for sample
subsets of size n ∈ {20, 25, 26, ..., 29}. Distributions for which the p-value p is
high are more Gaussian, for p ≤ 0.05 the null hypothesis is rejected and we
can be almost sure that the distribution is non-Gaussian. While the p-value
cannot be interpreted as the probability of being Gaussian, a higher p-value
still indicates that the null hypothesis is not rejected with more confidence. It
is therefore legitimate to interpret a test with a higher p-value as belonging
to a distribution that is more Gaussian in the sense that its properties are
closer to a Gaussian distribution. P-Values for subsets of size n ≥ 50 are more
relevant and expressive as the test is designed for larger sets of samples with
n ≥ 50 (d’Agostino (1971)). Finally, the most important p is that of the last
sample subset, taking all of the samples into account.
In Fig. 3.2 it can be seen that the Noisy-State Solver with high absolute and
relative error tolerances shows bifurcations and should therefore be considered
to be non-Gaussian, in these cases the normaltests (Fig. 3.7) allow to reject the
Gaussianity assumption. While the null hypothesis cannot be rejected during
the first tests, p decreases, and once p < 0.3 it constantly sinks. Similar results
can be seen for the Noisy-Step Solver. By decreasing the error tolerance to
tol ≤ 10−6, almost all settings of the Noisy-Step Solver come with results where
the distribution is such that the null hypothesis cannot be rejected. There are
only two settings where this does not hold: Relative and absolute tolerances
of 10−6 and a noise-scale of 104 and tol = 10−10 and τ = 0.1.
Comparing that result to 3.2 it can be seen that in the first setting the distri-
bution shows a slight bifurcation. Overall it can be said that the Gaussianity
assumption is rejected for high tolerances, i.e. many allowed errors, for all of
the noise-scales and both solvers (Fig. A.6). The Noisy-State Solver shows a
trend – for lower tolerances the p-values get higher and the distributions get
more Gaussian. Only a small subset of the settings of the Noisy-State Solver
allows to keep the null hypothesis, therefore most of the results are probably
not Gaussian-distributed. For high σ ≥ 103 and all of the tolerances none of
the results are assumed to be Gaussian-distributed (Fig. A.6). For tolerances
tol ≤ 10−8 and noise-scales σ ≥ 10 the hypothesis test yields similar results
and none of the distributions over the solution is Gaussian according to the
chi-squared test (Fig. 3.7 (b),(c),(e),(f)).
For smaller perturbations and lower error tolerances, the results of the Noisy-
State Solver are almost always assumed to be Gaussian-distributed, according
to the chi-squared test. The same holds for the Noisy-Step Solver, with one
exception for tol = 10−10 and τ = 0.1. Taking those results into account it
can therefore be said that the results of the Noisy-Step Solver are overall more
likely to be Gaussian-distributed than those of the Noisy-State Solver. The
Gaussianity of the Noisy-Step Solver is almost independent of the noise-scale
τ and the sample solutions of the Noisy-State Solver are more likely to follow

32 CHAPTER 3. BENCHMARKING THE SOLVERS

a Gaussian distribution when the error tolerances and the noise-scales σ are
low. It is necessary to add that even a distribution that is non-Gaussian ac-
cording to that test might still be close to a Gaussian distribution in a sense
that its main properties can be described by a mean value that is close to the
median of the distribution and almost symmetric tails around that mean. An
example for such a setting is the density at the endresult of the Noisy-State
Solver for tol = 10−8 or tol = 10−6 and σ = 1 (Fig. 3.7 (a),(d)), in both cases
the normaltests reject the Gaussianity assumption while both output densities
look Gaussian (see Fig. 3.2) in the above-described sense.

3.3.5 Filtering-based Solvers

The focus of this work lies on sampling-based ODE solvers. Their output is
non-deterministic and able to represent any distribution over the solution of
the ODE. But sampling-based solvers need to solve the ODE multiple times
to achieve a probabilistic output. Filtering-based methods, as provided in
ProbNum, give a probabilistic, deterministic solution by solving the ODE only
once. ProbNum is still under construction and the applied benchmarks are
therefore just a glimpse into preliminary results of the filtering-based solvers.
To make the results comparable, the previously described benchmarks were
applied to 512 samples of a filtering solution. The solution can be computed
using ProbNums probsolve ivp() (pro) with the following setting for error tol
∈ {10−4, 10−6, ..., 10−14}:

1 import numpy as np

2 from probnum import diffeq

3

4 ivp = diffeq.ode.ivp_examples.lorenz ([0.0 ,20.0] , initrv = np.

array ([0.0 , 1.0, 1.05]))

5

6 diffeq.probsolve_ivp(f=ivp.rhs , t0=0.0, tmax =20.0, y0=ivp.

initrv , df=ivp.jacobian , method="EK1", algo_order =4, atol=

error_tol , rtol=error_tol)

Listing 3.1: Filter settings. Using ProbNum and the extended Kalman filter,
solving the ODE is basically one line of code.

The parameters are set to the same values as those of the sampling-based
solvers which makes the results comparable. The results of the filtering-based
solutions are summarized in Fig. 3.8. As the samples are drawn from a
Gaussian-distributed random variable, the results of the normaltest in Fig.
3.8 (c) indicate that 512 samples are enough to show this property of the pos-
terior samples. The quotient of the SSD and the asymptotic SSD in Fig. 3.8

3.3. BENCHMARKS 33

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Y

0.0

0.5

1.0 (a)

D

tol = 10−4

tol = 10−6

tol = 10−8

tol = 10−10

tol = 10−12

tol = 10−14

LSODA

101 102
N

10−3

10−2

10−1

100

101

(b)

Q

102
N

0.0

0.5

1.0 (c)

P

101 102
N

10−8

10−6

10−4

10−2

100

102 (d)

Q

Figure 3.8: Benchmarks for the filtering-based method. (a) corresponds to
3.2, (b) to 3.6, (c) to 3.5 and (d) to 3.7. All of the sample subsets are Gaussian-
distributed for subset sizes N ≥ 26 and their SSD covers the asymptotic SSD
for small subsets. For lower error tolerances the solution of the filtering-based
method is close to the reference solution. In the chosen settings the SSD can
not cover the SRD.

(b) indicate that, similar to the sampling-based solvers, around 8 samples are
sufficient to cover the SSD. In the density estimate over the final states in Fig.
3.8 (a) it can be seen that higher error tolerances lead to results that are further
away from the reference solution, for tolerances ≤ 10−8 the solver solution is
close to the reference solution. While the density distributions are not visually
separable, the quotient of the SSD and SRD in 3.8 (d)indicates that the most
well-calibrated solvers are those with high error tolerances. As first experi-
ments with the same error tolerances that were used for the sampling-based
solvers tended to get more well-calibrated for high tolerances, tolerances up
to tol = 10−14 were evaluated. It can be seen that the best-calibrated solvers
are those with error tolerances in {10−8, 10−10, 10−12}. Those results of the
filtering-based methods cannot be seen as final benchmarking results but are
only intermediate results.

34 CHAPTER 3. BENCHMARKING THE SOLVERS

Chapter 4

Discussion

The main goal of this part is to bring the previous benchmarking results to-
gether. The aim is to find settings where the solvers are the most informative in
a probabilistic sense and to figure out whether they are useful. By comparing
the solvers among each other the individual benefits of each of the probabilistic
solvers can be evaluated.

4.1 Bring out the Best of the Solvers

Noisy-State Solver

The Noisy-State Solver perturbs the states y(t) at time point t with Gaussian-
distributed noise. The estimated error ξ(t) defines the variance of the
Gaussian-distributed noise with zero-mean. Intuitively it makes sense to
choose the noise-scale such that the final result ŷ(t) ∈ [y(t)− ξ(t), y(t) + ξ(t)],
i.e. setting σ = 1. It can be seen that this intuition is at least partially cor-
rect. While a solver with noise-scale σ = 0.1 only covers the true solution
for the highest error tolerance with a, compared to the lower tolerances, high
sample-reference distance, and a high sample-sample distance, the solver with
noise-scale σ = 1 covers the true solution for most of the settings. This can
be seen when combining the results from Fig. 3.5 and Fig. 3.3 indicating that
σ = 1 is a better choice for the noise-scale than σ = 0.1.
The solutions Stol of the underlying deterministic solvers with the same toler-
ances as corresponding Noisy Solvers (see Fig. 3.2) are for all chosen tol-
erances tol ≤ 10−10 not capable to cover the reference solution Sref , i.e.
|Stol − Sref | ≥ 10−3. It can be seen that by choosing σ ≥ 1 all of the Noisy-
State Solvers with tol ≥ 10−8 can cover the solution. While the Noisy-State
Solver is well-calibrated for all σ ≥ 10 and close to being well-calibrated for
σ < 10 the calibration for higher noise-scales comes mostly due to an overall
high variance, see Fig. 3.3. Comparing the reference solution to the density

35

36 CHAPTER 4. DISCUSSION

over the final states (Fig. 3.2) shows that the calibration of those solvers with
high noise-scales can be traced back to a bimodal endresult with one local
maximum for ŷ(t) being slightly larger than the reference solution and a sec-
ond smaller local maximum ŷ(t) < y(t). This bimodality can also be found
in Fig. 3.3 for the densities over the sample-reference solutions, indicating
that the reference solution is covered but many samples are far away from it.
Given all benchmarking results, it can be concluded that the choice of σ is less
important for small tolerances, for large tolerances setting σ ≥ 10 is sufficient
to cover the reference solution. The best choice for the noise-scale is therefore,
given the benchmarking results, σ ∈ [10, 100].
Overall the Noisy-State Solver shows not too bad performance in all of the
settings. Comparing the samples of the Noisy-State Solver and the determin-
istic solution of the same tolerance solution to the reference solution, both
are on average larger than the reference solution. The Noisy-State Solution is
therefore in no setting recognisably worse than the deterministic solution with
the same tolerance.

Noisy-Step Solver

The Noisy-Step Solver showed overall similar results to the Noisy-State Solver.
The higher the noise-scale, the more likely it is that the sample-sample distance
can cover the reference solution. This capacity of covering the reference solu-
tion comes with higher variance and a higher sample-sample distance. While
the sample-sample distance is in all cases smaller compared to the solutions of
the Noisy-State Solvers with similar performance, i.e. solvers that are equally
calibrated, there are overall less settings where the solvers are well-calibrated.
This makes it harder to find a suitable choice for the noise-scale τ that works
for all error tolerances. While higher noise-scales lead to more-calibrated re-
sults, they are not suitable for high tolerances due to stepsizes ≥ 1 that are not
allowed using the uniform noisy steprule. When using only the uniform noisy
steprule (equation 2.8), without projecting the result ŷ(t) that is evaluated at
t+ξ(t) back to position t, no solver is well-calibrated, i.e. there is no noise-scale
that covers the reference solution (see A.4). When comparing the Noisy-Step
Solver results to the reference solution with the same error tolerances, it can
be seen that the modes of the Noisy-Step Solver are in most cases closer to the
reference solution than the same tolerance solution (Fig. 3.2 (a),(d),(e)).

4.2. CHOOSE A USEFUL SOLVER 37

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

−15

0

15
Y1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

−15

0

15

Y2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t0

20

40
Y3

Figure 4.1: Trajectories split dimensionwise. From bottom to top the three
dimensions of a Noisy-State Solver with tol = 10−4 and σ = 1 are plotted for 1
samples. As the discrete output at the endresults indicates, most samples can
be assigned to one of two groups of trajectories.

4.2 Choose a Useful Solver

Compared to the deterministic solution all of the Noisy Solvers allow to gain
further insight into the chaotic behaviour of the system. Small perturbations
are sufficient to yield samples that are, at least for parts of the time span, not
even close to each other. Especially for high error tolerances where a deter-
ministic solver with the same tolerance as the corresponding Noisy Solver is
further away from the reference solution, the probabilistic solvers show a high
variance. As the variance of the Noisy-State samples depends directly on the
error estimate, this high sample variance indicates that the error estimate is
high enough to lead to completely different outputs and should therefore not be
neglected. The bimodalities represent a bifurcation at at least one evaluation
point. In the continuous case in Fig. 4.1 it can be seen that the interpre-
tation of the bimodality in the plot over the endstate as a bifurcation of the
trajectories is plausible. Taking into account that a maximum amount of 16
samples is able to cover enough intersample variance in all Noisy Solvers with
all noise-scales and tolerances, both solvers can be seen as useful in the sense
that they allow making assumptions about the stability of the solver without
too much computational cost.
In many cases, especially with high tolerances or large noise-scales, the solver
output shows bimodal outputs, indicating that a small change in the input of
the solver at a previous point leads to completely different solutions. These so-

38 CHAPTER 4. DISCUSSION

lutions are also interesting when comparing them to the filtering-based solvers
as these only allow for a Gaussian-distributed variance and are deterministic.
Wherever the distribution over the samples is unimodal, the mode is centered
around a positive value y1(20) > 0, except for the Noisy-Step Solver and a
high error tolerance tol = 10−4. This does hold for the Noisy Solvers and for
the filtering-based solver.
While the distributions over the samples are really similar for small error tol-
erances, seeming to converge to the reference solution, the samples for lower
tolerances are in both sampling-based solvers diverse. But which outcome is
the one that gives the most insight into to system?

4.3 Why the Lorenz System?

The Lorenz system is an interesting but hard problem, mostly due to its chaotic
behaviour. While the system itself involves no random stochasticity, it is
known for the butterfly effect (3.1) and is therefore deterministic but unpre-
dictable in practice. For the chosen parameters, i.e. for b = 28 the Lorenz
system is symmetric in (y1, y2), i.e. if (y1(t), y2(t), y3(t)) is a solution, then
(−y1(t),−y2(t), y3(t)) is a solution as well (James Hateley). For the solution
at the final state this means that the LSODA reference solution yref is only a
part of the solutions that satisfy the ODE.
It can be seen in Fig. 3.2 that for both Noisy Solvers noise-scales and error
tolerances exist, such that both, positive and negative y1 values are reached.
This is never the case in the deterministic solvers based on filtering methods
or classic methods as RK45 or LSODA. In the continuous solution Fig. 4.1 all
of the trajectories are close to each other until a certain time point tdiv > 14
at which the trajectories over the first and second dimension start to diverge.
While the solution over the third dimension does also show more perturbance
after tdiv the solution over the first two dimensions indicates the symmetry
property of the Lorenz system. The Noisy Solvers for low error tolerances
allow therefore to guess a property of the Lorenz system, which the reference
solution does not show at all, but come with a huge variance that decreases
the information about the actual numerical value of y1(tmax). The positive
mode of the Noisy Solvers does in no case correspond directly to the LSODA
solution yref . The bimodal noisy solutions show a high variance with a slightly
shifted mode compared to the LSODA solution.
Taking into account that the perturbations of the Noisy Solvers fulfill conver-
gence criteria and are mathematical useful, one might ask whether a pertur-
bation that does not fulfill any criteria, i.e. simple random noise, would yield
similar results.

4.4. LIMITATIONS OF THE SOLVERS 39

4.4 Limitations of the Solvers

Especially the Noisy-Step Solver shows a bias in the solution and only works
well for small ranges of noise-scales and tolerances. The Noisy-State Solver
works on a broader range of noise-scales and seems to be less sensitive to the
noise-scale in general. In a true sampling-based and noisy setting where the
reference solution is unknown, the order of the global error should be cov-
ered by the order of the local error estimate. The SSD should therefore cover
the SRD and the noise-scale has to be chosen without knowing the SRD. In
ODEs there are mainly two sources of errors, truncation and rounding errors
(Shampine (2005)). Rounding errors occur due to finite precision of floating-
point arithmetic and can become a problem in solving ODEs for very small
stepsizes or error tolerances (Shampine (2005)). The truncation error is the
error that is caused by the approximation, i.e. the local discretization error
from time point t to t + 1. The local errors are approximated by the solver
itself and in classic methods, the global error is not estimated and controlled
by the solver (Shampine (2005)). There exist various methods to determine
upper bounds of the global error given local truncation errors (Constantinescu
(2015), Zadunaisky (1976)).
The global error is the error that is propagated along the numerical integration
process. Making this error a part of the solution is one of the most impor-
tant properties of probabilistic ODE solvers, independent of the underlying
method. The Noisy Solvers are both sensitive to the noise-scale and it can
be seen that their calibration is a trade-off between accuracy and covering the
reference solution.
The filtering-based solvers do not have an additional noise-scale but their un-
certainty depends on the initialization of the solver, the introduced covariance
and other settings. Therefore the chosen setting probably does not bring the
best out of the filtering-based solvers.

4.5 Simplify the Current Solvers

Use Only the Noisy Steprule

One idea of expanding the Noisy-Step Solver is to reduce it to the noisy
steprule. The results are, in all settings, uncalibrated solvers (see Fig. A.4).
Especially for high error tolerances the results with the noisy steprule are worse
compared to all of the other solvers, incapable of covering the reference solu-
tion. As the intersample variance of those high tolerance solvers is still the
highest, the results are better-calibrated compared to lower error tolerances,
see Fig. A.4. For lower tolerances, the solution of the uniform noisy steprule is
really close to the solution of the Noisy-Step Solver with a much lower sample

40 CHAPTER 4. DISCUSSION

variance and therefore worse calibration. Using only the noisy steprule without
projecting the solution back to the original time point is therefore considered
to be not useful.

Interpolate the Noisy-State Solution Differently

The proposal by Conrad et al. (2017) and current implementation of the inter-
polation of the Noisy-State Solver includes n independent Kalman posteriors
for n steps of the solver. This is computationally expensive and the final dense
output is a kinky, non-smooth function. It might therefore be interesting to
interpolate the dense output as described in the alternative approach in 2.3.

4.6 Outlook

There are various ways of expanding the current work. Some possibilities that
are easy to realize by expanding the current implementation are described in
the following section. The current benchmarks can be applied to other ODEs.
One interesting problem might be the three-body problem which can be de-
scribed in terms of the Newtonian equations and describes the motion of three
bodies that solely depends on their mutual gravitation (Musielak and Quarles
(2014)). In general, with the current setting, the benchmarks can be applied to
every system of ODEs that can be solved by a classic explicit method, i.e.every
non-stiff ODE.
Currently, all evaluations were performed given the solution at the endpoint
of the time span. This does not take the interpolation between the approx-
imations of the discrete states into account. Especially in the case of the
Noisy-State Solver where the dense output is given by a concatenation of i.i.d
Kalman filtering solutions, it might be interesting to consider not only the
solution at one time point but the continuous trajectory.
Possibilities of expanding the given probabilistic sampling-based solvers were
described in 4.5 and can be easily implemented. This adaptation only changes
the interpolation of the dense output of the Noisy-State Solver by fitting one
Kalman posterior to the discrete state solution. In that case noise is intro-
duced into the Kalman filter as a stepwise function that depends on the error
estimate of the next state evaluation.
In equation 2.7 the Log-normal noisy steprule is given. The data of that
steprule has not been taken into account as the first evaluations seemed to be
slightly worse than those of the uniform noisy steprule (equation 2.8). As the
Log-normal rule and the Uniform-rule are only two steprule suggestions, there
exist various other rules that fulfill the given, too.
In the Noisy-Step Solver both steprules showed results that were better-
calibrated when increasing the noise-scales, this dependency can be further

4.7. NOISY OR NOT? 41

investigated. The chosen benchmarks are just a subset of possible benchmarks.
Adding more benchmarks, either by including the previously described setting
into the current framework or by finding new interesting metrics increases the
expressiveness of the current investigations.

4.7 Noisy or Not?

One question that still needs to be answered is whether the Noisy Solvers
are considered being useful and advantageous compared to classic determin-
istic and filtering-based methods. Thousands of samples, several metrics and
comparisons later it can clearly be said: It depends. While classic methods
neglect uncertainty in computation and the fact that approximations are ap-
proximations to the solution and not the solution, probabilistic methods make
this uncertainty explicit. Especially in problems such as the Lorenz system
this can be extremely useful to exploit the system itself, see where chaotic be-
havior can be observed and how slight changes can change the whole output.
But introducing noise comes with the disadvantage that the solution is a dis-
tribution over potentially really noisy samples. Without a reference solution
it is hard to discover biases in that distribution and, e.g. for the symmetric
Lorenz system, even harder to come up with a numerical solution that de-
scribes the system. This is achieved much easier with filtering-based methods,
the solution can be described by a mean and covariance function, but those
filtering-based methods always yield a Gaussian-distributed outcome and are
not able to show bifurcations or a non-Gaussian variance. None of the solvers
is perfect, all of them come with advantages and disadvantages. To gain the
most insight into the behaviour of a system that is described by an ODE, it
is therefore recommendable to not only trust the approximation of one solver.
Edward Lorenz has put it in a nutshell many years ago:

Chaos – when the present determines the future, but the approximate present
does not approximately determine the future. - Edward Lorenz

It should always be remembered that computation comes with approximation
and therefore always influences the solution.

42 CHAPTER 4. DISCUSSION

Appendix A

Further Tables and Figures

Plots for all parameter settings, including the solver which uses the noisy
steprule from equation 2.9 without projecting the evaluation locations (see
2.4.1).

43

44 APPENDIX A. FURTHER TABLES AND FIGURES

−10 0 10
Y

0.0

0.2

0.4

0.6

0.8

1.0

to
l=

10
−

4

σ, τ = 0.1D

−10 0 10
Y

σ, τ = 1D

−10 0 10
Y

σ, τ = 10D

−10 0 10
Y

σ, τ = 100D

−10 0 10
Y

σ, τ = 1, 000D

−10 0 10
Y

σ, τ = 10, 000D

10.0 12.5 15.0
Y

0.0

0.2

0.4

0.6

0.8

1.0

to
l=

10
−

6

D

Noisy-State Solver
Noisy-Step Solver
Noisy Steprule
same tol
LSODA

10 15
Y

D

−10 0 10
Y

D

−20 0
Y

D

−10 0 10
Y

D

10 12
Y

D

8.6 8.7
Y

0.0

0.2

0.4

0.6

0.8

1.0

to
l=

10
−

8

D

8.6 8.8
Y

D

8 10
Y

D

−10 0 10
Y

D

−10 0 10
Y

D

8.6 8.7
Y

D

8.535 8.536 8.537
Y

0.0

0.2

0.4

0.6

0.8

1.0

to
l=

10
−

1
0

D

8.534 8.536 8.538
Y

D

8.525 8.550
Y

D

8.4 8.6
Y

D

0 5 10
Y

D

8.535 8.536 8.537
Y

D

Figure A.1: Density at the final state Y1(20) for various noise-scale and toler-
ance combinations. Expanded version of Fig. 3.2.

45

E0.0

0.5

1.0

to
l=

10
−

4

σ, τ = 0.1D

SSD
SRD

E

σ, τ = 1D

E

σ, τ = 10D

E

σ, τ = 100D

E

σ, τ = 1, 000D

E0.0

0.5

1.0

to
l=

10
−

6

D

E

D

E

D

E

D

E

D

E0.0

0.5

1.0

to
l=

10
−

8

D

E

D

E

D

E

D

E

D

10−6 10−4 10−2 100 102

E0.0

0.5

1.0

to
l=

10
−

10

D

10−6 10−4 10−2 100 102

E

D

10−6 10−4 10−2 100 102

E

D

10−6 10−4 10−2 100 102

E

D

10−6 10−4 10−2 100 102

E

D

Figure A.2: Density estimation of the SSD and SRD of the Noisy-State Solver
for various noise-scale and tolerance combinations. Expanded version of Fig.
3.3.

46 APPENDIX A. FURTHER TABLES AND FIGURES

E0.0

0.5

1.0

to
l=

10
−

4

τ = 0.1D

SSD
SRD

E

τ = 1D

E

τ = 10D

E

τ = 100D

E

τ = 1, 000D τ = 10, 000

E0.0

0.5

1.0

to
l=

10
−

6

D

E

D

E

D

E

D

E

D

E

D

E0.0

0.5

1.0

to
l=

10
−

8

D

E

D

E

D

E

D

E

D

E

D

10−9 10−6 10−3 102

E0.0

0.5

1.0

to
l=

10
−

10

D

10−9 10−6 10−3 102

E

D

10−9 10−6 10−3 102

E

D

10−9 10−6 10−3 102

E

D

10−9 10−6 10−3 102

E

D

10−9 10−6 10−3 102

E

D

Figure A.3: Density estimation of the SSD and SRD of the Noisy-Step Solver
for various noise-scale and tolerance combinations. Expanded version of Fig.
3.4.

47

N
10−7

10−5

10−3

10−1

101

103

N
oi

sy
-S

ta
te

S
ol

ve
r

σ, τ = 0.1Q

N

σ, τ = 1Q

N

σ, τ = 10Q

N

σ, τ = 100Q

N

σ, τ = 1, 000Q σ, τ = 10, 000

N
10−7

10−5

10−3

10−1

101

103

N
oi

sy
-S

te
p

S
ol

ve
r

Q

0.0001
1e-06
1e-08
1e-10

N

Q

N

Q

N

Q

N

Q

N

Q

101 102 N
10−7

10−5

10−3

10−1

101

103

N
oi

sy
S

te
pr

ul
e

Q

101 102 N

Q

101 102 N

Q

101 102 N

Q

101 102 N

Q

101 102 N

Q

Figure A.4: Quotient sample-sample distance and sample-reference distance
for various noise-scale and tolerance combinations. Expanded version of Fig.
3.5.

48 APPENDIX A. FURTHER TABLES AND FIGURES

N
10−2

10−1

100

101

to
l=

10
−

4

σ, τ = 0.1Q

Noisy-State Solver
Noisy-Step Solver
Noisy Steprule

N

σ, τ = 1Q

N

σ, τ = 10Q

N

σ, τ = 100Q

N

σ, τ = 1, 000Q

N

σ, τ = 10, 000Q

N
10−2

10−1

100

101

to
l=

10
−

6

Q

N

Q

N

Q

N

Q

N

Q

N

Q

N
10−2

10−1

100

101

to
l=

10
−

8

Q

N

Q

N

Q

N

Q

N

Q

N

Q

101 102 N
10−2

10−1

100

101

to
l=

10
−

10

Q

101 102 N

Q

101 102 N

Q

101 102 N

Q

101 102 N

Q

101 102 N

Q

Figure A.5: Quotient of sample-sample distance and asymptotic sample-
sample distance for various noise-scale and tolerance combinations. Expanded
version of Fig. 3.6.

49

N
0.0

0.5

1.0

to
l=

10
−

4

σ = 0.1, τ = 1P

N

σ = 1, τ = 10P

Noisy-State Solver
Noisy Steprule
Noisy-Step Solver

N

σ = 10, τ = 100P

N

σ = 100, τ = 1, 000P

N

σ = 1000, τ = 10, 000P

N
0.0

0.5

1.0

to
l=

10
−

6

P

N

P

N

P

N

P

N

P

N
0.0

0.5

1.0

to
l=

10
−

8

P

N

P

N

P

N

P

N

P

102 N
0.0

0.5

1.0

to
l=

10
−

10

P

102 N

P

102 N

P

102 N

P

102 N

P

Figure A.6: Normaltests for various noise-scale and tolerance combinations.
Expanded version of Fig. 3.7.

50 APPENDIX A. FURTHER TABLES AND FIGURES

Bibliography

ProbNum IVP Documentation. https://probnum.readthedocs.io/en/
latest/automod/probnum.diffeq.probsolve ivp.html. Accessed: 2021-
04-17.

SciPy RK-methods Documentation. https://github.com/scipy/scipy/
blob/master/scipy/integrate/ ivp/rk.py. Accessed: 2021-03-22.

A. Abdulle and G. Garegnani. Random time step probabilistic methods for
uncertainty quantification in chaotic and geometric numerical integration.
Statistics and Computing, pages 1–26, 2020.

J. C. Butcher. A history of runge-kutta methods. Applied numerical mathe-
matics, 20(3):247–260, 1996.

J. C. Butcher and N. Goodwin. Numerical methods for ordinary differential
equations, volume 2. Wiley Online Library, 2008.

C. Chicone. Ordinary differential equations with applications, volume 34.
Springer Science & Business Media, 2006.

P. R. Conrad, M. Girolami, S. Särkkä, A. Stuart, and K. Zygalakis. Statis-
tical analysis of differential equations: introducing probability measures on
numerical solutions. Statistics and Computing, 27(4):1065–1082, 2017.

E. Constantinescu. Estimating global errors in time stepping. arXiv preprint
arXiv:1503.05166, 2015.

E. L. Crow and K. Shimizu. Lognormal distributions. Marcel Dekker New
York, 1987.

R. D’AGOSTINO and E. S. Pearson. Tests for departure from normality.
empirical results for the distributions of b 2 and b. Biometrika, 60(3):613–
622, 1973.

R. B. d’Agostino. An omnibus test of normality for moderate and large size
samples. Biometrika, 58(2):341–348, 1971.

51

https://probnum.readthedocs.io/en/latest/automod/probnum.diffeq.probsolve_ivp.html
https://probnum.readthedocs.io/en/latest/automod/probnum.diffeq.probsolve_ivp.html
https://github.com/scipy/scipy/blob/master/scipy/integrate/_ivp/rk.py
https://github.com/scipy/scipy/blob/master/scipy/integrate/_ivp/rk.py

52 BIBLIOGRAPHY

J. R. Dormand and P. J. Prince. A family of embedded runge-kutta formulae.
Journal of computational and applied mathematics, 6(1):19–26, 1980.

I. Hashim, M. Noorani, R. Ahmad, S. Bakar, E. Ismail, and A. Zakaria. Ac-
curacy of the adomian decomposition method applied to the lorenz system.
Chaos, Solitons & Fractals, 28(5):1149–1158, 2006.

P. Hennig and S. Hauberg. Probabilistic solutions to differential equations
and their application to riemannian statistics. In Artificial Intelligence and
Statistics, pages 347–355. PMLR, 2014.

James Hateley. https://web.math.ucsb.edu/~jhateley/paper/lorenz.pdf.
Accessed: 2021-04-08.

E. Lorenz. The butterfly effect. World Scientific Series on Nonlinear Science
Series A, 39:91–94, 2000.

E. N. Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences,
20(2):130–141, 1963.

A. J. Lotka. Contribution to the theory of periodic reactions. The Journal of
Physical Chemistry, 14(3):271–274, 2002.

M. N. Marshall. Sampling for qualitative research. Family practice, 13(6):
522–526, 1996.

Z. Musielak and B. Quarles. The three-body problem. Reports on Progress in
Physics, 77(6):065901, 2014.

ProbNum Documentation. https://probnum.readthedocs.io/en/latest/.
Accessed: 2021-03-12.

S. Särkkä. Bayesian filtering and smoothing. Number 3. Cambridge University
Press, 2013.

S. Särkkä and A. Solin. Applied stochastic differential equations, volume 10.
Cambridge University Press, 2019.

M. Schober, D. Duvenaud, and P. Hennig. Probabilistic ode solvers with
runge-kutta means. arXiv preprint arXiv:1406.2582, 2014.

SciPy Integrate Documentation. https://docs.scipy.org/doc/scipy/
reference/integrate.html. Accessed: 2021-03-12.

L. F. Shampine. Error estimation and control for odes. Journal of Scientific
Computing, 25(1):3–16, 2005.

https://web.math.ucsb.edu/~jhateley/paper/lorenz.pdf
https://probnum.readthedocs.io/en/latest/
https://docs.scipy.org/doc/scipy/reference/integrate.html
https://docs.scipy.org/doc/scipy/reference/integrate.html

BIBLIOGRAPHY 53

J. Skilling. Bayesian solution of ordinary differential equations. In Maximum
entropy and Bayesian methods, pages 23–37. Springer, 1992.

G. Teschl. Ordinary differential equations and dynamical systems, volume 140.
American Mathematical Soc., 2012.

F. Tronarp, H. Kersting, S. Särkkä, and P. Hennig. Probabilistic solutions to
ordinary differential equations as nonlinear bayesian filtering: a new per-
spective. Statistics and Computing, 29(6):1297–1315, 2019.

P. E. Zadunaisky. On the estimation of errors propagated in the numerical
integration of ordinary differential equations. Numerische Mathematik, 27
(1):21–39, 1976.

54 BIBLIOGRAPHY

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und
nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen,
die dem Wortlaut oder dem Sinne nach anderen Werken entnommen sind,
durch Angaben von Quellen als Entlehnung kenntlich gemacht worden sind.
Diese Masterarbeit wurde in gleicher oder ähnlicher Form in keinem anderen
Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift

	List of Figures
	List of Abbreviations
	Introduction
	Ordinary Differential Equations
	Classic ODE Solvers
	Probabilistic ODE Solvers

	Methods and Material
	Overview
	Sampling-Based Solvers
	Noisy-State Solver
	Noisy-Step Solver
	Programming

	Benchmarking the Solvers
	The Lorenz System
	Settings of the Lorenz System
	Benchmarks

	Discussion
	Bring out the Best of the Solvers
	Choose a Useful Solver
	Why the Lorenz System?
	Limitations of the Solvers
	Simplify the Current Solvers
	Outlook
	Noisy or Not?

	Further Tables and Figures
	Bibliography

