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Abstract. Despite its relevance for navigation surprisingly little is known about 

how goal direction bearings to distant locations are computed. Behavioural and 

neuroscientific models proposing the path integration of previously navigated 

routes are supported indirectly by neural data, but behavioral evidence is lack-

ing. We show that humans integrate navigated routes post-hoc and incremental-

ly while conducting goal direction estimates. Participants learned a multi-

corridor layout by walking through a virtual environment. Throughout learning, 

participants repeatedly performed pairwise pointing from the start location, end 

location, and each turn location between segments. Pointing latency increased 

with the number of corridors to the target and decreased with pointing experi-

ence rather than environmental familiarity. Bimodal pointing distributions indi-

cate that participants made systematic errors, for example, mixing up turns or 

forgetting segments. Modeling these error sources suggests that pointing did not 

rely on one unified, but rather multiple representations of the experimental en-

vironment. We conclude that participants performed incremental on-the-fly cal-

culations of goal direction estimates within compartmentalised representations, 

which was quicker for nearby goals and became faster with repeated pointing. 

Within navigated environments humans do not compute difference vectors from 

coordinates of a globally consistent integrated “map in the head”. 
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1 Introduction 

For survey estimates, such as novel shortcutting or distal pointing, navigators must 

utilise their memory to relate their current location to a distant, non-perceivable target 

location. A straight-forward mechanism to achieve this is read-out of current and 

target coordinates from an integrated memory and computation of a difference vector. 
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Such a computationally simple process does not depend on distance to target or famil-

iarity with an environment, but requires that locations are represented within a coor-

dinate system. Other behavioral [1, 2] and neuroscientific models [3–5] propose path 

integration of previously navigated routes, for example, in the form of a mental walk. 

These assumptions are supported by neural data such as successive activation of hip-

pocampal place cells along a path to the goal [6] and medial temporal lobe activity 

correlating with goal distance [7, 8]. A related account does not assume mental walk, 

but constructing a mental model of a non-visible area by integrating successive corri-

dors until a goal location is reached [9]. Both mental walk and mental model assume 

an increase in computation with route distance and both would predict speed-up with 

repeated survey estimation demands. In contrast to read-out from a cognitive map 

these two models are hereafter referred to as ‘constructive’.  

In order to test these assumptions we conducted a learning experiment within an 

immersive virtual environment (VE) consisting of a route of eight corridors presented 

via a head-mounted display (HMD) (Fig. 1 and Fig. 2A). Participants repeatedly 

walked through the environment from start to end and back. Throughout learning, 

they were repeatedly asked to point from each of the nine route locations (Fig. 1B) to 

each other location. Participants either conducted pointing tasks interspersed through-

out the whole environment familiarisation period, or later on in the navigational task. 

We used latency data as well as an analysis of systematic errors to draw conclusions 

about the alternative models explored above.  Latency was measured to probe whether 

distance influenced location processing (i.e., read-out vs. constructive) and also 

whether learning was contingent on repeated survey task demands or mere exposure. 

The systematic error analysis characterised whether errors could be specifically mod-

elled as non-random deviations from the correct pointing direction, such as on the 

basis of incorrect turns or deleting sections during integration.   

 

 

Fig. 1. Experimental environment (A) Participant’s view. (B) Bird’s eye view of environmental 

layout. Circles represent target and test locations for the pointing task numbered from start 

across the center of all turn to the end of the route. 



2 Methods  

2.1 Participants 

Twenty-five participants (12 females and 13 males) aged between 23 and 65 (M = 

32.2 years, SD = 11 years) participated in this experiment. They were randomly as-

signed to the early pointing condition (12 participants) and the late pointing condition 

(13 participants).  We expected large effect sizes for the between group comparisons 

in addition with precise measurements due to many repetitions. Twelve participants 

per group should be sufficient to find them. All participants were recruited via a sub-

ject database, were paid for their participation, and signed an informed consent ap-

proved by the ethical committee of the University Clinics in Tübingen before partici-

pating in the experiment. 

2.2 Material 

The Virtual Environment. Figure 1 shows a snapshot of the environment as seen 

during walking, as well as a map of the route. The route consisted of a start and end-

point, as well as seven turning locations along the route.  During the first two learning 

trials, all nine of these ‘target locations’ were named by the experimenter as the par-

ticipant arrived at the location.  These target locations were named after salient land-

marks at the locations.  The locations were named as follows: Filing Cabinet, Bay 

Window, Mirror, Vase, Potted Plant, Bookcase, Painting, Grandfather Clock, Fish-

bowl. The corridor design and environmental landmarks were distinct at each loca-

tion, with sufficient information to identify and distinguish each location from one 

another.  

 

Fig. 2. Experimental Procedure. (A) A participant walking through the environment during the 

learning phase. (B) A participant performing the test phase using an input device. The persons 

on the photo consented to publication. 

The Setup. Participants walked within a 12x12 meter space, of which the VE covered 

a 10x10 meter area. This allowed them to explore the space, without the possibility of 

walking into any obstacles and provided realistic proprioceptive and vestibular feed-

back, as well as efference copies while walking in VEs (see Fig. 2A). To obtain par-

ticipants’ location in the space, their head position was tracked by 16 high-speed mo-



tion capture cameras at 120 Hz (Vicon® MX 13). This data was used to update the 

visualization of the VE. The visual surrounding at a location was rendered in real time 

(60Hz) using a NVIDIA Quadro FX 3700 graphics card with 1024 MB RAM in a 

standard laptop. Participants viewed the scene in stereo using an nVisor SX 60 head-

mounted display that provided a field of view of 44x35 degrees at a resolution of 

1280x1024 pixels for each eye with 100% overlap. This setup provided important 

visual depth cues such as stereo images and motion parallax. 

2.3 Procedure 

There were 10 walkthroughs in each direction, totaling 20 walkthroughs of the en-

vironment. Participants were instructed to follow a moving ball throughout the space 

in order to constrain exploration time. The virtual ball moved at an average speed of 

1m per second, stopping to hover for 3 seconds over white circles on the ground at 

each turning location and at both ends of the environment.   

During the pointing task in the test phase, participants were teleported to target lo-

cations. Here they were asked to successively point to all other target locations. Dur-

ing these trials, participants could look and rotate around, but not walk. This was en-

forced by placing participants in a circular handrail with 0.48 meter diameter to pre-

vent them from leaving their location. Participants were asked to press a button on 

their gamepad once they recognised their location (Fig. 2B). The time required to 

“self-localise” was recorded for each participant. Participants were then instructed on 

the display to point to a named location, as if the walls were transparent. They were 

provided with a black midline through the display and informed to move their head 

until the line corresponded to the estimated target location. The name of the target 

location was displayed on the screen for each pointing. When participants believed 

they were facing the target, they pressed a button to move on to the next pointing. At 

each testing location all eight target locations were presented in a random order, that 

was newly determined for each location. No feedback on accuracy was given. After 

they had pointed to all targets from one location, participants were teleported to a new 

position. This was repeated, in random order, until participants had pointed to all 

target locations from all nine locations along the route. This resulted in 72 pointings 

per pointing task.  

The final section of the test phase consisted of a sequence task. Participants were 

again transported to each location and were required to detail the turning sequence 

from that location to each end location by pressing the ‘left’ and ‘right’ keys on the 

gamepad corresponding to the turning sequence from their location to one of the end 

locations. This was collected for both directions from every location except the end 

locations themselves, and the penultimate locations before an end location. For these 

locations, only one sequence direction was recorded, as one end location is always 

visible for each penultimate location.  Data from this task is not further reported here.  

Participants were randomly assigned to two conditions, which dictated when they 

experienced the pointing task. Participants in the early pointing group were given the 

complete test phase (pointing task followed by sequence task) every four trials. Partic-

ipants in the late pointing condition performed only the sequence section of the test 



phase after learning trials 4, 8 and 12. They eventually experienced the full test phase 

after 16 and then 20 trials. Additional post hoc tasks and questionnaires are not re-

ported here. The whole experiment with in between breaks lasted approximately 3.5 

hours in the early pointing and 2.5 hours in the late pointing group. 

2.4 Analysis 

For the analysis we used pointing time and computed the absolute pointing error. 

Values deviating more than three standard deviations from a participant’s mean were 

not analyzed. Accuracy and latency were analyzed with ANOVAs using the between-

participants factor pointing group (early vs. late) and either the within-participants 

factor learning trial (4, 8, 12, 16 & 20), or distance to the target expressed as the num-

ber of corridors (1-8). When deviating from sphericity we applied the Greenhouse-

Geisser correction.  

 

 

Fig. 3. Example pointing distributions. Solid red circles denote correct point location. Circular 

histograms plots are shown at pointing locations and reflect directions pointed towards. The 

black and red circles denote the final pointing location assuming a subject mixes up a turn. 

2.5  Error modeling 

First, it was determined if participants made qualitative errors, characterised as sys-

tematic, non-random deviations from the correct pointing direction. We expected 

correct pointing directions derived from pairwise pointings (i.e., pointing from loca-

tion X to location Y) to have Von Mises distribution (i.e., the circular equivalent of 

normal distribution) with peaks centered near the correct pointing directions. To test 

for prevalent Von Mises distribution we conducted v-tests [10]. Then Rayleigh tests 

examined if any deviation was due to uniform data (i.e., point equally often in each 

direction) or instead a result of an additional Von Mises distribution peak at another 

location (Fig. 3). In order to establish the origin of any such errors, we conducted 

modelling to distinguish between possible representational strategies. A read-out 

strategy relies on co-ordinate look-up from a single unified representation, while men-

tal model construction allows for multiple local representations that may vary across 

locations pointed from, pointed to or direction of pointing 

According to constructive theories, sources of systematic error might include: wrong 

turns, forgetting or inserting elements, mixing up current location or target location, 

and estimating on the basis of a smaller number of turns. Such qualitative errors were 

assumed as the most logical explanation of any bimodality observed in the pointing 

data, compared to other continuous sources of error, such as leg-length adjusting.  



In order to identify such turning and forgetting errors, new mazes were generated 

in MATLAB by alternating single turn directions (e.g., at location 4 or 6 as in Fig 3) 

resulting in 7 alternative mazes or by eliminating legs (e.g., between location 3 and 4) 

resulting in 6 alternative mazes. Correct and alternative mazes were tested for best fit 

per subject and trial period on the basis of minimal absolute error. For each subject 

and period this was done three times, for all pointings together, as well as separately, 

for both forward and backward directions. Forward vs. backward can be considered as 

the simplest compartmentalization which keeps complexity of the pointing tasks con-

stant (i.e., each pair of locations A and B occurs in each sub-set).  

3 Results and Discussion 

3.1 The generation of survey estimates 

We used pointing latency as a function of target distance and familiarity to distin-

guish between read out from a cognitive map and constructive accounts (i.e., mental 

walk and mental model). A distance effect on pointing latency would support predic-

tions of constructive strategies, since greater integration demands entail greater pro-

cessing, either in form of a longer mental walk or a larger constructed mental model. 

However, a read-out strategy would assume constant cognitive effort for all estima-

tions, and thus predict constant latency. Pointing latency indeed differed as a function 

of distance, F(2.34, 161)=9.72, p<.001, ηp
2
=.30, and increased with distance to the 

target up to a distance of four corridors, F’s>8.1, p’s<.010, before plateauing (Fig. 

4A). Error also differed, F(2.22, 161)=39.8, p<.001, ηp
2
=.63, and increased up to six 

corridors, F’s>19.5, p’s<.001 (Fig. 4B). Similar error increase has been demonstrated 

previously [11] and might stem simply from learning, as larger travelled distance 

results in larger average errors [12]. While the current data do not differentiate be-

tween models, the latency increase with distance nevertheless aligns with the predic-

tions of constructive theories of spatial processing.  

Constructive theories assume an effortful estimation processes via walkthroughs or 

segmental integration; however, repeated estimations should result in speeded point-

ing due to increased familiarity with these active processes [13]. Importantly howev-

er, such training effects should occur only when such strategies are required (i.e., 

during pointing), not during navigation itself.  Simple exposure to the environment 

does not make demands on these estimation practices.  To test this prediction we 

compared two groups of navigators. The early pointing group completed a pointing 

task after four learning trials (i.e., walkthroughs through the environment), and were 

then tested after every four learning trials throughout the experiment. The late point-

ing group completed 16 learning trials before the first pointing task and were tested 

again after the 20
th

 learning trial.   

Pointing latency decreased with pointing experience (Fig. 4C), as opposed to expe-

rience navigating an environment. During their first pointing trial, early and late 

pointers pointed equally quickly, F(1,23)=0.008, p=.929, despite the greater environ-

mental experience of late pointers. Afterwards, latencies decreased both for late poin- 



 

Fig. 4. Pointing results. (A) Latency and (B) pointing error as a function of distance (number of 

corridors). (C) Latency and (D) absolute pointing error as a function of learning trials for early 

and late pointers. Error bars indicate 1 standard error as estimated from the marginal means.  

 

ters, F(1,12)=38, p<.001, and for early pointers up to the 16th learning trial, 

F(1,11)’s>4.24, p’s<.065. We also observed improvement from the first to the second 

half of the first pointing test, F(1,23)=5.51, p=.028. Comparing the first halves, after 

16 learning trials (i.e., same familiarity with the environment), the early learners 

pointed more quickly, F(1,23)=5.68, p=.026, profiting from their prior pointing expe-

rience. Pointing error (Fig. 4D), however, was inversely related to familiarity with the 

environment, rather than experience in pointing estimates. The error of learning 

groups did not differ at the same level of environmental familiarity, F(1,23)=0.363, 

p=.553, although late pointers were more accurate at their first pointing than early 

pointers, F(1,23)=6.01, p=.022. This indicates that the quality of the representation 

improved with navigation, though the estimation process itself only improved with 

repeated opportunities to point. This dissociation of pointing errors and latencies also 

excludes an explanation that larger errors result in lower confidence, which results in 

longer latencies. Late pointers show low error, but high latencies which then cannot 

be explained by low confidence.  

While these results strongly support the predictions of constructive theories of sur-

vey estimation, we also propose that this procedure is consistent with accounts of the 

biological mechanism of place cell pre-play. Pre-play is a process that has been doc-

umented in place cells which identify locations, for example, along a route. During 

pre-play place cells along a route successively fire as if the animal was walking along 

the route towards the goal while being physically located at one spot [6]. Pre-play is 



more consistent with an account of integration via mental walk. Mental walk would 

assume that before a navigator conducts a survey task, they mentally walk through an 

environmental representation, where place cells encode self-location [3]. This would 

explain the distance effect in time, as mentally walking longer distances should also 

result in longer estimation times. However, in order to account for latency reduction 

as a function of testing, the mental walk account would be forced to conceptually 

decouple mental and physical walking.  

The cognitive demand initially burdening latency could conceivably be due to ei-

ther spatial processing or handling the pointing task. Handling is unlikely to have 

significantly increased cognitive load, as the task of aligning a black line to a target 

was basic, and no subject experienced issues performing the task. Handling demands 

would also predict a parallel decrease in both error and latency over learning, while 

both dissociate for late pointers. Finally, the plateau that occurs in pointing latency as 

a function of distance could reflect estimation based on a truncated number of seg-

ments, since further estimation will not have a large impact on pointing accuracy. 

Alternatively, there could be cognitive capacity limitations that prevent more distant 

estimations. 

Pointing latency improvement with experience could originate from an enhanced 

estimation process or from recalling previous pointing responses, thereby skipping the 

estimation process. While memorising vectors read out from a map can similarly ex-

plain such a latency reduction, the difference vectors predicted by this account cannot 

explain latency increase with target distance   

3.2 Compartmentalization in spatial memory  

In addition to the underlying process of survey navigation as indicated in the laten-

cy data, we wished to probe the types of representations formed during such tasks via 

systematic errors.  

Most pointings showed a distribution centered around the correct target direction 

as indicated by significant circular v-tests (Fig. 3 and 5). However, there were clear 

deviations to that pattern at least at the first testing in 14% of location-target pairs 

(i.e., 2→7, 3→7, 2→8, 3→8, 1→9, 2→9, 3→9 and 4→9). Rayleigh tests demon-

strated that in all cases this was not due to uniform data, but instead a result of an 

additional Von Mises distribution peak at another location (p’s < 0.01). It is unlikely 

that such bimodal distributions were merely the result of quantitative error. Please 

note that for bimodal distributions with close-by peaks (e.g., Fig. 3 right side) this 

analysis will not identify deviations from the predicted orientation. 

To investigate whether these systematic errors originated from one representation 

or multiple underlying representations we compared forward vs. backward navigation. 

Figure 6 shows such mazes which were fitted per subject and learning trial to the 

pointing data separately for forward and backward pointing.  We then compared dis-

tributions of best fitting mazes using Fisher tests. Only the pointings across leg seg-

ments of three and longer were included in the maze fittings, as no systematic errors 

were observed for the two leg cases.  



 

Fig. 5. Pairwise pointings. Solid circles denote correct point location. Circular histograms plots 

from early and late pointing groups are shown at pairwise pointing locations between selected 

landmark locations and the desired goal. 

We observed deviations from the correct map in 40% of the mazes for forgetting 

one corridor leg and 29% for single turn errors. In both cases forward and backwards 

maze fits differed (both p<.001, Fig. 6). This suggests that forward and backward 

pointing estimates relied on representations that contained different systematic errors 

and were thus qualitatively different. This representational separation was stable 

throughout the experiment; it was observed after the 8
th

, 16
th

 and 20
th

 learning trials 

for forgetting error mazes and after the 4
th

 and 20
th
 learning trial for turn error mazes, 

p’s<.05. This indicates that navigators require more experience than the 20 

walkthroughs (20 minutes learning) to equalise systematic errors in representations 

for forward and backward walking.  

Mazes were fitted for a combined forward backward representation when making a 

single turn error and forgetting one leg. Both forward and backwards pointings for 

each subject and trial period were included for analysis. Fits with separate mazes 

reduced the error in average by 24% for forgetting and 18% for turns (p’s<.001). Fit 

was greater than for randomly shuffled data (p’s<.001) as well as fitting one single 

map only (p’s<.009). In general, fitting the data to new forward and backwards mazes 

considerably reduced the error. However a significant amount of error still existed 

after maze fitting, which could perhaps best be explained by allowing for more than  



 

Fig. 6. Frequencies of best fit maze models. (A) Maze fits for forgetting error. (B) Maze fits for 

single turn errors. Below the x-axis are the types of mazes formed assuming an error of the 

corresponding type was made at the designated location (i.e., 3 would denote the 3rd landmark 

location from the start of the maze as indicated in Fig. 1B).  

one single error in the maze, and combining forgetting and turning errors as well as 

incorrect leg-length estimation or handling errors, and working memory limitation in 

generating a survey estimate.  

It may be possible that subjects made systematic errors as a result of being unable 

to self-localise. However, the pointing distributions for two leg-length segments were 

all unimodal with relatively low variance (Fig. 5), meaning that subjects were accu-

rate in assessing the current and adjacent target locations. It is unlikely that having to 

point further resulted in subjects incorporating positional error. This suggests that 

self-localization error was relatively low compared to other sources of error.  

We used forward vs. backward pointing mainly because comparing both represen-

tations results in an overall similar route complexity as each pair A-B occurs in each 

representation. However, the observed direction dependent division was also observed 

in previous priming, route choice and place cell firing [14–16]. Present results extend 

such a separation also to survey estimations. 

Our results are based on one specific environment tested. It is conceivable that, for 

example, the observed error dissociation between forward and backward pointing is 

only found in environments with an overall U-shape (in which the examined system-

atic errors have large effects), but not so much in rather linear routes. Future experi-

ments have to evidence whether the obtained results depend on a specific layout of 

our environment or also generalises to others.   

 

3.3 Implications for models of spatial memory 

Returning to the three proposed models of survey estimation, the evidence would 

firstly not point to a read-out model, due to clear contradictions with our results. 

Read-out does not predict the observed distance effect, nor the familiarity or com-

partmentalization effects. Mental walk model [3] can be best connected with animal 

literature such as pre-play [6]. Mental walk model would predict the distance effect 

and can account for the observed familiarity, compartmentalization and directional 



effects, though would require an explicit dissociation between learning (physical nav-

igation) and estimation processes (mental walk), as latency only improves with the 

latter rather than the former. This is in line with findings from single cell recording, 

which show that in similar corridor environments, different place cells are active de-

pending on the direction of walking [16]. Clusters of direction-specific place cells 

might form separate maps for forward and backward pointing. Finally, the mental 

model [9] is consistent with all data. It is accurate in describing the distance effect 

through mental model construction, and can explain performance improvement with 

repeated model construction through pointing that is independent from walking itself. 

It also assumes that the underlying representation is compartmentalised (e.g. one rep-

resentation for each corridor [17–19]), thus permitting different errors resulting from 

unique forward and backward connections between parts. The largest downside of the 

mental model proposition is that it cannot be connected to animal literature, although 

such survey estimates might be specifically human [20, 21], with other species not 

possessing the cognitive capacity to build a mental model of distant locations. 

  In conclusion, we claim that the formation of survey estimates in humans occurs 

incrementally at response, rather than occurring via read-out from a cognitive map. 

This is suggested, first, by the increase in pointing latency with distance, and second, 

by decreasing latency as a function of pointing training, as opposed to familiarity with 

the environment. Furthermore, the bimodal distribution of pointings, suggests that 

human survey knowledge incorporates both quantitative errors (e.g., acquired through 

path integration during learning), and systematic errors (i.e., those which originate 

from mixing up or forgetting elements of the route walked). The error modelling pro-

vided evidence to suggest there might be no unified underlying representations for 

survey navigation tasks in humans. This was indicated by different model fits for 

forwards and backwards representations. Results are clearly inconsistent with reading 

out coordinates from a globally consistent survey representation. Instead, they are 

consistent with constructive accounts, such as mental walk and mental model.  
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