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Abstract

Gas migration in the subsurface, a multiphase flow in a porous-medium system, is a

problem of environmental concern and is also relevant for subsurface gas storage in

the context of the energy transition. It is essential to know and understand the flow

paths of these gases in the subsurface for efficient monitoring, remediation or storage

operations. On the one hand, laboratory gas-injection experiments help gain insights

into the involved processes of these systems. On the other hand, numerical models help

test the mechanisms observed and inferred from the experiments and then make useful

predictions for real-world engineering applications.

Both continuum and stochastic modelling techniques are used to simulate multiphase

flow in porous media. In this thesis, I use a stochastic discrete growth model: the macro-

scopic Invasion Percolation (IP) model. IP models have the advantages of simplicity

and computational inexpensiveness over complex continuum models. Local pore-scale

changes dominantly affect the flow processes of gas flow in water-saturated porous me-

dia. IP models are especially favourable for these multi-scale systems because using

continuum models to simulate them can be extremely computationally difficult.

Despite offering a computationally inexpensive way to simulate multiphase flow in

porous media, only very few studies have compared their IP model results to actual

laboratory experimental image data. One reason might be the fact that IP models lack

a notion of experimental time but only have an integer counter for simulation steps that

imply a time order. The few existing experiments-to-model comparison studies have

used perceptual similarity or spatial moments as comparison measures. On the one

hand, perceptual comparison between the model and experimental images is tedious

and non-objective. On the other hand, comparing spatial moments of the model and

experimental images can lead to misleading results because of the loss of information

from the data. In this thesis, an objective and quantitative comparison method is
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developed and tested that overcomes the limitations of these traditional approaches.

The first step involves volume-based time-matching between real-time experimental

data and IP-model outputs. This is followed by using the (Diffused) Jaccard coefficient

to evaluate the quality of the fit. The fit between the images from the models and

experiments can be checked across various scales by varying the extent of blurring in

the images.

Numerical model predictions for sparsely known systems (like the gas flow systems)

suffer from high conceptual uncertainties. In literature, numerous versions of IP models,

differing in their underlying hypotheses, have been used for simulating gas flow in porous

media. Besides, the gas-injection experiments belong to continuous, transitional, or

discontinuous gas flow regimes, depending on the gas flow rate and the porous medium’s

nature. Literature suggests that IP models are well suited for the discontinuous gas flow

regime; other flow regimes have not been explored. Using the abovementioned method,

in this thesis, four macroscopic IP model versions are compared against data from nine

gas-injection experiments in transitional and continuous gas flow regimes. This model

inter-comparison helps assess the potential of these models in these unexplored regimes

and identify the sources of model conceptual uncertainties.

Alternatively, with a focus on parameter uncertainty, Bayesian Model Selection is a

standard statistical procedure for systematically and objectively comparing different

model hypotheses by computing the Bayesian Model Evidence (BME) against test

data. BME is the likelihood of a model producing the observed data, given the prior

distribution of its parameters. Computing BME can be challenging: exact analytical

solutions require strong assumptions; mathematical approximations (information crite-

ria) are often strongly biased; assumption-free numerical methods (like Monte Carlo)

are computationally impossible for large data sets. In this thesis, a BME-computation

method is developed to use BME as a ranking criterion for such infeasible scenarios:

The Method of Forced Probabilities for extensive data sets and Markov-Chain models.

In this method, the direction of evaluation is swapped: instead of comparing thou-

sands of model runs on random model realizations with the observed data, the model is

forced to reproduce the data in each time step, and the individual probabilities of the

model following these exact transitions are recorded. This is a fast, accurate and exact

method for calculating BME for IP models which exhibit the Markov chain property

and for complete “atomic”data.
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The analysis results obtained using the methods and tools developed in this thesis

help identify the strengths and weaknesses of the investigated IP model concepts. This

further aids model development and refinement efforts for predicting gas migration in

the subsurface. Also, the gained insights foster improved experimental methods. These

tools and methods are not limited to gas flow systems in porous media but can be

extended to any system involving raster outputs.
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Zusammenfassung

Ausbreitung von Gasen im Untergrund, eine Mehrphasenströmung in einem porösen

Medium, ist relevant sowohl bei Umweltproblemen und für energierelevante Gasspei-

cherung in Untergrund. Für eine effiziente Überwachung, Sanierung oder Speicherung

ist es wichtig, die Ausbereitungspfade dieser Gase im Untergrund zu kennen und zu

verstehen. Einerseits helfen Laborexperimente zur Gasinjektion dabei, Einblicke in die

beteiligten Prozesse in diesen Systemen zu gewinnen. Andererseits helfen numerische

Modelle dabei, die beobachteten und aus den Experimenten abgeleiteten Mechanismen

zu testen und anschließend nützliche Prognosen für reale technische Anwendungen zu

erstellen.

Sowohl Kontinuums- als auch stochastische Modellierungstechniken werden verwendet,

um die entsprechenden Mehrphasenströmungen in porösen Medien zu simulieren. In

dieser Arbeit verwende ich ein stochastisches diskretes Wachstumsmodell: das makro-

skopische Invasions-Perkolationsmodell (IP). IP-Modelle haben gegenüber komplexen

Kontinuumsmodellen den Vorteil, dass sie einfach und rechentechnisch wenig aufwändig

sind. Lokale Veränderungen auf der Porenskala dominieren die Strömungsprozesse beim

Gasausbreitung in wassergesättigten porösen Medien. IP-Modelle eignen sich besonders

vorteilhaft für diese mehrskaligen Systeme, da die Simulation mit Kontinuumsmodellen

extrem rechentechnisch schwierig sein kann.

Obwohl IP-Modelle eine rechentechnisch effiziente Möglichkeit bieten, die Mehrphasen-

strömung in porösen Medien zu simulieren, haben nur sehr wenige Forschungsarbeiten

die Ergebnisse ihrer IP-Modelle mit den tatsächlichen experimentellen Bilddaten im

Labor verglichen. Ein Grund dafür könnte die Tatsache sein, dass IP-Modelle keine

Vorstellung von experimenteller Zeit haben, sondern nur einen ganzzahligen Zähler

für Simulationsschritte, der eine zeitliche Reihenfolge impliziert. Die wenigen existie-

renden Studien zum Vergleich zwischen Experimenten und Modellen haben lediglich
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eine subjektive Ähnlichkeit oder räumliche Momente als Vergleichsmaßstab verwendet.

Einerseits ist der subjektive Vergleich zwischen dem Modell und den experimentellen

Bildern mühsam und nicht objektiv. Andererseits kann der Vergleich der räumlichen

Momente des Modells und der experimentellen Bilder zu irreführenden Ergebnissen

führen, da Informationen aus den Daten verloren gehen. In dieser Arbeit wird eine

objektive und quantitative Vergleichsmethode entwickelt und getestet, die die Grenzen

dieser traditionellen Ansätze überwindet. Der erste Schritt besteht in einem volumen-

basierten Zeitabgleich zwischen experimentellen Echtzeitdaten und den Ergebnissen

des IP-Modells. Anschließend wird der (Diffused) Jaccard coefficient verwendet, um

die Qualität der Anpassung zu bewerten. Die Übereinstimmung zwischen den Bildern

der Modelle und der Experimente kann auf verschiedenen Größenmaßstäben überprüft

werden, indem das Ausmaß der Unschärfe in den Bildern variiert wird.

Numerische Modellvorhersagen für nur unzulänglich bekannte Systeme (wie die Ga-

stransportprobleme) leiden untergroßen konzeptionellen Unsicherheiten. In der Litera-

tur werden Zahlreiche Versionen von IP-Modellen, die sich in ihren zugrundeliegenden

Hypothesen unterscheiden, für die Simulation von Gas-strömungen in porösen Medi-

en verwendet. Außerdem gehören die Gasinjektionsexperimente je nach Gasflussrate

und Beschaffenheit des porösen Mediums zu kontinuierlichen, Übergangs- oder diskon-

tinuierlichen Gasflussregimen. Aus der Literatur geht hervor, dass IP-Modelle für das

diskontinuierliche Gasflussregime gut geeignet sind; andere Flussregime wurden nicht

erforscht. Mithilfe der oben genannten Methode vergleicht die vorliegende Arbeit vier

makroskopische IP-Modellversionen mit Daten aus neun Gasinjektionsexperimenten

im Übergangsbereich und im kontinuierlichen Gasflussregime. Dieser Modellvergleich

hilft, das Potenzial dieser Modelle in diesen unerforschten Regimen zu erkunden und

die Quellen der konzeptionellen Unsicherheiten der Modelle zu identifizieren.

Alternativ dazu ist die Bayes’sche Modellwahl ein statistisches Standardverfahren für

den systematischen und objektiven Vergleich verschiedener Modellhypothesen durch

die Berechnung der Bayes’schen Modellevidenz (BME) anhand von Messdaten, wobei

der Schwerpunkt auf der Parameterunsicherheit liegt. BME ist die Wahrscheinlichkeit,

dass ein Modell die beobachteten Daten hervorbringt, wenn man die A-Priori Vertei-

lung seiner Parameter berücksichtigt. Die Berechnung der BME kann eine Herausfor-

derung sein: Exakte analytische Lösungen erfordern starke Annahmen; mathematische

Näherungen (Informationskriterien) sind oft stark fehlerbehaftet; annahmefreie numeri-

sche Methoden (wie Monte Carlo) sind für große Datensätze rechnerisch unmöglich. In
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dieser Arbeit wird eine BME-Berechnungsmethode entwickelt, um BME als Ranking-

Kriterium für solche bisher unmöglichen Szenarien zu verwenden: Die Methode der

erzwungenen Wahrscheinlichkeiten, für umfangreiche Datensätze und Markov-Chain-

Modelle. Bei dieser Methode wird die Richtung der Berechnung vertauscht: Anstatt

Tausende von Modellläufen auf zufälligen Modellrealisierungen mit den beobachteten

Daten zu vergleichen, wird das Modell gezwungen, die Daten in jedem Zeitschritt zu

reproduzieren, und die individuellen Wahrscheinlichkeiten des Modells nach diesen ex-

akten Übergängen werden aufgezeichnet. Dies ist eine schnelle, genaue und exakte Me-

thode zur Berechnung der BME für IP-Modelle, die die Eigenschaft einer Markov-Kette

aufweisen, und für vollständige atomare Daten.

Die mit den in dieser Arbeit entwickelten Methoden und Werkzeugen erzielten Ana-

lyseergebnisse helfen, die Stärken und Schwächen der untersuchten IP-Modellkonzepte

zu identifizieren. Dies hilft bei der Entwicklung und Verfeinerung von Modellen für die

Gasmigration im Untergrund weiter. Außerdem tragen die gewonnenen Erkenntnisse

zur Verbesserung experimenteller Methoden bei. Diese Werkzeuge und Methoden sind

nicht auf Gasflusssysteme in porösen Medien beschränkt, sondern können auf jedes

System mit Rasterdaten erweitert werden.

XXVII





1 Introduction∗

1.1 Background and Motivation

Gas migration in the subsurface is a phenomenon of environmental concern for several

reasons. Gas migration from leaky oil and gas wells can reduce shallow groundwater

quality. Further, stray gas in the subsurface can cause safety concerns due to the re-

lease of combustible gas and greenhouse gas emissions into the atmosphere [Vengosh

et al., 2013, 2014]. A similar safety concern also exists for methane gas emissions

from peatlands [Nisbet et al., 2016]. Another risk arises from the radioactive decay of

the nuclide 226Ra from the 238U decay chain, which generates radioactive, carcinogenic

radon (Rn) gas [Petermann et al., 2021]. 226Ra is present in mostly all mineral and

organic material and, therefore, Rn is constantly produced in rock and soil [Petermann

et al., 2021]. Factors like soil grain size distribution or soil moisture can facilitate the

release of Rn gas into the pore space and can eventually be emitted from the soil [Peter-

mann et al., 2021]. Radioactive radon gas seepage from surrounding soils into building

basements is a human carcinogen [Petermann and Bossew, 2021]. For subsurface car-

bon dioxide storage, gas migration through cap-rock fractures can contaminate shallow

aquifers [Sakaki et al., 2013] and decrease the storage efficiency. Similar is the concern

for geological storage of hydrogen [Woods and Norris, 2016, Reitenbach et al., 2015].

In the remediation of volatile organic compounds (VOCs) and non-aqueous phase liq-

uids (NAPLs) in the subsurface, methods like in-situ air-sparging [Brooks et al., 1999]

or thermal remediation [Hegele and Mumford, 2014] require an understanding of gas

migration behaviour for efficient capture and removal of contaminants.

For the example applications mentioned above, knowledge of gas flow mechanisms in

the subsurface is necessary to establish monitoring or investigative networks. The

∗This chapter contains text fragments from my publications Banerjee et al. [2021], Banerjee et al.
[2023] and Banerjee et al.
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knowledge of probable flow paths of gas and the degree of contact between gas and

water in the subsurface is essential for all these applications. However, here lies the

challenge: How does one observe detailed gas migration processes in the subsurface? It

is possible to dig and probe at a few locations in the field, but excavating the entire

domain is unfeasible.

However, laboratory experiments can be conducted to gain insights into the processes

associated with gas flow in the subsurface by mimicking the actual site characteristics

but under controlled conditions. Numerical models are essential tools to encode and

test hypotheses about the mechanisms at work that are observed and inferred from the

experiments, and then provide further information about these subsurface systems and

make useful predictions for such real-world engineering applications.

1.1.1 Immiscible Gas Flow in Saturated Porous Media

Gas flow in saturated subsurface environments is governed bymultiphase flow physics in

porous media. As these can be almost arbitrarily complex, some terminology is needed

to specify the considered system. A phase is defined as matter with homogeneous

chemical composition and physical states. Under normal conditions, solid, liquid and

gaseous phases exist. The porous medium is the solid phase with pores, and these

pores can be filled entirely or partially by a liquid phase, gaseous phase, or both. In

the saturated subsurface, the soil is the porous medium, and its pore space is initially

occupied by water (liquid phase). A gas phase flowing through this system can be

miscible (e.g. carbon dioxide) or immiscible (e.g. methane) in the water phase. For

simplicity, I consider gas flow in water-saturated soil as immiscible multiphase flow.

Several regimes of immiscible multiphase flow in porous media with different interface

(between the fluids) patterns exist. Lenormand et al. [1988] investigated the interplay

between capillary and viscous forces for immiscible fluids of different viscosity ratios.

For such flows, Lenormand et al. [1988] used capillary numbers Ca (the ratio of viscous

forces to capillary forces) and mobility ratio M (the ratio of the dynamic viscosities of

displacing fluid to that of the displaced fluid) to describe the interplay between them.

Experiments and simulations from Lenormand et al. [1988] identified three types of dis-

placement fronts for this flow: stable displacement (no fingering), viscous fingering, and

capillary fingering. A stable displacement front or a front with non-looping branched
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fingers (viscous fingering) is observed when the viscous forces dominate (high Capil-

lary numbers). The former happens when the displacing fluid is more viscous than the

displaced fluid, and the latter is observed vice versa. Capillary fingering occurs in the

dominance of capillary forces (low capillary numbers), where the displacement front

spreads as looping fingers [Lenormand et al., 1988].

For vertical flows and when the density difference between the phases is high, like

in a gas-water system, the effect of gravitational forces cannot be ignored. Thus,

immiscible gas flow in a water-saturated porous medium is governed by the interplay

between capillary, viscous and gravitational forces [Ewing and Berkowitz, 1998, Morrow,

1979, Løvoll et al., 2005, Van De Ven and Mumford, 2019]. The fluid interface can be

stabilized or destabilized in the presence of gravitational or buoyant forces [Glass et al.,

2000, Ewing and Berkowitz, 1998, Frette et al., 1992, Glass and Yarrington, 1996,

Birovljev et al., 1991, Meakin et al., 1992, Van De Ven and Mumford, 2019], often

described by the dimensionless Bond number Bo (the ratio of gravitational forces to

capillary forces). For example, when a low-density fluid displaces a high-density fluid

from the top, or a high-density fluid displaces a low-density fluid from the bottom in

a vertical setup, buoyant forces stabilize the interface (Bo > 0) [Ewing and Berkowitz,

1998]. In the other scenarios, destabilization of the interface occurs (Bo < 0), and

gravity fingering is observed [Glass and Nicholl, 1996]. Gas injection experiments in

water-saturated porous media confirm that different displacement fronts are seen under

different laboratory conditions [Ji et al., 1993, Brooks et al., 1999, Selker et al., 2006,

Stöhr and Khalili, 2006, Geistlinger et al., 2006, Mumford et al., 2009].

Laboratory data on gas flow in water-saturated porous media can help us visualize

and identify the involved gas flow processes in a controlled manner. The experimental

data used in this thesis work are a series of gas-injection experiments in homogeneous

water-saturated sand conducted in quasi-2-dimensional thin acrylic glass cells from Van

De Ven and Mumford [2019]. The experimental data is obtained as a time-series of 2-

dimensional images showing the gas evolution. By varying the gas injection rate, the

experimental data spans various gas flow regimes (with different gas-flow patterns),

which is detailed in Section 2.1.
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1.1.2 Numerical Models: Focusing on Invasion Percolation Models

Numerical models from continuum and stochastic rule-based modelling approaches are

used to describe such multiphase flows in porous media systems. On the one hand,

continuum models are a near-accurate representation of the physical, real-world sys-

tem, but they are complex, time-consuming and computationally intensive. On the

other hand, stochastic rule-based discrete growth models are a simplified representa-

tion of reality based on many assumptions. They are simple, fast and computationally

cheap. Amongst multiple stochastic rule-based models (e.g., Diffusion limited aggre-

gation (DLA) [Paterson, 1984, Witten and Sander, 1983], Invasion-percolation (IP)

[Wilkinson and Willemsen, 1983], anti-DLA [Meakin and Deutch, 1986]), this work

focuses on various versions of (Stochastic) Invasion Percolation (IP) models at the

macroscopic scale because their simplicity makes them a good candidate for stochastic

analysis.

The stochastic analysis of models, facilitated by the IP approach, is important because

gas flow processes in the subsurface are highly affected by small-scale variations in

porous media. At scales larger than pore-scale, with experiments and numerical models,

it is impossible to capture such minor scale effects on the gas flow. This leads to high

uncertainty in the numerical model predictions. Stochastic analysis of these systems can

help address their high uncertainty appropriately. Owing to their low computational

effort, IP-type models are excellent candidates for such analysis.

IP models are 2-dimensional or 3-dimensional discrete growth models where a phase

invades another phase-occupied porous network based on physics-based rules. These

models can be built at different scales:

• pore scale, where the network simulates the exact arrangement of pore-space in

a solid.

• macroscopic scale, where the network consists of an arrangement of upscaled

pore-network blocks.

Hereafter, I will use the term “IP-type models”to refer to the entire class of IP model

variations.
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Moreover, Invasion Percolation (IP) models with a representation of gravity forces have

been used for the upward migration of a low-density fluid (like gas) displacing a high-

density fluid (like water) in a porous medium [Frette et al., 1992]. Many studies have

used IP-type models with variations to model different types of gas flow systems in the

porous media [e.g., Wilkinson, 1984, Wagner et al., 1997, Glass et al., 2001, Ewing and

Berkowitz, 2001, Mumford et al., 2010, 2015, Trevisan et al., 2017, to name a few].

All numerical models have underlying assumptions and, therefore, need to be compared

to actual experimental or field data to evaluate them. While IP models have the

advantages like simplicity and low computational cost, they are challenging to calibrate,

test or validate for the two reasons listed in Section 1.1.4.

1.1.3 Addressing Conceptual Uncertainty in Numerical Models

As highlighted in Section 1.1, gas flow in saturated subsurface is a sparsely known

system. It is problematic to accurately capture the complex processes of gas flow

in porous media, which occur at many different spatial scales. Due to this lack of

knowledge, numerical model predictions suffer from high uncertainties in terms of both

the parameters and model states. In IP-type models, the assumptions made for the

simplified description of the complex gas-flow processes further increase the model’s

conceptual uncertainty. Also, the experimental measurements and methods are not

error-free and, therefore, uncertain. The Bayesian inference framework allows one to

tackle such model uncertainty aptly. Bayesian Model Selection (BMS) is a standard,

often used, statistical procedure for systematic and objective comparison of different

model hypotheses, wherein a prior belief in the model’s accuracy is combined with

its ability to reproduce a common data-set [Schöniger et al., 2014]. It requires the

evaluation of Bayesian Model Evidence (BME), which is the likelihood of a model

producing the observed data, given the prior distribution of its parameters.

Exact, fast analytical solutions for BME require strong assumptions that are hardly

met in realistic settings [Schöniger et al., 2014]. So, other techniques involving mathe-

matical approximations and numerical methods have been developed, but they all have

limitations of their own [Höge et al., 2018]. Mathematical approximations (commonly

known as Information Criteria (IC)) are based on different assumptions and/or asymp-

totics and are strongly biased in real-world applications. These criteria have been shown
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to yield misleading model ranking results in real applications if their assumptions are

violated [Poeter and Anderson, 2005, Ye et al., 2008, 2010b,a, Tsai and Li, 2008, 2010,

Singh et al., 2010, Morales-Casique et al., 2010, Foglia et al., 2013].

Using numerical methods [Gideon, 1978] to compute BME avoids such assumptions

but requires high computational effort. Numerical approximations that are commonly

used for highly complex models are Monte Carlo (MC) methods with various sam-

pling strategies [Schöniger et al., 2014, Kloek and van Dijk, 1978, Zellner and Rossi,

1984]. MC methods generally require large ensembles, the size of which is limited by

the available computational resources. For high-dimensional problems (i.e. with many

uncertain parameters), the so-called curse of dimensionality kicks in, requiring expo-

nentially many model evaluations (massive ensembles) [Snyder et al., 2008, Bengtsson

et al., 2008].

1.1.4 Challenges in Evaluating IP Models

Challenge 1: There is no time parameter in IP models.

There is no time parameter in IP-type models but only a model loop counter. This

unawareness of the model towards time makes it hard to compare the models to real-

time experimental or field data. Also, the missing time parameter makes it challenging

to use IP-type models along with other models like reactive transport models, which

are essential for subsurface carbon dioxide storage application [Oldenburg et al., 2016].

The time problem of IP-type models is traditionally handled in one of the following

ways:

• The experimental image and the model output image are compared at charac-

teristic/specific time points, like breakthrough time [Birovljev et al., 1991, Glass

et al., 2001, Mumford et al., 2015, Trevisan et al., 2017].

• When an IP-type model is used in combination with a continuum model for

transport (heat or mass), that transport controls the time scale, and the contin-

uum model’s time steps are used to compare to the real-time experimental data

[Mumford et al., 2010, Molnar et al., 2019].
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Challenge 2: Metrics for quantitative comparison of IP-type models to ac-

tual experimental or field data are lacking.

Various authors have presented many IP-type models [e.g., Wilkinson and Willemsen,

1983, Wilkinson, 1984, Kueper and McWhorter, 1992, Wagner et al., 1997, Berkowitz

and Ewing, 1998, Glass et al., 2001, Tsimpanogiannis and Yortsos, 2004]. However, few

studies have compared their models to actual (field or experimental) data. In the few

studies of model-to-experimental data comparison, the comparison has been made

• either based on perceptual similarities, like the visible shape of gas clusters, chan-

nels or pools [Glass et al., 2001, Mumford et al., 2010, Trevisan et al., 2017]

• or by comparing spatial moments, which are aggregated statistical measures

[Mumford et al., 2015].

A perceptual comparison is subjective, very time-consuming for large data sets due to its

manual character, and may be deceitful due to a lack of objectivity. When comparing

spatial moments, there is a loss of information from the data due to the aggregation of

detailed images to just a few summary statistics. Also, when using several moments,

it is unclear how to combine them into a unique metric.

The lack of studies that have compared their IP-type models to actual data is even more

concerning because, despite several variations of IP-type models exist in the literature

for simulating multiphase flow in porous media, their potential to be used for different

applications remains vastly unexplored.

1.1.5 Challenges in Inter-Comparison of Models

A real-world system can be represented by many competing conceptual models. These

models differ in their underlying hypotheses, which need to be tested against real-world

observation data for their accuracy in representing the featured real-world system. Such

comparisons can not only rank the models based on the accuracy of their predictions but

also help identify the competing models’ sensitive parameters and sources of conceptual

uncertainty. This information can be used for refining these models. Moreover, this

information might benefit experimentalists in designing their experiments.
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Multiple variations of IP-type models exist in the literature, and experimental data

from different gas flow regimes are available. Thus, the inter-comparison of these model

versions is possible and highly valuable. As discussed in Section 1.1.4, it is difficult to

calibrate test or validate IP-type models with real experimental or field data. These

challenges (Challenge 1 and Challenge 2 from Section 1.1.4) prohibit the inter-

comparison of IP-type model versions using available experimental data, despite the

importance of such model inter-comparison studies.

Alternatively, as mentioned in Section 1.1.3, BMS is an efficient tool for inter-comparison

of competing models. Recall that BME-computation methods have limitations of their

own. Out of the different methods, MC-based numerical methods to compute BME,

are bias-free but computationally expensive, especially for high-dimensional problems.

Additionally, for highly accurate or informative data sets, the overlap between predic-

tive distributions and observed data may be so small, that MC methods may not result

in a meaningful BME value (> 0) at all. Hence, computation of BME is a challenge for

extensive data sets, e.g., highly resolved in space/time like experimental movies or im-

ages in time. Thus, despite the efficacy of the BMS concept in model inter-comparisons

for systems with high uncertainties, the computation of BME for IP-type models and

extensive experimental data sets is practically infeasible.

Challenge 3: Evaluation of BME for high dimensional problems and exten-

sive data sets is practically infeasible.

1.2 Goals and Approach

1.2.1 Goals and Scope

The primary goal of my thesis is to advance the understanding of gas migration be-

haviour in the subsurface through the stochastic analysis of the system using experi-

mental data, numerical modelling, and systematic inter-comparison of models.

As previously discussed, simple rule-based models are well suited for stochastic anal-

ysis: hence, I pick existing macroscopic variations of IP models and generate new

re-combinations for my study to match the scale of the experimental data. From the

challenges identified above, it is clear that these models have not been tested to their
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full abilities. With the contributions of my thesis, I intend to overcome the challenges

associated with testing these macroscopic IP models. This will advance modelling

capabilities for such models, especially for gas flow systems in saturated porous media.

In particular, I develop analysis tools for assessing the performance of the models under

study. The findings obtained using these tools can aid the modellers in refining these

models. Further, I conduct model inter-comparisons to rank their performance and

identify model-specific sensitive parameters for predicting gas flow in water-saturated

sand. Also, through my analysis, I aim to address and reduce the uncertainties associ-

ated with gas flow systems in porous media.

1.2.2 Research Questions and Contributions

First, looking back at Challenge 1 identified in Section 1.1, IP-type models do not

have a notion of experimental time but only have an integer counter for simulation

steps that imply a time order. Besides, the current frameworks for comparing IP-type

models to experimental or field data are neither systematic nor objective and, most

importantly, not quantitative (see Challenge 2, Section 1.1.4). Thus, the first ob-

jective of my thesis is to answer the following question:

RQ1: How to appropriately compare time-ignorant macroscopic IP models to time-

dependent experimental image data?

Second, gas flow in saturated porous media can belong to different flow regimes (with

varied gas-flow patterns) depending on the flow rate and the porous medium’s nature

[Geistlinger et al., 2006]. I will further detail this in Section 2.1 of Chapter 2. Numerous

variations of IP-type models have emerged that can be used for simulating gas flow in

water-saturated porous media. However, the few studies where IP-type models were

compared to experimental data have focused on a particular regime of gas flow. The

second objective of this thesis is, therefore, to test the performance of competing

macroscopic IP-type model versions on a range of gas-injection experiments belonging

to different previously unexplored gas-flow regimes. For this purpose, it is necessary

to overcome the Challenges 1 and 2 outlined in Section 1.1.4, which leads to the
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research question:

RQ2: Using the comparison approach developed in research question 1 on the differ-

ent macroscopic IP model versions, how to determine which model version is better at

describing which of these gas-flow regime experiments? Can specific deficits and rec-

ommendations be derived?

Third, looking at Challenge 3, from Section 1.1.5, it is practically infeasible to com-

pute BME for massive data sets and use the standard statistical procedure of Bayesian

model selection to compare IP-type models in the presence of large and detailed exper-

imental data sets. This brings us to the third objective and research question of this

research:

RQ3: How can we efficiently compute Bayesian Model Evidence for extremely large

data sets like highly space-time resolved image data, knowing that all existing compu-

tational algorithms would be computationally infeasible? If yes, can we pinpoint very

detailed strengths and weaknesses of the models?

Together, the answers to these three research questions pose an attempt to close the

elicited gaps above and shall foster increasing IP modelling capacities for gas migration

in water-saturated porous media and address the often neglected different levels of

uncertainty that prevent their widespread usage.

1.2.3 Approach and Outline

To answer RQ1, I first develop a volume-based time matching method between the

model output and the experimental data. Then, I transfer the so-called Jaccard coef-

ficient metric from image processing to assess the quality of fit between time-matched

model images and experimental images. I introduce a diffused version of the Jaccard

coefficient for matching across various scales of pixel clarity. I demonstrate the method

by comparing a particular macroscopic IP model to data from one experiment of Van
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De Ven and Mumford [2019]. Also, I test the performance of my comparison method

against the traditional approaches mentioned in Section 2.4.

To answer RQ2, I use the above comparison method to test and rank the performance

of four macroscopic IP models with data from nine experiments [Van De Ven and

Mumford, 2019] that belong to different gas flow regimes. These experiments belong to

a flow regime where IP models have not been tested before. Some of these models are

new re-combinations of existing model ideas. I run this comparison of the competing

models under varying amounts of pixel diffusion and derive conclusions on the models’

skills and deficits for possible future model improvements. Further, I also calibrate some

model parameters in this comparison study to understand and discuss their impact on

the models’ performance.

Finally, to answer RQ3, I develop the Method of Forced Probabilities for BME com-

putation. In this method, the direction of evaluation of BME is swapped: instead of

comparing thousands of forward model runs on random parameter realizations with

the experimental movies, I force the models to reproduce the data in each time step

and record the individual probabilities of the model following these exact transitions.

MFP is applicable for Markov-chain models and data showing all “atomic”events, where

“atomic”will be defined in Chapter 5. I use a particular IP model version, synthetic

data, and high-quality data from a real experiment of Van De Ven and Mumford [2019]

to illustrate and test the method. As this BME-based model comparison is much stricter

than the Jaccard coefficient metric, additional recommendations for model refinement

are derived.

Thesis Outline

To begin, in Chapter 2, I state the fundamentals of gas-water (multiphase) flow in

porous media, specifically required to understand the macroscopic IP models and the

gas-injection experiments used in this study. Also, I discuss the state of the art of

macroscopic IP models, experiments, and existing comparison methods of the IP-type

models to experimental data. Further, I introduce the mathematical concepts and for-

mulations of the Bayesian model selection framework. Then, in the next three chapters,

I present and discuss my contributions as answers to the research questions delineated

above.
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• In Chapter 3, I address RQ1 and provide the details of the comparison method

developed for IP-type models and gas-injection experiments in porous media.

• To address RQ2, in Chapter 4, I describe the comparison of four different macro-

scopic IP models with data from nine gas-injection experiments, using the com-

parison method described in Chapter 3.

• I discuss in Chapter 5 my newly developed method devised to compute BME for

the problem of interest, i.e., having massive data sets, thus addressing RQ3.

Finally, I provide a broad set of conclusions deduced from the answers to the aforemen-

tioned RQs and discuss the potential for future research in Chapter 6.



2 State of the Art: Models,

Experimental Data and Methods∗

The interactions of capillary forces, viscous forces, and gravitational forces result in

different gas flow regimes. The conception of these flow regimes is crucial to understand

the modelling concepts and the experimental data used in this study. Thus, to begin, I

introduce these gas flow regimes and discuss the resulting flow patterns in Section 2.1.

Then, in Section 2.2, I briefly describe the experimental data sets used for this study.

I list and delineate the macroscopic IP models used in this study in Section 2.3. To

facilitate the comprehension of my contributions, I discuss the existing methods to

compare IP-type models using experimental data in Section 2.4 and the mathematical

formulations of Bayesian Model Evidence in Section 2.5.

2.1 Gas Flow Regimes

Lenormand et al. [1988] described immiscible multiphase flow regimes based on capillary

numbers (Ca) and viscosity ratios (M). Further, for gas-water type fluids, additionally,

gravitational forces need to be taken into consideration (see Chapter 1, Section 1.1.1).

Berkowitz and Ewing [1998] extended the flow regime diagram of Lenormand et al.

[1988] (see Figure 2.1a) in Ca-M space, along a third dimension to create the Ca-M-

Bo diagram (see Figure 2.1b). The systems of my interest in this study are of upward

gas migration in water-saturated soils. It is a gravity-destabilized flow domain (Bo < 0)

(marked by the red arrow in Figure 2.1b).

∗This chapter contains text fragments from my publications Banerjee et al. [2021], Banerjee et al.
[2023], Banerjee et al. and some figures from Banerjee et al..
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Figure 2.1: Immiscible flow regime diagrams. The figure a is redrawn using Figure 8 of
Lenormand et al. [1988] (Copyright Cambridge University Press, reproduced with
permission) as a guide, where immiscible multiphase flow regimes, along with
suitable modelling techniques, were distinguished based on Ca and M values.
DLA (Diffusion Limited Aggregation), IP (Invasion Percolation), and Eden are
different discrete growth models. The figure b is redrawn using Figure 10 of
Berkowitz and Ewing [1998] (Copyright Kluwer Academic Publishers, reproduced
with permission) as a guide, who conceptually extended the diagram a along a
third dimension containing the Bo values. The red arrow depicts the Bo < 0
domain.

For upward gas migration in water-saturated soils, in a given porous medium, at low gas

injection rates, the viscous effects are less relevant. Therefore, the flow is controlled by

a combination of capillary forces (capillary fingering regime) and gravitational forces.

Upon increasing the injection rates, the control shifts to a combination of viscous forces

(viscous fingering regime near the injection source) and gravitational forces [Selker et al.,

2006, Van De Ven and Mumford, 2019]. Therefore, three gas flow regimes are observed

[Ji et al., 1993]. These are:

• The Continuous/Coherent flow, where the gas phase flows as a continuous

phase.

• The Discontinuous/Incoherent/Bubbly flow, which involves gas flow as dis-

crete gas bubbles or clusters. During the flow, these gas bubbles or clusters of-



2.2 Experiments 15

ten undergo fragmentation (splitting of gas bubbles or clusters) and coalescence

(merging of disconnected gas bubbles or clusters) events.

• The Transitional flow, where gas-flow behaviour exhibits characteristics of both

continuous and discontinuous flow.

The transition of gas flow from one regime to another depends on the grain size of the

porous medium and on the rate of gas flow [Geistlinger et al., 2006]. As a result of the

balance of forces, the gas-flow regime tends to be discontinuous at low gas-flow rates

and in coarser porous media moving towards the continuous regime as the flow rate

increases or for finer porous medium [Geistlinger et al., 2006]. Geistlinger et al. [2006]

defined a critical flow rate Qcrit [m
3/s] below which discontinuous gas flow occurs:

Qcrit =
π∆ρgrc

4

8µg

, (2.1)

where ∆ρ denotes the difference in densities between gas and water [kg/m3], g denotes

acceleration due to gravity [m/s2], rc denotes the characteristic radius of gas channels

through which flow occurs [m] and µg denotes the dynamic viscosity of the gas phase

[Pa− s]. Besides using the critical flow rate, the gas flow regimes can be classified using

the ratio of Bond number to Capillary number (Bo/Ca) [Van De Ven and Mumford,

2019], which are reported for the experiments used in this study.

2.2 Experiments

It is notoriously difficult to obtain direct measurements in the subsurface to observe the

behaviour of the phases because even minimally-invasive methods distort the medium

that shall be investigated. So, indirect measurements using laboratory experiments

under varied controlled conditions in a representative porous medium are often used as

an alternative for which the distortion can at least be described or even be quantified to

a certain extent. Non-invasive imaging methods like optical imaging using UV or visible

light, dual-energy gamma radiation, X-ray microtomography, and magnetic resonance

imaging are a few popular choices for such laboratory experiments [Oostrom et al.,

2007, Werth et al., 2010].
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In this thesis, I use data from imaging experiments using visible light, specifically the

experimental data sets from the study of Van De Ven and Mumford [2019] (see Table 2.1

for details). A general description of the experimental set-up and procedure is presented

in this section based on Van De Ven and Mumford [2019] to aid the understanding of

the contributions of this thesis.

In these experiments, gas (air) is injected at various flow rates in a water-saturated,

homogeneous, sand (0.7mm average grain size)-filled thin acrylic cell of dimensions

25cm×25cm×1cm (see Figure 2.2 for a schematic of the cell). A continuous wet packing

procedure was used to ensure that the resulting sand distribution was homogeneous and

free of trapped gas [Mumford et al., 2009, Hegele and Mumford, 2014, Van De Ven and

Mumford, 2018]. After packing the cell fully, the top of the cell was sealed, to prevent

re-arrangement of soil grains. After that, the cell was placed in front of a light source.

Then, gas was injected at some point in the cell with a syringe pump at a constant

flow rate (see injection rates in Table 2.1). To conduct the experimental triplicate at

10ml/min (10-A, 10-B, 10-C), 100ml/min (100-A, 100-B, 100-C) and at 250ml/min

(250-A, 250-B, 250-C), the sand was washed and repacked with the same procedure

to obtain a homogeneous packing after each experiment. Nevertheless, with a new

arrangement of all grains and the inherent instability of gas migration in certain flow

regimes, each experimental outcome is unique.

A camera captures the light transmission images of gas movement and resulting gas

presence within the cell at a designated time rate, either until the gas reaches the top

of the cell or until the memory of the camera is exhausted. In the experiments used in

my thesis, images are collected at the rate of 30 frames per second until the completion

of the experiment. The obtained images were then converted to grey-scale images and

thereafter processed to detect gas presence or to obtain gas-saturation images [Niemet

and Selker, 2001]. This experimental technique is called the Light Transmission Method

[Tidwell and Glass, 1994] (see Figure 2.2). The details of the image processing technique

as well as the technique for processing the images to obtain gas-saturation data, are

discussed in Appendix A. In this thesis, to retain simplicity, I will use a time-series of

the processed gas presence/absence type binary images or experimental movies.

To obtain the binary images, individual pixel intensity values of the raw images are

averaged over a block size of 1mm×1mm. Then, optical density values are computed per

block, and a detection limit of 0.02 was set [Van De Ven and Mumford, 2019]. Optical
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Figure 2.2: Schematic of experimental setup. The Light Transmission Method schematic is
redrawn using Figure 1 of Tidwell and Glass [1994] as a guide, and the sketch for
the acrylic cell is redrawn using Figure 1 of Van De Ven and Mumford [2018] as
a guide.

density is defined as the negative logarithm transform of the ratio of the transmitted to

incident light intensity [Kechavarzi et al., 2000]. Wherever the block intensity exceeds

the detection limit, gas is considered to be present.

From these binary image data obtained using the optical density values, the differ-

ence in gas-invasion patterns for different gas injection rates in the same homogeneous

porous medium is observed. At a low injection rate of 0.1 ml/min, gas flows with frag-

mentation and coalescence behaviour (see Figure 2.3) as seen in discontinuous gas flow

regimes (see Section 2.1) [Van De Ven and Mumford, 2019]. For higher injection rates

(100ml/min, 250ml/min), we see more branching effects and the development of multi-

ple coherent fingers of gas (see Figure 2.3) across the domain (continuous flow regime).

With increasing gas flow rate, viscous forces dominate the injection zone, making the

gas flow radial around the injection point [Selker et al., 2006, Van De Ven and Mum-

ford, 2019]. However, once the gas propagates further away from the injection point,

gravitational forces overcome the viscous forces [Van De Ven et al., 2020]. Hence, the

upward movement of gas is observed as multiple fingers (referred to as gravity fingering

in Glass and Nicholl [1996]). The experimental triplicate at 10 ml/min belongs to the

transitional gas flow regime (see Section 2.1).

Table 2.1 contains a summary of the experiments used in this study taken from Van

De Ven and Mumford [2019]. It contains the experiment number, gas-injection rate,
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porosity of sand, total duration of the experiment, Bo/Ca, and gas flow regime of the

corresponding experiment. The porosity of a porous medium is defined as the ratio of

the volume of pore space to the total volume of the porous medium.

Experiment
Nr.

Injection
rate
[ml/min]

Porosity Duration [s] Bo/Ca Gas flow
regime

0.1-A 0.1 0.366 330 −1.61× 104 Discontinuous
10-A 10 0.375 8.6 −1.61× 102 Transitional
10-B 10 0.360 9.4 −1.61× 102 Transitional
10-C 10 0.369 9.4 −1.61× 102 Transitional
100-A 100 0.370 6.3 −1.61× 101 Continuous
100-B 100 0.365 5.2 −1.61× 101 Continuous
100-C 100 0.360 4.8 −1.61× 101 Continuous
250-A 250 0.366 4.4 −6.45× 100 Continuous
250-B 250 0.379 6 −6.45× 100 Continuous
250-C 250 0.364 6.4 −6.45× 100 Continuous

Table 2.1: Summary of experiments used in this study based on Table 1 from Van De Ven
and Mumford [2019]. The experiments were conducted by the group of Dr. Kevin
Mumford at Queen’s University, Canada. The duration of the experiments may
slightly differ from the ones reported in Van De Ven and Mumford [2019] due to
rounding up during data processing.

2.3 Models

Immiscible flow in porous media, where each pore arrangement is not known, can

be simulated primarily by using two modelling techniques, i.e. so-called continuum

or stochastical modelling. I will focus on macroscopic stochastic versions of Invasion

Percolation models (Section 2.3.2) and describe four versions used in this study (Sec-

tions 2.3.3 — 2.3.6).

2.3.1 Classification of Modelling Approaches

Continuum Modelling Technique



2.3 Models 19

250

200

150

100

50

0

Z
 (

m
m

)

0 50 100 150 200 250
X (mm)

250

200

150

100

50

0

Z
 (

m
m

)

0 50 100 150 200 250
X (mm)

250-A

10-A0.1-A

100-A

Figure 2.3: A sample of four binary experimental images at the final time for experiments
0.1A, 10A, 100A, and 250A.

Continuum models are Darcy-law [Holden, 2005] based fluid transport models defined

at the scale of a representative elementary volume (REV). A REV is the smallest

model unit at which individual pore-level geometrical details are smoothed out. Thus,

averaged values of parameters describing the physical processes can be used. These

models are highly complex with a large number of parameters and can be coupled

to different physical and chemical processes for a near-accurate representation of the

physical, real-world system. They involve solving partial differential equations with

desired spatial and temporal discretizations. Additionally, to address the description of

multiphase flow in porous media, relative permeability of phases and capillary pressure-
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saturation curves are used. Owing to their complexity, these models are non-linear and

computationally expensive.

Moreover, gas migration processes are highly influenced by perturbations at the pore

scale. On the one hand, to incorporate pore-scale heterogeneities correctly, a finer mesh

discretization is required for these models. On the other hand, this further increases the

computation time. Coarser mesh discretizations are subjected to artefacts of numerical

dispersion that smooth out the pore-scale heterogeneities [Glass et al., 2001]. The

different length scales involved in the processes of gas migration in the porous medium

make the use of continuum models difficult [Glass et al., 2001]. This reduces the

prediction capability of such models for gas migration processes because they are highly

influenced by pore-scale perturbations.

Stochastic Modelling Techniques

Stochastic modelling techniques involve the use of simple discrete growth models (see

Section 1.1.2), which capture the essential physics of the processes and generate flow

patterns without solving differential equations. Thus, these models have low compu-

tational effort. Both laboratory experiments and numerical model formulations of a

real-world system are not free from uncertainties. While laboratory experiments can

have uncertainty associated with measurements or processing techniques, numerical

models can suffer from conceptual and parameter uncertainty, affecting their prediction

quality. A stochastic analysis of real-world systems helps to address these uncertainties

appropriately. Discrete growth models are ideal candidates for such analysis. Out of

many discrete growth models, I focus specifically on Invasion Percolation (IP) models.

2.3.2 Invasion Percolation Models

Invasion Percolation (IP) models are (stochastic) discrete growth models often used

for simulating displacement of immiscible fluids through porous media in the capillary

fingering regime [Lenormand et al., 1988]. The term Invasion Percolation was first

coined by Wilkinson and Willemsen [1983] for a pore-scale model, which incorporated

phase accessibility rules to standard Percolation models of Broadbent and Hammersley

[1957] to assure connectivity within a phase.

General Implementation Procedure
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Many IP model versions with variations in the underlying rules have been developed to

match the behaviour of specific fluids in specific porous media under specific conditions

[e.g., Ewing and Berkowitz, 1998, 2001, Birovljev et al., 1991, Kueper and McWhorter,

1992, Frette et al., 1992, Ioannidis et al., 1996, Glass et al., 2001, Mumford et al., 2015,

Trevisan et al., 2017, to name a few]. However, all of them have the following typical

conceptual and numerical implementation:

1. At first, a pore network of blocks/nodes is generated with a given connectivity by

assigning each pore an invasion/entry threshold selected from some distribution.

This network can be 2D (2-dimensional) or 3D (3-dimensional).

2. Initially, all the blocks are occupied by the defending fluid, which is the fluid that

initially exists in the domain. Then, the invading phase is injected at some point

in the network. For example, in this thesis, water is the defending fluid, and gas

is the invading fluid.

3. Pores with connection to the invaded pore are evaluated for their entry thresh-

olds, and, based on some criterion (mostly minimum entry threshold), one of the

connected blocks is invaded.

For my thesis work, the defending phase, water, is the wetting phase and the invading

phase, gas, is the non-wetting phase. In a multiphase system, the solid porous matrix

prefers to be in contact with one fluid phase more than the other. This preferred phase

is the wetting phase, which thus flows through the smaller pores of the matrix. The

non-wetting phase favours the larger pores of the solid matrix for flow.

IP models also need to incorporate buoyancy effects to simulate gas invasion in water-

saturated porous media. Several studies have therefore used IP models with gravi-

tational/buoyant force effects to model gas-water flow systems or fluid systems with

significant density-difference in porous media [e.g., Frette et al., 1992, Birovljev et al.,

1991, Meakin et al., 1992, Ioannidis et al., 1996, Held and Illangasekare, 1995, Glass

and Yarrington, 1996, Tsimpanogiannis and Yortsos, 2004, Cavanagh and Haszeldine,

2014, Trevisan et al., 2017].

Macroscopic Invasion Percolation (IP) Model

The pore-scale IP models described above must be upscaled to use them for large engi-

neering applications: like subsurface contaminant remediation, oil extraction, geologic
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gas storage etc.; i.e., any scale larger than the pore-scale. Studies [like Kueper and

McWhorter, 1992, Ewing and Gupta, 1993, Ioannidis et al., 1996] abstracted processes

from the pore-scale IP model to then use them at the larger scales of their problems.

Macroscopic IP models conceptualize the porous medium as a group of internally ho-

mogeneous isotropic blocks consisting of sub-networks of pores instead of individual

pores as in pore-scale IP models [as of Wilkinson and Willemsen, 1983]. Macroscopic

IP models are a reasonable choice for scales greater than or equal to the experimental

data used in this study.

Model Versions Used in This Study

I use four versions of the macroscopic IP model:

1. The Near-Pore Macro-Modified Invasion Percolation (NP-MMIP) model of Glass

et al. [2001] without viscous modifications.

2. The Macro-IP model involving a rule for re-invasion of water [Glass and Yarring-

ton, 2003, Mumford et al., 2015].

3. A combination of the Macro-IP model with a rule that allows for more than one

invasion block per step (including the original viscous modification as in Glass

et al. [2001]).

4. A combination of the Macro-IP model and modified stochastic selection rule of

the Stochastic Selection and Invasion (SSI) model of Ewing and Berkowitz [1998]

adapted from Mumford et al. [2015].

All four model versions are coded using MATLAB. Also, they are at the same scale,

adopt a 2D grid description of the porous medium in accordance with the experimental

data, and share some similarities. Figure 2.4 shows the conceptual building of the four

model versions used in this study.

To facilitate the understanding of the models, first, I describe the model version (I call

it Model 1) based on the NP-MMIP of Glass et al. [2001] (Section 2.3.3). Model 1

does not include the modifications for viscous effects from the NP-MMIP model of Glass

et al. [2001]. Then, in Section 2.3.4, I introduce Model 2, which has additional rules of

re-invasion of water at the macroscopic scale, same as in Glass and Yarrington [2003],

Mumford et al. [2015] (see Figure 2.4). I combine Model 2 and a rule for producing

thicker fingers from the viscous modification of NP-MMIP model of Glass et al. [2001]
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Figure 2.4: Flowchart illustrating the building process of the competing model versions used
in this thesis.

to produceModel 3 (Section 2.3.5), to resemble the experimental outcomes (see Figure

2.4). Finally, I describe the fourth model version: Model 4, in Section 2.3.6, which

is built by combining Model 2 and a modified rule for stochastic invasion from Ewing

and Berkowitz [1998] (see Figure 2.4). Model 4 is adapted from Mumford et al. [2015].

All the model versions used here generate binary images (gas-presence/gas-absence) as

output.

2.3.3 Model 1

In this model, the gas is placed at the injection block (position of the gas injection needle

in the experiment), and the invasion thresholds (Te) [cm of H2O] of the neighbouring

blocks are calculated:

Te = Pe + Pw, (2.2)

where Pe is the local entry pressure of the block [cm of H2O], and Pw is the pressure of

the water phase [cm of H2O]. Pe is the specific value of capillary pressure (Pc) required

by gas to percolate a water-occupied block. Capillary pressure (Pc) is the difference in
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pressure across the interface of two immiscible phases in pore space. Pw incorporates

the buoyant effects and is calculated assuming hydrostatic conditions:

Pw = ρwgz (2.3)

Here, ρw is the density of water [kg/m3], g is the acceleration due to gravity [m/s2],

and z is the height [m] from the top of the acrylic glass cell. At each model step, the

neighbouring block with the minimum invasion threshold (Te) is invaded by gas.

The Pe field of a porous medium depends on the pore-scale arrangement of the solid

and its interaction with the fluids. A precise measurement of the Pe field at the scale

of the experiments (block size of 1mm x 1mm) in this thesis is practically impossible.

Therefore, it is typical to use random Pe fields, i.e. a randomly generated value per

block. Since Pe is a point on the capillary pressure (Pc)–saturation (S) curve, the

model randomly samples the Pe values that it assigns individually to all model blocks,

using the Brooks-Corey Pc − S relationship [Brooks and Corey, 1964] for the material

of interest (homogeneous sand of 0.7mm average grain size):

Se =

(
Pc

Pd

)−λ

, (2.4)

where Se is the effective wetting phase saturation. The saturation of a fluid phase is a

dimensionless quantity defined as the percentage of pore space occupied by that fluid

phase. Pc is the capillary pressure [cm of H2O] and Pd is the macroscopic displacement

pressure [cm of H2O]. Pd is the capillary pressure of the largest pore-throat that the gas

phase needs to overcome to invade the porous medium [Gerhard and Kueper, 2003]. λ

is the pore-size distribution index. The value of λ varies typically between 1-4 and can

be up to 7 for very uniform sands. The model samples the Pe values from the inverse

of the cumulative distribution function of Pc (using Equation 2.4):

Pc = PdU− 1
λ (2.5)

Here, U is a random number from the standard uniform distribution on the interval

[0, 1]. This sampling method is called the Inverse Transform sampling method, which
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has been used in the works of Glass et al. [2001], Mumford et al. [2015], Banerjee et al.

[2021]. The Pe values thus assigned to the blocks are not spatially correlated, but this

extension could be achieved via geostatistical simulation.

2.3.4 Model 2

Model 2 has the same setup and follows the rules for invasion of gas specified for Model

1 (Section 2.3.3). This means it follows Equations 2.2 — 2.5 and also obeys the rule

of invading the neighbouring block with the minimum Te. Furthermore, it has a rule

for re-invasion of water into the gas-occupied blocks to simulate the fragmentation

and mobilization events observed for discontinuous gas flow (see Section 2.1) [Glass

and Yarrington, 2003, Mumford et al., 2015]. This rule is an upscaled version of the

re-invasion rule of the pore-scale model of Wagner et al. [1997].

In Wagner et al. [1997], the re-invasion of water (causing fragmentation and mobilization)

into the gas-filled pores is realized by a withdrawal pressure threshold. At the scale of

the Macro-IP model, the threshold for re-invasion, also known as the terminal threshold

(Tt) [cm of H2O], is calculated as the summation of the terminal pressure (Pt) [cm of

H2O] and the hydrostatic pressure (Pw).

Tt = Pt + Pw (2.6)

Before defining Pt, some more domain terms must be defined. When a non-wetting

phase invades a wetting-phase-occupied porous medium, the process is called drainage.

The reverse process is called imbibition. The Pc − S curves associated with these

processes differ for any particular porous medium. This behaviour is called capillary

pressure hysteresis. The terminal pressure (Pt) is the minimum capillary pressure

attainable by a non-wetting phase cluster undergoing imbibition [Gerhard and Kueper,

2003]. Pt is calculated using the Pe− to −Pt ratio (α) obtained from the characteristic

drainage and imbibition curves for the porous medium of interest, which takes capillary-

pressure hysteresis into account [Gerhard and Kueper, 2003, Mumford et al., 2009]. The

same α value is assigned to each block, which is reasonable for uniform sands like the

one used in this thesis [Mumford et al., 2015].
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Pt = αPe (2.7)

Water re-invades a gas-occupied block if:

Tt,g > Te,w, (2.8)

where g and w stand for gas- and water-occupied blocks, respectively [Mumford et al.,

2015]. Thus, in a gas cluster when the maximum Tt,g value is greater than the minimum

Te,w value of its neighbouring water-occupied blocks, water re-invades the gas-occupied

block with the maximum Tt,g value. The model assumes that it completely expels the

gas when water re-invades a gas-occupied block. As a result, the expelled gas occupies

the block with the minimum Te,w value. If the re-invasion of water occurs in blocks

on the periphery of the gas cluster, mobilization occurs. If the re-invasion causes a

disconnection in the gas cluster, fragmentation occurs. In any model step, a gas cluster

is allowed to grow, i.e. the number of gas-invaded blocks is more than in the previous

step, only when connected to the gas cluster containing the injection point to ensure

mass balance. Thus, for gas clusters disconnected from the injection point, only the

re-arrangement of blocks is possible.

2.3.5 Model 3

Model 3 includes an invasion rule of Glass et al. [2001] to the Model 2 implementation.

In this regard, the model formulation follows the rules specified by the Equations 2.2 —

2.8. The difference is that multiple neighbouring blocks (nb) are invaded instead of one

block per step. This means that not only the easiest-to-invade block is invaded, but the

nb easiest ones among all candidate blocks. This weakens the influence of Te and hence

resembles a reduced dominance of capillary effects in favour of viscosity effects. The

number of blocks to invade is chosen by observing the gas fingers from the experimental

data.

Please note that, in this implementation, the number of blocks invaded is chosen dy-

namically until the number of blocks specified at the beginning of the simulation is

available for invasion. For example, in a model run specified to invade, say, nb = 10
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blocks per step, initially, when the number of available neighbours is < 10, all the avail-

able ones are invaded. Ten neighbouring blocks are invaded only when the gas cluster

around the injection point is big enough to have ≥ 10 neighbouring blocks. After each

event of an invasion of multiple blocks, re-invasion of water resulting in fragmentation

or mobilization of the gas cluster is carried out exactly as described in Model 2. This

means that the simulation of the fragmentation and mobilization event in Model 3 does

not involve gas invasion of multiple water-occupied neighbouring blocks.

2.3.6 Model 4

Model 4 is implemented following the formulations specified by Equations 2.2 − 2.8.

Model 2 selects the neighbouring block with a minimum invasion threshold (Te) for

invasion. In contrast, in Model 4, the neighbouring block is chosen using a modified

rule for stochastic selection from the Stochastic Selection and Invasion (SSI) model of

Ewing and Berkowitz [1998]. This rule allows gas to invade not strictly only the block

with the minimum invasion threshold (Te) but also less easy-to-invade blocks based on

a partially randomized choice. The difference between Model 3 and Model 4 is that

Model 3 diminishes the influence of Te deterministically for many blocks per step, while

Model 4 achieves the same stochastically for a single block per step.

The stochastic selection rule of the original SSI model accounted for viscous effects

(instabilities and randomness brought into the system by the fluids’ interaction with a

porous medium) and was originally applied to dense non-aqueous phase liquid (DNAPL)

migration [Ewing and Berkowitz, 1998]. Viscous effects cannot be ignored for gas flow

at high injection rates. This stochastic selection rule has been modified to be applicable

for gas invasion in water-saturated sand [Mumford et al., 2015] instead of the DNAPL

invasion of the original work. In the modified stochastic selection rule of the SSI model,

the decision of gas invasion is still proportional to the Te values of the neighbouring

blocks but is slightly modified using an additional parameter: c, called the cell selection

weighting factor [Ewing and Berkowitz, 1998].

In the modified rule for stochastic selection:

1. The list of Te values of the neighbouring blocks (n) of the gas cluster are arranged
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in an ascending order Te,asc and the cumulative sum Te,cum is evaluated:

Te,cum[i] =

j=i∑
j=1

Te,asc[j]; i = 1, 2, 3, . . . , n (2.9)

2. Then the first block (value of i) where the rule specified by Equation 2.10 is found

true is invaded by the gas:

Te,cum[i] > Rc

j=n∑
j=1

Te[j] (2.10)

Here, R is a uniformly distributed random number between [0, 1] and c is the cell

selection weighting factor [Ewing and Berkowitz, 1998]. Please note that although

R and U from Equation 2.5 are from the same distribution, their seed numbers

and generator types are different. Hence I use different symbols here.

In the stochastic selection rule, c controls the strength of randomness, and its value lies

in the range of (0,∞). When c → ∞, the value of Rc → 0 for almost all values of R.

In this limit, the first block on the list of Te,asc (block with the lowest Te value) will be

invaded deterministically by gas. The resulting lightning-bolt-like gas finger is the same

as the gas finger generated by Model 2. In fact, for c → ∞, Model 4 becomes identical

to Model 2. However, the lower the c value, the higher the RHS of Equation 2.10, which

ensures that the higher Te[j] are picked more often; this generates gas fingers that are

not moving strictly upward, but have a wider spatial distribution. Please note that the

re-invasion of water events that result in fragmentation or mobilization of gas clusters

are carried out exactly as in Model 2, i.e. without any stochastic modification.

Table 2.2 summarizes the model parameter values used in this thesis. The conceptual

difference in the model versions is illustrated using a schematic in Figure 2.5. Figure

2.5b displays a gas invasion event in Model 1, which gives rise to a lightning-bolt-like

gas finger. The fragmentation of the gas cluster owing to water re-invasion, as per

Model 2, is shown in Figure 2.5c. Figure 2.5d shows the gas invasion of three blocks

(three most favoured blocks according to Te values) in the injection cluster following

a fragmentation event, according to Model 3. Figure 2.5e displays the invasion of a



2.4 Existing Methods of Comparison 29

Table 2.2: Model parameter values used in this thesis.

Parameters [Units] Symbols Values

Common for models 1-4

Density of water [kg/m3] ρw 1000

Acceleration due to gravity [m/s2] g 9.82

Average Pt − Pe ratio [-] α 0.6 Mumford et al. [2009]

Displacement pressure [cm of H2O] Pd 8.66 Schroth et al. [1996]

Pore-Size distribution index [-] λ 5.57 Schroth et al. [1996]

Model domain size [mm2] X − Z 250× 250

Block discretization [mm2] x− z 1× 1

Model 3 specific

Number of blocks to invade nb
{1, 2, ...10, 15, 20} for experiments
at 10ml/min

{1, 2, ...20, 25, 30, 35, 40, 50} for
experiments at 100ml/min and
250ml/min

Model 4 specific

Cell selection weighting factor c {5, 10, 15, 200, 500}

randomly chosen neighbouring block (not the most favourable block according to the

Te values) following a fragmentation event according to Model 4.

2.4 Existing Methods of Comparison

After discussing the models and experiments used in this study, I present and discuss

existing methods for comparing IP-type models to experimental data via imaging meth-

ods, i.e., perceptual comparison and spatial moments comparison, see Section 1.1.4.
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Figure 2.5: Illustration of the conceptual difference between the four model versions: a is an
initial state of gas occupation in the domain; b displays gas filling in the next
step according to Model 1; c displays fragmentation of gas cluster in the next step
according to Model 2; d displays a fragmentation event followed by an invasion
event with nb = 3 according to Model 3; e displays a fragmentation event followed
by an invasion event according to Model 4. The numbers denote the increasing
order of preference of gas invasion for the neighbouring blocks in the next step
based only on Te values. Light grey cells are the blocks chosen by the respective
model version, and the blue block is the injection site.

2.4.1 Perceptual Comparison

Perceptual comparison is the method of visually comparing experimental data and

model outputs for similarities. For example, Birovljev et al. [1991] compared the width

of the fronts between the two phases from their experiments and IP simulations. In

the work of Glass et al. [2001], the length of the gas clusters, pool height, as well as

saturation distribution images from injection experiments and IP model results were

perceptually compared. Trevisan et al. [2017] compared the experimental image against

a combination of model realizations, indicating the probabilities of gas position. Mol-

nar et al. [2019] visually compared the structure of gas fingers from their Macro-IP

simulations to the experiments of Hegele and Mumford [2014].

This method’s primary advantage is that no pixel-based information is lost from the

highly resolved data because the images are visually compared on a pixel-to-pixel basis.
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Also, multiple global attributes of an image (width of a finger, tortuosity, and so on)

from simulation and experiment can be compared simultaneously. A valuable (but

immeasurable) strength of the method is that it intuitively applies the user’s expert

knowledge to the judgement. However, the method of perceptual comparison is non-

quantitative. Although it includes no computational effort, with the increase in the

number of images to compare visually, the task may require an enormous effort from

the user. Thus, it can become time-consuming, cumbersome, and non-objective.

Consider a situation where a user compares the breakthrough image (image when

the invading phase has percolated across the entire defending phase saturated porous

medium) from the experiment and an IP type model (e.g., Macro-IP) visually. Initially,

the user compares only two images. Now, since IP-type models rely on stochastic simu-

lation, the user runs 1,000 Te realizations for the model to determine the near-accurate

Te field as in the experiment. The number of images to compare increases from two to

1,001. Next, for this Macro-IP model, the user wishes to calibrate model parameters

like the saturation of the defending phase and porosity, and so decides to use saturation

values and porosity values from 0 to 1 in increments of 0.1 excluding 0 and 1. Thus, for

each entry pressure field for the model, the user runs the model 18 times to fit these two

parameters. Now, the user has to compare 1.8 × 104 model images to 1 experimental

image. The user is further interested in comparing various versions of the IP model (say

four different versions as in this thesis), including the calibration of the two parameters

mentioned above for each model version. Now, the user visually compares 7.2 × 104

model images against one experimental image. Worse still, the user intends to visually

inspect all images from the time of injection until the breakthrough. One can realize:

the effort of comparison amplifies extremely. In short, perceptual comparison can be

too tedious and subjective for stochastic analysis and also where the experimental data

is spatially and temporally intensive.

2.4.2 Comparison of Spatial Moments

Spatial moment methods have often been used to quantitatively describe both experi-

mental data and numerical simulation output for multiphase flow in porous media [e.g.,

Essaid and Hess, 1993, Kueper and Gerhard, 1995, Jawitz et al., 2003, Pantazidou and

Liu, 2008, Trevisan et al., 2015, González-Nicolás et al., 2017, to name just a few]. This
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method was used to compare Macro-IP models and gas-injection experiments in the

work of Mumford et al. [2015]. In a 2D water-saturated porous medium invaded by a

gas phase, the method involves the calculation of zeroth (M00), first (M10,M01) and

second moments (M20,M02) to describe the spatial distribution of the gas:

Msp =

∫ ∞

z=−∞

∫ ∞

x=−∞
ϕρgSg (x, z)x

szpdxdz (2.11)

Here, ϕ is the porosity, ρg is the density of the gas [kg/m3], Sg is the gas saturation

value, x and z are horizontal and vertical dimensions [mm] in the 2D space. These mo-

ments represent the gas’s mass, position and spread, respectively. Further, the centroid

position of gas (Xc, Zc) and its spatial extent as variance (σxx
2, σzz

2) are calculated

from these moments:

Xc =
M10

M00

σ2
xx =

M20

M00

−X2
c

Zc =
M01

M00

σ2
zz =

M02

M00

− Z2
c (2.12)

Theoretically, the spatial moments of experimental gas saturation data should be re-

producible by the model simulation output. At least, the idea of matching spatial

or temporal moments is a key concept in upscaling theories in heterogeneous porous

media.

The method of spatial moments comparison is quantitative and objective. Also, it

requires less time and human effort than the perceptual comparison method. This

method’s main disadvantage is the loss of information from the data (for images: pixel

information) by the aggregation of a handful of summary statistics before comparison.

This loss of information spoils chances for improved process understanding.

Also, in 2D space, one typically evaluates five spatial moment values, which individually

comment on the quality of fit. However, there exists no standard method to combine the

information from all of them in one unique metric to identify the best-fit realization.

One reason for this is the difference in magnitude of the different spatial moment

values. Moreover, for any arbitrary choice of combination of the spatial moment values,
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the conclusions obtained would be ambiguous. For example, any combined-moment

metric would produce the best possible value even for an exact mirrored copy of the

experimental image (same first and second moments). When interested in predicting

preferential flow pathways of a phase, identifying a mirrored image as the most realistic

model output might be completely misleading. Due to this reason, the comparison of

spatial moments does not enable any unique decision between competing models or

in the calibration of models. In Section 3.3.2, I will further show how the loss of

information of pixel data in the moments method can yield misleading results with the

help of a case-study.

2.5 Bayesian Model Evidence

In Section 1.1.5, I presented the Bayesian Model Selection and highlighted the chal-

lenges of computing the Bayesian Model Evidence (BME). Here, I present the conven-

tional mathematical formulation of BME, its computation using simple Monte Carlo

(MC) integration, and Bayes factors. I use these definitions and equations in Chapter

5 to introduce, illustrate and test the Method of forced Probabilities for BME compu-

tation.

For Nm competing models Mk, k = 1...Nm and observation data y0, the BME value

BMEk of any model Mk can be evaluated as (Bayesian integral from Kass and Raftery

[1995]):

BMEk = p (y0 | Mk)

=

∫
Uk

p (y0 | uk,Mk) · p (uk | Mk) duk

≡ Ik, (2.13)

where Uk denotes the model’s parameter space, and uk represents a random parameter

vector with prior distribution p(uk | Mk), and p (y0 | uk,Mk) is the probability or

likelihood of the parameter set uk of the model Mk to have generated the observed

data set y0.
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The integral Ik over the entire parameter space is computationally expensive and can be-

come infeasible (with no meaningful BME value) in the cases discussed in Section 1.1.5.

A review of methods to determine BME can be found in Schöniger et al. [2014].

To facilitate the introduction of the proposed method for computing BME in Chapter

5, I present here the approach of simple (or: brute-force) MC integration [Hammersley,

1960] of Eq. 2.13. The integrand is evaluated at randomly chosen points (uk,r) of

the parameter space Uk, which are drawn from their prior distribution p(uk | Mk).

The mean of the evaluated likelihoods provides the approximate value of the integral

(referred to as Îk):

Îk =
1

N

N∑
r=1

p (y0 | Mk,uk,r) ≈ Ik, (2.14)

with N being the number of MC realizations (ensemble size). To re-stress the problem:

in applications with many precise data, the summands in this equation are (close to)

zero with a probability very close to one, such that convergence can be prohibitively

slow.

To rank models against each other, one can directly compare their BME values (the

larger, the better) or their negative logarithmic BME values (the smaller, the better).

Alternatively, one computes so-called Bayes factors (BF) [Kass and Raftery, 1995] for

two models: k = 1 and k = 2:

BF k=2
k=1

=
BMEk=2

BMEk=1

, (2.15)

with a scale for interpretation provided by, e.g., Jeffreys [1961]. A BF value larger

than one favours model 2 over 1, and the order of magnitude decides the statistical

significance.



3 Model-to-Experiment Comparison

method∗

To fulfil the first research objective of this thesis, I develop a method of comparison

between IP-type models and data. The first hurdle to overcome in this process is the

absence of the time parameter in IP-type models. One needs to know which images

of the experimental time-series and the model iterations to compare with each other.

Thus, I suggest performing a volume-based time-matching (Section 3.1) between the

experiments and the IP-type models as a first step. Then, in Section 3.2, I introduce

the metric of comparison: the Jaccard coefficient and its diffused version. I apply my

method to compare Model 2 (Section 2.3.4) with experimental data of gas injection

at a rate of 0.1 ml/min (Experiment 0.1-A from Table 2.1). Further, I compare the

performance of my method against the standard method of comparison by matching

spatial moments (Section 2.4.2). In Section 3.3, I enlist the steps and present and

discuss the results from this demonstration of my method. I summarize the results of

the study and the conclusions obtained in Section 3.4.

3.1 Volume-Based Time Matching for IP-type Models

I use Equation 3.1 and Equation 3.2 to compute the gas volume in the experiment and

the model, respectively.

Vexp(t = ∆t× nt) =
nt=N∑
nt=1

Qexp ×∆t× nt; nt ∈ N, nt = 1, 2, 3, 4....N (3.1)

∗This chapter contains text fragments and figures from my publication Banerjee et al. [2021]
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Here, Qexp is the rate of injection of gas in the experiment [m3/s] and ∆t is the time

step in between the capture of two successive images [s] in the experiment.

Vmodel(ℓ) =

ℓ=Ltop∑
ℓ=1

nblocks × ϕ× Sg × Vblock; ℓ = 1, 2, 3, ...Ltop (3.2)

Here, nblocks(ℓ) is the number of blocks invaded per loop counter ℓ in the Model 2

described in Section 2.3.4, Ltop is the model loop counter when the gas reaches the top

of the domain, and Vblock is the volume of each discretized block of Model 2 (see Table

2.2). The porosity ϕ of the sand used in the experiment is assumed to be uniform, and

Sg is the gas saturation value assigned to the entire gas cluster.

After that, for all the time-wise elements in the Vexp and Vmodel data vectors, the

Euclidean distance is computed. Based on this distance value, each element of the

Vexp vector gets a nearest neighbouring element (minimum Euclidean distance) in the

Vmodel vector. For all those nearest-neighbour pairs, I assign the experimental time t to

the corresponding model loop counter ℓ. One may now compare the respective time-

matched images based on my proposed (Diffused) Jaccard coefficient (Section 3.2). In

my specific implementation, I use the MATLAB inbuilt function knnsearch with the

exhaustive search algorithm to efficiently conduct the nearest neighbour search.

The model loop counter may increase without an increase in volume because of a frag-

mentation process. A fragmentation process refers to a combination of an imbibition

(of water) step and an invasion (of gas) step. This process does not add gas to the sys-

tem but is actually a re-arrangement of the gas-occupied blocks (see Section 2.3.4). In

such a situation, all these model loop counters will match the same single experimental

time (because each experimental image by definition shows an increase in volume due

to the fixed gas injection rate Qexp). I recommend assigning the experimental time to

the last matching model loop counter in that case because this model state represents

the completed processes at the matched volume.
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3.2 Proposed Metric of Comparison: (Diffused)

Jaccard Coefficient

To quantify the similarity between experimental and simulated images, I compute the

Jaccard coefficient (J) [Tan et al., 2005]. This metric is widely used in the context of

object identification or image recognition. Per set theory, it is defined as the size of the

intersection between two sets, A and B, divided by the size of the union of these sets.

J(A,B) =
|A ∩B|
|A ∪B| (3.3)

The Jaccard coefficient ranges between zero and one, with zero meaning no similarity

and one meaning complete similarity. To understand how I compute the Jaccard co-

efficient for binary (black/white) images, consider Figure 3.1 (top row) as a schematic

illustration of the intersection between the binary-colour coded ( coloured block = 1,

white block = 0) data sets experimental image (Figure 3.1a) and model image (Figure

3.1b). The intersected blocks (|A ∩ B|) are colored purple (Figure 3.1c). I count the

number of purple blocks and divide by the total number of coloured blocks (|A ∪ B|)
in the images of Figure 3.1a and 3.1b without double counting the pixels that agree

to be coloured in both of them (purple blocks of Figure 3.1c), to compute the Jaccard

coefficient. One can automate this to be calculated for a time-series of images.

A pixel-by-pixel comparison would reject even a perfect model in a scenario where the

point of gas injection in the experiment is not precisely known, leading to an offset

between the experiment and the model. In many real-world applications, this offset

would be of no concern; on the contrary, one would wish to identify such a perfect

model run. Thus to identify such “perfect”model runs, I blur the images from both the

experiment and the model before computing the Jaccard coefficient. Since the blurring

produces non-binary values, I use a slightly adapted implementation of the Jaccard

coefficient for sets A = {ai : a ∈ R, i = 1, 2, ...n} and B = {bi : b ∈ R, i = 1, 2, ...n},
which is also known as the Ruzicka similarity coefficient [Deza and Deza, 2016]:

Jd(A,B) =

∑n
i min (ai, bi)∑n
i max (ai, bi)

(3.4)
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I call this metric Jd the Diffused Jaccard coefficient and illustrate its evaluation in the

bottom row of Figure 3.1.
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Figure 3.1: Visualization of intersection evaluated in the (Diffused) Jaccard coefficient
through exemplary images. (a) Image from experiment 0.1-A at the end of the
experiment ; (b) Corresponding time-matched Model 2 realization; (c) intersec-
tion of images (purple) evaluated by Jaccard coefficient (here: J = 0.12); (d) and
(e) corresponding blurred experimental and model images (4% domain size blur
radius); (f) intersection of blurred images (purple) evaluated by Diffused Jaccard
coefficient (here: Jd = 0.54).

To blur the images, I use the 2D-Gaussian blur function:

G(x, z) =
1

2πσ2
e−

x2+z2

2σ2 (3.5)

Mathematically, the blurred images are produced by convolution with a Gaussian kernel

of specified width (standard deviation σ). Hence, the blurring radius is increased or

decreased by altering the σ value in Equation 3.5. I use the kernel size relative to the

original domain size as a unit for the images’ blur radius. The blurring results in non-

binary images (see Figures 3.1d - 3.1f) with values between 0 and 1. These represent a
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spatial tolerance in matching and do not refer to intermediate gas saturation values.

3.3 Method Demonstration: Case-Study

In this section, I present a demonstration of my comparison method (Sections 3.1 and

3.2) using the data from experiment 0.1-A, i.e. from the experiment conducted at a

gas-injection rate of 0.1ml/min and Model 2 (Section 2.3.4).

The parameter values from Table 2.2 are used for Model 2. I run the model 1,000 times,

each run differing in the random spatial arrangement of the Pe values, thus also differing

in the spatial arrangement of Pt values. These model runs represent the uncertainty in

these parameter values, which are impossible to determine with experimentation. For

each of these 1,000 model runs, the simulation ends when the gas reaches any block on

the top of the model domain.

Additionally, in this case-study, I assume a constant gas saturation value (Sg) of 0.2,

based on Van De Ven et al. [2020], for all the gas clusters [Mumford et al., 2015]. This

approach may not be an accurate representation of reality. However, this assumption

helps to retain the model’s simplicity and hence reduces its computational cost, and

this assumption does not affect the discussion of my comparison method.

3.3.1 Steps of the Model-Experiment-Comparison

First, I conduct the experiment-to-model time matching (discussed in Section 3.1) using

Equations 3.1 and 3.2. The model simulation starts from the time gas first percolates

into the water-saturated sand in the experiment. Then, I compute the Jaccard coef-

ficient between the time-series of experimental images and the corresponding model

images across all the model realizations. Also, I compute the Diffused Jaccard coeffi-

cient using radii of blurring ranging from 0% to 50% of the domain size in steps of 1%

by changing the standard deviation value (see Equation 3.5).

For comparing my method to the existing method of spatial moments, I calculate the

difference between centroid and variance values (Section 2.4.2) of the final experimental

image and of the corresponding time-matched model output images. I normalize this
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difference by the centroid and variance values of the experimental image and then

identify the minimum of the normalized differences of each of the centroid and variance

values in the X - Z axes. Comparing zeroth moments M00 is unnecessary because the

time matching is based on volume matching, so M00 is always accurate.

Additional to the model images, I also translate an experimental image in the X -

Z space to compare with the original experimental image. This facilitates additional

discussions for my method. On this image, too, I calculate the Jaccard coefficient, the

Diffused Jaccard coefficient and the spatial moments.

I segregate the discussion of the results of this case-study into two separate sections,

for ease of understanding. In Section 3.3.2, I discuss results based on the experimental

image at the end of the experiment and corresponding time-matched images of all model

realizations. In Section 3.3.3, I focus on using the proposed metric on the time-series

of the time-matched images from the experiment and model.

3.3.2 Results from Comparison Based on Final Experimental Image

One can compute the (Diffused) Jaccard coefficient for any of the time-matched im-

ages of the experimental data time-series. Here, I begin the discussion by picking the

experimental image at the end of the experiment (at tend = 330s) and the correspond-

ing time-matched model image per model realization for clarity. The quality-of-fit (no

matter if assessed perceptually, by spatial moments or by the proposed metric) varies

significantly across the 1,000 model realizations. For example, the values for J vary

between 0.003 and 0.17, and those of Jd vary between 0.01 and 0.79. Therefore, I select

a set of model realizations for discussion that show a reasonable agreement with the

experimental image. I will motivate the choice of individual realizations further below.

Spatial Moments Can Be Misleading

First, I compare the spatial moments of seven arbitrary (time-matched) images to the

final experimental image (Figure 3.2). By comparing the height of the grey bars (model

realizations) against the height of the solid dark blue bars (experimental data) in Figure

3.2, one can see that none of the six model realizations clearly outperforms the others in

all spatial moments; rather, performance varies significantly across the four measures.
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Indeed, I have chosen four of the realizations (numbers 3, 4, 5, and 6) to exactly match

Xc, Zc, σ
2
xx and σ2

zz, respectively (see Figure 3.2). Recall that all of the time-matched

realizations by definition match the zeroth moment, which is equivalent to the volume

in the domain. Table 3.1 lists the characteristics of the seven realizations chosen for

detailed analysis and discussion here.
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Figure 3.2: Bar chart of spatial moments in X-Z space (computed using Equation 2.12) for
experimental image and its shifted copy (solid blue bars) and model realizations
(grey bars) as listed in Table 3.1; numbers in the bars denote respective realization
number.

The final model images of these realizations are visually displayed in Figure 3.3. Re-

alization 7 in Figure 3.3h might look familiar to the reader – it is, in fact, the original

experimental image, but translated 15 mm to the right and 10 mm upwards in X-Z

space. This realization represents a typical situation where the actual injection point

is not precisely known. Consistently, this realization meets the second spatial mo-

ments (spread) in X and Z but fails in reproducing the exact position of the gas (first

moments). Hence, if one relied on a spatial moments comparison, one might fail in

identifying this realization as an (almost) perfect fit. In real applications, identification

of this realization as the true one is essential because it would deduce that the model

used is, in fact, correct, but only the injection point is assumed at the wrong position.
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Table 3.1: Characteristics of the seven realizations selected for detailed analysis along with
their ranking obtained from their Jaccard coefficient (J) and Diffused Jaccard
coefficient (Jd) values at 4 % of domain size blur radius. The individual spatial
moment values for the realizations can be read from Figure 3.2. The values for J
are provided in Figure 3.3, and those for Jd are provided in Figure 3.6.

Realization
Number

Description Rank
by J

Rank
by Jd

1 Model realization with maximum Jaccard coefficient
value for final image

1 2

2 Model realization with the fastest increase of dif-
fused Jaccard coefficient with an increase in blurring
radius

2 1

3 Model realization with the minimum normalized dif-
ference to the experimental centroid in X direction
for final image

6 4

4 Model realization with the minimum normalized dif-
ference to the experimental centroid in Z direction
for final image

4 7

5 Model realization with the minimum normalized dif-
ference to the experimental variance in X direction
for final image

5 6

6 Model realization with the minimum normalized dif-
ference to the experimental variance in Z direction
for final image

3 3

7 Experimental image translated in X-Z space
(“shifted copy of experimental image”)

7 5

One cannot afford to not detect a perfect model realization. Therefore, I strongly rec-

ommend using the proposed (Diffused) Jaccard coefficient as a metric of comparison,

as discussed in the following sections.

Jaccard Coefficient Yields More Conclusive Ranking

Realization 1 is chosen as the realization that has scored the best Jaccard coefficient

(see Table 3.1). When assessed through the eyes of spatial moments, this realization

does not look especially convincing (the grey bar for Realization 1 is of the same height

as the solid dark blue experimental bar for Xc, but shorter for Zc and σ2
xx and taller for

σ2
zz in Figure 3.2). However, from Figure 3.3b, one can see that, perceptually, it does
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Figure 3.3: Images at the end of the experiment as a basis for perceptual comparison. (a) Final
experimental image; (b - g) time-matched model realizations and (h) shifted copy
of the experimental image as listed in Table 3.1, with box colours and numbers in
figures representing the respective realization.
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achieve a good fit, which confirms that comparison on a pixel-to-pixel basis as done

with the Jaccard coefficient yields more conclusive results than the spatially-aggregated

moments’ method. I observe that the gas finger of Realization 1 with the highest J

value extends farther to the top than the original experimental image (Figure 3.3a).

This is not a systematic result, but this particular randomized entry pressure field

yielded the highest pixel-by-pixel agreement with the experimental image. Suppose the

distance of the gas finger to the top of the glass cell was of particular interest to the

modeller. In that case, one could modify the Jaccard coefficient calculation such that

it only compares, e.g., the blocks of the outer gas finger boundary.

Realizations 3 – 6 (Figure 3.3d to 3.3g) have a poor perceptual fit to the experimental

image, and this is reflected in their Jaccard coefficient values. However, a combination

of spatial moments of these realizations cannot lead us to this conclusion. For example,

in Figure 3.2, compared to the height of the experimental dark blue bars, the height of

Realization 3 grey bars vary slightly for the Zc value but highly for σ2
xx and σ2

zz values.

Simultaneously, the height of Realization 5 grey bars vary slightly for Xc and Zc values

but highly for the σ2
zz value. Thus, when one compares the height of the grey bars

for Realizations 3 - 6 to the height of the dark blue experimental bars in Figure 3.2,

it is not possible to identify any pattern in their variations. In contrast, the Jaccard

coefficient provides a single value and a clear, precise ranking of the realizations.

Yet, observe that Realization 7 has a very low J value of 0.03, although it is just

a translation of the original experimental image. Therefore, I recommend using the

diffused version of the Jaccard coefficient (Jd) (see next Section).

Diffused Jaccard Coefficient Provides Most Insightful Ranking

I have already schematically illustrated the evaluation of the Diffused Jaccard coeffi-

cient with Figure 3.1 in Section 3.2. In fact, the experimental image shown in Figure

3.1 corresponds to the final experimental image (Figure 3.3a), and the shown model

realization corresponds to Realization 2 (Figure 3.3c) from Table 3.1. When the im-

ages are blurred as in Figure 3.1d and 3.1e (here, with 4% domain size blurring), their

similarity (using Jd) is compared on a scale larger than that of the individual pixels.

Figure 3.4 summarizes the performance of the seven realizations of Table 3.1 as a

function of the Gaussian blur radius varied from a detailed pixel level of 0% of the
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domain size (non-diffused Jaccard coefficient value) to a very summarized level of 50%

of the domain size.
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Figure 3.4: Diffused Jaccard coefficient as a function of Gaussian blur radius for the realiza-
tions listed in Table 3.1

In Figure 3.4, upon increasing the blurring radius, the Jd values for the shifted copy

of the experimental image (Realization 7) keep increasing and go up to 0.9 (cyan blue

plot line). Thus, the problem with using the Jaccard coefficient mentioned in the

previous section for realization 7 is resolved using the Diffused Jaccard coefficient. So,

for cases like the shifted copy of the experimental image, while spatial moments lead to

inconclusive results and the non-diffused Jaccard coefficient evaluates it as a poor fit,

the use of the Diffused Jaccard coefficient is a safer choice. Also, I picked Realization 2

(see Table 3.1) for having the steepest increase of Jd values upon increasing blur radius

in Figure 3.4 and it is observed to be a good perceptual match to the experimental image

(see Figure 3.3c). Recall that Figure 3.1 shows the intersection of Realization 2 with

the experimental image in a blurred and non-blurred state. Indeed both realizations

look very similar “in nature”, although the pixel-by-pixel comparison would not see

that because they differ slightly in position and tortuosity.

Further, note that in Figure 3.4, the Jd values of realizations 3 - 6 do not improve as fast

as those of Realizations 1 and 2 with increased blurring. This slower rate of increase
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implies that the Diffused Jaccard metric does not favour perceptually different realiza-

tions as much as it favours realizations with small offsets to the original experimental

image. To further demonstrate that blurring does not favour all realizations equally,

I show seven arbitrary model realizations at a blur radius of 4% of the domain size in

Figure 3.5. At this blur radius, the value of Jd amongst the 1, 000 model realization

images varies between 0.05 and 0.54. From Figure 3.5, it is evident that blurring does

fade out the information in the pixels; however, for a given blur radius, differences

between good and bad realizations are revealed reliably.
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Figure 3.5: A set of arbitrarily selected model realizations along with the experimental image
to present the range of the Diffused Jaccard coefficient Jd at 4% of the domain
size blur radius; the model realizations in mustard yellow box and red box are
Realization 1 and Realization 2 from Table 3.1, respectively.

To investigate to what extent one can blur the images for a meaningful comparison, I

show the selected seven realizations from Table 3.1 along with the experimental image

at different blur radii in Figure 3.6. It is evident from this figure that the images lose

more and more pixel details with increasing blur radius. Note that, at blur radius values

of 20% and 40% of domain size, the images from the experiment and Realizations 1 - 7

look almost the same. This explains why the Jd values of the different realizations do

not improve significantly after approximately 20% of domain size blur radius in Figure

3.4. Thus, the upper limit of the blur radius would depend on the application for which

the experiments and modelling are done. However, in general, it seems safe to say that

any radius of blurring exceeding 50% of the domain size is questionable.
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Figure 3.6: Experimental image and corresponding realization images (from top row to
bottom row: Realizations 1 – 7 of Table 3.1) with blur radius values of
2%, 4%, 8%, 20%and40% of the domain size in logarithmic color-scale. Box colours
represent respective realizations; cyan blue pixels are used for the shifted copy of
the experimental image (Realization 7).
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3.3.3 Results from Comparison Based On Experimental

Time-Series

This section explores the possibility of computing the (Diffused) Jaccard coefficient for

the time-series of time-matched images. Figure 3.7 summarizes the achieved diffused

Jaccard values Jd of the six model realizations of Table 3.1 as a function of experi-

mental time at a blur radius of 4% of the domain size. This plot helps evaluate the

model performance over the entire process of evolution of the gas finger instead of only

assessing the final gas finger at the end of the experiment. I refrain from computing

the spatial moments over time because that would yield four time-series per model re-

alization; without a standardised procedure to combine them into a single meaningful

measure for model realization ranking. Remember that Realization 7 is just the final

experimental image shifted in space, so I leave out its temporal evolution here.
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Figure 3.7: Diffused Jaccard coefficient (Jd) over all time-matched images with a blur radius
of 4% of the domain size, for model Realizations 1 – 6 from Table 3.1.

All the time-series plotted in Figure 3.7 show some common trends. As examples, I pick

two instances of time for further investigation. First, the value of Jd for all realizations

drops at a time of around 15s. Second, all the realizations show an abrupt increase at

around 240s.
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Figure 3.8: Zoomed images at specific times per column (axis limits are different for each
column). From top row to bottom row: experimental images and images of model
realization 1 – 6 from Table 3.1; box colours represent respective realizations.
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When zooming into the gas cluster at 15s (column 1 of Figure 3.8), observe that the ex-

periment’s gas cluster has far more gas-occupied blocks than the corresponding model

realizations. This is why, even upon blurring, the Jd value decreases. The smaller num-

ber of gas-occupied blocks in the model images can be due to an overestimation in the

gas saturation value used for volume-based time matching (Section 3.1). Alternatively,

the higher number of gas-occupied blocks in the experimental image can be due to

noisy pixels wrongly identified as gas-occupied pixels.

To investigate the abrupt rise in the Jd value at around 240s, I zoom into the gas

finger images at time 239s and 241s in the second and third column of Figure 3.8,

respectively. At both times, when I compare the experimental finger to the model

fingers, perceptually, they are different. But note that the experimental image (dark

blue gas finger) at 239s, with more gas accumulated towards the bottom, is much shorter

in height than at 241s. The model tends to expand towards the top, as is seen in all

the model realization images of columns 2 and 3 of Figure 3.8. So, when the gas finger

in the experimental image at 241s suddenly moves up, the Jd value increases abruptly

for all the model realizations. Note here that the increase in Jd value at around 240s

is not the same across all model realizations in Figure 3.7. Realization 2 (third row,

red box in Figure 3.8) has the closest resemblance to the experimental image at 241s.

Accordingly, the maximum increase in Jd value is seen for Realization 2 (red plot line)

in Figure 3.7.

On the one hand, looking at the temporal evolution of Jd for specific realizations could

help us improve the model structure (identify “wrong decisions”, common errors to all

realizations, and so on). On the other hand, the experimental team can use this tem-

poral evolution of Jd as a diagnostic tool to detect unexpected or exceptional behaviour

in the experimental data set. Such behaviour detection could help them identify and

resolve problems with experimental setup conditions or data-processing techniques.

3.4 Summary and Conclusions

The proposed volume-based time-matching method enables comparing of IP-type mod-

els with no sense of real-world time to real-time experimental data. Perceptual compar-

ison takes into account the expert intuition about the quality-of-fit, but it becomes an
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impossible task for a large number of realizations (and potentially even timesteps) that

one would like to investigate. To avoid subjective and tedious perceptual comparison

of images, I propose to compute the Jaccard coefficient as a quantitative, automated

and therefore objective metric for comparison.

From the case-study results, it is evident that spatial moments are hard to aggregate

into a single meaningful measure; they are inconclusive and can even be misleading.

They would be a poor choice for time-series evaluations. The Jaccard coefficient quan-

tifies pixel-by-pixel agreement and is hence close to a “measure of perception”, but

it evaluates the perfect-but-shifted model realization only as mediocre. The Diffused

Jaccard coefficient solves this problem: with increasing blur radius, this shifted model

realization image emerges as the best one.

The blur radius can be visualized as a switch that helps the user control the extent

of details to be retained in the images. So, the most meaningful blur radius for a

specific application has to be decided by the user; it can reflect the intended purpose

of identification. For example, suppose the user wants to know the radius of a gas

contamination zone in the subsurface to protect the groundwater table. In that case, the

images can have a relatively high blur radius. I recommend to try increasing blur radii

to observe such effects as shown here synthetically with the translated experimental

image and then decide its value. Also, I recommend always reporting Diffused Jaccard

coefficient values together with their blur radius (with an appropriate unit; in the

case-study I used the percentage of the domain size) for transparency.





4 Model Selection of Competing

Models∗

Traditional IP-type models, at any scale, do not incorporate viscous effects and have,

therefore, not been tested before in gas flow regimes other than discontinuous flow (slow

injection of gas). That means model testing for the transitional and continuous gas flow

regimes (Section 2.1) remains an open question. This is because, at higher gas-injection

rates, ignoring viscous effects near the gas injection point as in traditional IP models

is not a valid assumption (see Section 2.2). However, the addition of several rules to

IP models makes them potential candidates for transitional or continuous flow regimes.

For example, modifications of macroscopic-IP models, such as presented in Model 3

(Section 2.3.5) and Model 4 (Section 2.3.6), are capable of simulating the mentioned

viscous effects.

Many IP-type models exist, but very few of them have been compared to actual data

(Section 1.1.2) due to challenges discussed in Sections 1.1.4 — 1.1.5. In Chapter 3, I

presented a quantitative comparison method between IP-type models and laboratory

gas-injection data and tested it using an experiment from the discontinuous flow regime.

In this chapter, I use this method to assess the performance of the four macroscopic-

IP models (Sections 2.3.3 — 2.3.6) in the continuous and transitional flow regimes

(experimental triplicate at 10 ml/min, 100 ml/min, and 250 ml/min, from Section 2.2),

which helps derive the direction for further model refinement.

The final-time images for the nine experiments used in this study are shown in Figure

4.1. Note, for experimental triplicates at an injection rate of 10ml/min (first row of

Figure 4.1), the gas finger of 10-B moves towards the side of the domain, instead of

being centrally aligned like in 10-A and 10-C. Also, for experiment 100-A (second row

∗This chapter contains text fragments and figures from Banerjee et al.
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of Figure 4.1), the multiple gas fingers are quite spread out, but those in 100-C merge

to produce thicker fingers along the way (second row of Figure 4.1). These differences

in the images support the uniqueness of each experimental outcome owing to the re-

packing of the sand (see Section 2.2).

Globally, this requires answering RQ2 posed in the introduction of this dissertation

(Section 1.2.2):

“Using the comparison approach developed in research question 1 on the different

macroscopic IP model versions, how to determine which model version is better at

describing which of these gas-flow regime experiments? Can specific deficits and rec-

ommendations be derived?”

In this chapter, I expand RQ2 into the following sub-research questions:

1. Can any of these four models be used for simulating gas flow in the continuous

or transitional flow regimes?

2. If yes, which ones are more suitable?

3. What can one learn from the comparison of more or less successful model strate-

gies and their remaining weaknesses to derive recommendations for future mod-

elling efforts?

I begin by discussing the implementation of the comparison method (from Chapter 3)

for the inter-comparison of the models in Section 4.1. As metrics for ranking the models,

I use both the Jaccard and Diffused Jaccard coefficients. Note from Section 3.2 that a

value for the blur radius has to be chosen to compute the Diffused Jaccard coefficient.

Here, I choose three different levels of blurring (three blur-radii), which are discussed in

Section 4.2. I report the results from this implementation and provide insights about

the models’ performance and their parameters in Section 4.3. Finally, I summarize the

conclusions of this study in Section 4.4.

4.1 Steps of Model Comparison Study

I present an overview of the model-comparison setup in Figure 4.2.
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Figure 4.1: Final time binary experimental images for experiments 10-A, 10-B, 10-C, 100-A,
100-B, 100-C, 250-A, 250-B, 250-C. These gas presence/absence images are not
free from pixel noise. Zones of the images where too many noisy pixels aggregate
have been cleaned prior to use in this study.

In step 2○, I run the four models over several (500) invasion threshold (Te) realizations

for all four models of Sections 2.3.3-2.3.6 (including the sub-versions discussed below)
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Figure 4.2: Flow chart listing the steps of the model-comparison setup.

to appropriately account for the uncertainty involved with the entry threshold (Te)

fields.

Prior to this, step 1○ requires some parameter specifications. I run Model 3 (Sec-

tion 2.3.5) for varying numbers of blocks to invade (nb) at each step, creating many

sub-versions of this model to test the best-fitting value. At injection rates of 100ml/min

and 250ml/min, I expect a higher number of blocks to perform well because a high vol-

ume of gas is injected into the system. I set the range of nb by visual inspection. For

the experiments at injection rate of 10ml/min, nb takes the values {2, 3, 4, ...10, 15, 20}.
I assign values of {2, 3, 4, ...20, 25, 30, 35, 40, 50} to nb for the triplicate experiments at

injection rates of 100ml/min and 250ml/min. Please note that larger nb values (> 50

blocks per step) would lead to inflated circular shapes instead of multiple gas fingers,

and hence nb = 50 was set as the upper limit.

Further, I run Model 4 (Section 2.3.6) for some representative c values: {5, 10, 15, 200, 500},
creating five sub-versions of this model to test the best-fitting value. I assume that,

while the transitional flow regime (10ml/min) would prefer higher c values (200 or 500),

the continuous flow regime (100ml/min and 250ml/min) would prefer low c values, be-

cause low c values allow the gas to spread more laterally instead of strictly moving

upwards. Please also note here that I ran the simulations for c < 5 values as well. But

this did not lead to systematic improvements or more insightful results, so I excluded

them from further analysis due to their very long runtime. Further, in this study, I do
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not aim to formally optimize the c value for specific model variants with an extensive

search over the feasible parameter space.

In step 3○, I run the time matching procedure (Section 3.1) for all the model versions

and sub-versions mentioned above. Additionally, to calibrate gas saturation values

assigned per block of the model domain within the time matching, I conduct the time-

matching by varying the Sg values in Equation 3.2 in the range of 0.02 − 0.44 (in

accordance with experimentally observed gas saturation values of Van De Ven et al.

[2020]).

In step 4○, I compute the Jaccard coefficient (J), and the Diffused Jaccard coefficient

values (J low
d , Jmed

d , and Jhigh
d ) at three levels of blurring (see Section 4.2) to assess the

quality of fit between the experimental images and the corresponding-time matched

model images. Per Te field realization, I want the model to choose its most suitable

saturation value based on the maximum metric value. Also, these metrics are used for

comparing the performance of the competing model versions.

4.2 Blur-radii for Diffused Jaccard Coefficient

I choose three different blur-radii for evaluating the Diffused Jaccard coefficients.

1. Low blur: I choose this blur radius such that images from the experiments (see,

Figure 4.1) lose the sharpness of the pixels but do not lose their identity, i.e.

the different blurred experimental images look different. This corresponds to any

application where one forgives errors in individual pixel values but insists on a

close match in shape (Low blur row of images in Figure 4.3). The chosen value

of σ for this blurring is 1.2% of the domain size, i.e. image width. The Diffused

Jaccard coefficient calculated using this blur radius is denoted as Diffused Jaccard

coefficient (low) (J low
d ) in this study.

2. Medium blur: I choose this blur radius such that images from the experimental

triplicate at any injection rate (each row of Figure 4.1) look similar, but that

the images across different injection rates look different. This corresponds to

applications where it is sufficient to identify diversion by flow-inhibiting structures

and the overall direction of the growing finger (Medium blur row of images in



58 4 Model Selection of Competing Models

Figure 4.3). The chosen value of σ for this blurring is 4% of the domain size.

Please note that it is not entirely attainable, e.g., when a finger, like in experiment

10-B, favours a particular direction of flow, no amount of blurring can make it

look like fingers from 10-A or 10-C where the flow is clearly in the centre of the

cell. The Diffused Jaccard coefficient calculated using this blur radius is denoted

as Diffused Jaccard coefficient (med) (Jmed
d ) in this study.

3. High blur: I choose this blur radius such that images from all the experiments

(Figure 4.1) lose the individual details in finger structure and start looking sim-

ilar. This corresponds to any application where one is interested only in the

macroscopic direction of the gas finger and in no further details (High blur row

of images in Figure 4.3). The chosen value of σ for this blurring is 8% of the

domain size. Please note again that the images from all experiments cannot look

the same with any meaningful blur radius. The higher flow rates have multiple

fingers and more gas in the system and can thus handle more blurring than the

lower injection rate experiments that generate a single finger. The Diffused Jac-

card coefficient calculated using this blur radius is denoted as Diffused Jaccard

coefficient (high) (Jhigh
d ) in this study.

In Figure 4.3, I show the resulting images of the experiments 10-A, 100-A, and 250-A,

with and without the blurring. The other blurred experimental images are in Ap-

pendix B.

4.3 Results and Discussion

Note that, in this discussion, I use the term “metric”to address the Jaccard coefficient,

Diffused Jaccard coefficient (low), Diffused Jaccard coefficient (med), and Diffused

Jaccard coefficient (high) altogether. In Section 4.3.1, I comment on the ranking of

the models. I further support the deductions from the metric-based ranking by visual

evidence in Section 4.3.2. In Section 4.3.3, I discuss the importance of the random

entry threshold fields as model input. Then, I discuss the results from calibrating the

gas-saturation parameter in the models in Section 4.3.4.
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Figure 4.3: Final experimental image of the experiments 10-A, 100-A and 250-A. Row 2-4
contains the blurred version of the images of Row 1 for the three different blur-
radii.
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4.3.1 Overall Ranking of Models

I begin the discussion by commenting on the overall ranking of the competing models

based on the maximum metric value out of the 500 Te field runs. The table specified

by Figure 4.4 shows that, for all metric values and across most experiments, Model 1

and Model 2 rank poorly compared to Model 3 and Model 4. This is entirely expected

for the experiments of the continuous flow domain (with injection rates 100 ml/min

and 250 ml/min) because Model 1 and Model 2 do not include rules incorporating the

gas-fingering behaviour (viscous effects, multiple fingers etc.) at these injection rates.

Figure 4.4: Table containing the maximum metric value for each model version out of the 500
Te field runs and for the best gas-saturation (Sg) value (see Section 4.3.4). For
Model 3 and Model 4, the metric corresponds to the respective best parameter
value (see Table 4.1). The green colour represents good model performance, and
the yellow colour represents poor model performance.

In the transitional flow domain (10 ml/min experiments), gas flow behaviour already

shows characteristics of the continuous flow regime [Van De Ven and Mumford, 2019],

where capillary forces do not entirely dominate over the viscous forces (Section 2.1).

Recall from Sections 2.3.3 and 2.3.4 that Models 1 and 2 do not account for viscous

effects and are completely formulated to be operated in the slow gas flow regime (discon-

tinuous flow). Therefore, the contrast in performance between Models (1,2) and (3,4)
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is higher for higher injection-rate experiments. Accordingly, the difference in metric

values is higher for 100ml/min and 250ml/min in the table specified by Figure 4.4.

On that account, I do not recommend the use of Model 1 and Model 2 for the entire

transitional and continuous flow regime. Overall, in my study, Model 3 emerges as the

best-performing model for most experiments and metrics, always (and often closely)

followed by Model 4.

The blurring of the images does not change the overall ranking of the models across all

investigated scales of interest. That means: the difference in the model outputs occurs

(e.g. finger width, finger direction etc.) even on larger scales. I discuss the effect of

blurring further when I discuss the models’ relative performance across all 500 Te field

realizations (see Section 4.3.1).

What about the Parameter Values of Models 3 and 4?

Models 3 and 4 have additional parameter values nb and c, respectively, that have been

tested on a range of values (see Section 4.1). In Table 4.1, I report the parameter

values corresponding to the best-performing metric values of Figure 4.4, i.e. again for

the best-performing Te field per model.

As anticipated in Section 4.1, at injection rates of 100 ml/min and 250 ml/min, Model

3 performs best with a higher number of blocks of invasion (see columns of 100 ml/min

and 250 ml/min in Table 4.1). For Model 4, the best performing c values for injec-

tion rates of 100 ml/min and 250 ml/min are indeed the smallest on the list: c = 5

(see columns of 100 ml/min and 250 ml/min in Table 4.1), as already predicted in

Section 4.1.

Observe that, for the injection rate of 10 ml/min, the best c values of Model 4 also

correspond to the ones contributing to more inner randomness, i.e. the ones that assist

in the radial spreading of the gas. This is unexpected at first sight: at an injection rate

of 10ml/min, viscous effects exist but are not predominant, i.e. one observes less radial

spreading in the experiments (top row of Figure 4.1). I have observed similar behaviour

in one of my works [Banerjee et al., 2023], which will be discussed in Section 5.5.2, where

the experimental data belonged to the discontinuous gas flow regime.
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Table 4.1: Table containing the values of the best respective parameter value for Models 3
and 4 for the best-performing gas-saturation (Sg) value (see Section 4.3.4), i.e.,
number of blocks (nb) for Model 3 and c values for Model 4. The evaluation is
based on Jaccard coefficient (J), Diffused Jaccard coefficient (low) (J low

d ), Diffused

Jaccard coefficient (med) (Jmed
d ), and Diffused Jaccard coefficient (high) (Jhigh

d ).

Injection rate 10 ml/min 100 ml/min 250 ml/min
Models 3 4 3 4 3 4

Parameters nb c nb c nb c

E
x
p
e
ri
m
e
n
t
T
ri
p
li
ca

te

A 8 10 50 5 50 5

J

B 3 15 40 5 50 5
C 5 5 30 5 50 5
A 8 10 40 5 50 5 J

lo
w

d

B 3 15 35 5 50 5
C 5 5 30 5 50 5
A 6 15 40 5 50 5 J

m
ed

d

B 3 5 35 5 50 5
C 3 200 30 5 40 5
A 5 15 40 5 50 5 J

h
ig
h

d

B 4 5 35 5 50 5
C 3 10 30 5 40 5

Two opposing arguments are relevant to understand these surprisingly low c values at

10 ml/min. On the one hand, the higher c values (200 or 500) for a given invasion

threshold are almost deterministic in their choice of the gas path. When these c values

meet the entry threshold (Te) field closest to the actual experiment conditions, the

model can accurately produce the gas path with the highest similarity to the observed

experimental gas finger. But for any threshold field with poor resemblance to the

actual experimental conditions, models with these high c values produce poor-fitting

gas fingers. On the other hand, models with lower c values are more flexible in their

choice of a gas path for a given invasion threshold field (Te). Combining the two

arguments, these best-performing low c values indicate that, in the absence of a good

fit of the structure of the Te field to the experimental porous medium, the more flexible

models fare well.
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Relative Performance of the Models across 500 Runs.

Until now, I have discussed the model performance based on the overall maximum

metric value out of the 500 runs. To analyse the relative performance of the model

versions and sub-versions (with varying parameters, see Section 4.1) across 500 runs

per metric value, I inspect the percentage of ranks obtained by each of them. I present a

few plots to aid the discussion in Figs. 4.5 and 4.6. Please note that these rankings are

relative among the models (and model sub-versions) per individual experiment, and it

thus does not indicate whether any of these models are the best fit for the experiments

used in this study.

Observe from the rank-plots of experiments 10-A, 10-B, and 250-A using the Jaccard

coefficient (Figure 4.5, top row, and Figure 4.6 top), that the Models 1 and 2 rank

mediocre to poor amongst all the model versions (including sub-versions of Model 3

and 4). Further, notice that the best model according to the overall maximum metric

value (Model 3, see table specified by Figure 4.4) does not consistently rank well for

all the 500 Te fields (This becomes visible by the presence of red colour in the bars of

the Model 3 sub-versions in Figure 4.5 and 4.6). This indicates that the Te field is an

essential input for these models, which will be further discussed in Section 4.3.3.

Also, notice that Model 4 with larger c values representing more systematic behaviour

(relying primarily on the Te field) ranks the best for 10-A (e.g., see bars 4c200 or 4c500

of the top row, left plot in Figure 4.5), and those with c values representing somewhat

directionless randomness to partially overrule the Te field, rank better for 10-B (e.g.,

see bars 4c5 or 4c10 of the top row, right plot in Figure 4.5). In the experimental results

of 10-B, the gas finger moves towards the right boundary of the domain, indicating the

significant influence of the Te field in this experiment compared to 10-A where the gas

moves through the centre of the domain (see Figure 4.1). The probability of a random

Te field leading to a good match with that of experiment 10-B is extremely low. To

overcome this large uncertainty in the Te field in the models, the more flexible models

(with more randomness at lower c values) perform better. In an overall conclusion, the

Te field matters for all models investigated here.

For higher injection rates, Model 4 with different c values ranks the best for some

realizations and worst for others (e.g., the red-blue bars from the top plot in Figure 4.6).

This confirms that these models have gas finger patterns resembling the experimental



64 4 Model Selection of Competing Models
J
a
c
c
a
rd

 c
o

e
ffic

ie
n

t; E
x

p
e
rim

e
n

t:1
0
A

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Percentage of ranks at best gas saturation

J
a
c
c
a
rd

 c
o

e
ffic

ie
n

t; E
x

p
e
rim

e
n

t:1
0
B

D
iffu

s
e
d

 J
a
c
c
a

rd
 c

o
e
ffic

ie
n

t (h
ig

h
); E

x
p

e
rim

e
n

t:1
0
A

1

2

3nb2
3nb3
3nb4
3nb5
3nb6
3nb7
3nb8
3nb9

3nb10
3nb15
3nb20

4c5
4c10
4c15

4c200
4c500

M
o
d
e
l v

e
rs

io
n
s

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Percentage of ranks at best gas saturation

D
iffu

s
e
d

 J
a
c
c
a

rd
 c

o
e
ffic

ie
n

t (h
ig

h
); E

x
p

e
rim

e
n

t:1
0
B

1

2

3nb2
3nb3
3nb4
3nb5
3nb6
3nb7
3nb8
3nb9

3nb10
3nb15
3nb20

4c5
4c10
4c15

4c200
4c500

M
o
d
e
l v

e
rs

io
n
s

13691
2

1
5

1
8

R
a
n
k

F
igu

re
4
.5
:
B
a
r
p
lot

o
f
th
e
p
ercen

ta
g
e
of

relative
ran

k
s
ob

tain
ed

b
y
each

m
o
d
el

version
ou

t
of

th
e
500

ru
n
s
for

th
e
b
est-p

erform
in
g

g
a
s-sa

tu
ration

va
lu
e
fo
r
th
e
corresp

on
d
in
g
ru
n
.
T
h
e
p
lots

are
for

ex
p
erim

en
t
n
u
m
b
ers

10-A
an

d
10-B

,
an

d
th
e
corre-

sp
on

d
in
g
m
etric

u
sed

fo
r
ra
n
k
in
g
is

m
en
tion

ed
in

th
e
title

of
th
e
su
b
p
lots.

L
ab

els
1
an

d
2
corresp

on
d
to

M
o
d
els

1
an

d
2
o
f
th
is

stu
d
y.

T
h
e
lab

el
3
n
b
2
,
3
n
b
3....

stan
d
s
for

M
o
d
el

3
w
ith

n
b
=

2,3
,...

in
vad

ed
b
lo
ck
s
an

d
th
e
lab

el
4c5,

4c10,...
sta

n
d
s
for

M
o
d
el

4
w
ith

c
=

5,1
0,...

resp
ectively.



4.3 Results and Discussion 65

Jaccard coefficient; Experiment:250A

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f 
ra

n
k
s
 a

t 
b
e
s
t 
g
a
s
 s

a
tu

ra
ti
o
n

Diffused Jaccard coefficient (high); Experiment:250A

1 2

3
n

b
2

3
n

b
3

3
n

b
4

3
n

b
5

3
n

b
6

3
n

b
7

3
n

b
8

3
n

b
9

3
n

b
1

0
3

n
b

1
1

3
n

b
1

2
3

n
b

1
3

3
n

b
1

4
3

n
b

1
5

3
n

b
1

6
3

n
b

1
7

3
n

b
1

8
3

n
b

1
9

3
n

b
2

0
3

n
b

2
5

3
n

b
3

0
3

n
b

3
5

3
n

b
4

0
3

n
b

5
0

4
c
5

4
c
1

0
4

c
1

5
4

c
2

0
0

4
c
5

0
0

Model versions

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f 

ra
n

ks
 a

t 
b

e
st

 g
a

s 
sa

tu
ra

tio
n

1

4

8

12

16

20

24

28

31

Rank
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invaded blocks and the label 4c5, 4c10,... stands for Model 4 with c = 5, 10, ...
respectively.
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images only when accompanied by “good”Te fields. With Te fields far away from that

of the experiment, these models perform the worst. Hence, the “very good”Model 4 is

highly sensitive to the Te field input.

Blurring the images (i.e. comparisons at larger scales) makes the ranking less strict.

Even weak models like 1 and 2 rank well for a higher percentage of times (see bottom

row plots in Figure 4.5) than they do for the non-blurred image comparison, i.e. using

the plain Jaccard coefficient. However, for a high injection rate, blurring cannot help

these models improve their ranking (bottom plot for Figure 4.6) because the models

are missing surrogate processes for viscosity, which is essential in this flow regime. The

extensions proposed in Models 3 and 4 in this regard perform well.

4.3.2 Detailed Discussion of the Model Selection Results

I further support the rankings observed in Section 4.3.1 with more visual evidence and

provide insights into the performance of the individual model (with its best Te field).

Comparing the images (both blurred and non-blurred) of experiment 100-A and 250-A

of Figure 4.3 to outputs from Model 1 and Model 2 (Figure 4.7), one can see that

they are incapable of producing branched gas-finger patterns resembling those from

experiments at higher injection rates. Even with a high blurring radius, Model 1

and Model 2 produce patterns very different from the experiments at 100ml/min or

250ml/min. This is simply because they are incapable of having high volumes of gas

in the domain, caused by their tendency to produce single thin fingers. I would refer

you to Appendix B for more visual evidence.

Model 3, which emerges as the best model for almost all the metrics and experiments

in Section 4.3.1, has more gas in the system (with many gas-occupied blocks in the

domain) (Row 3 and columns 2 and 3 of Figure 4.7). This is why it matches the higher

injection rate experimental images better than Models 1 and 2.

The experimental images for triplicate at any particular injection rate differ in structure.

Even with very high blurring, experimental images from 250-A (Figure 4.3) and from

250-C (Figure B.2) have different patterns. This difference is not observed in the

respective best-fitting outputs from Model 3 (see Figure 4.8 and Figure B.13). The
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experimental images (with highest Jaccard value) from experiment no. 10-A, 100-
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versions of experimental image 250-A.

gas finger patterns produced by Model 3 are hardly distinct from one another (see

Figure 4.8).

Model 4, due to the inherent randomness in the invasion decision, can have many

gas-occupied blocks within the domain (Row 4 and columns 2 and 3 of Figure 4.7),

facilitating a lateral spread of gas. However, unlike Model 3, it produces distinctive

patterns. For example, in Figure 4.8, the best-fitting Model 4 outputs to the various

blurred versions of the experimental image of 250-A are not all alike. Note that although

the patterns are distinct, they are not always completely similar to the experimental

image.

Therefore, I again recommend that Model 1 and Model 2 should not be used for transi-

tional or continuous gas flow regimes. Model 3 can be used for the transitional gas flow

regime (with single, slightly thick fingers). At higher flow rates with many-branched

fingers (continuous flow regime), Model 3 can be used at large scales (with blurring),

but with caution: Model 3 is not capable of differentiating between different gas clus-

ter shapes and structures. Thus, using Model 3 in the continuous regime will likely

misrepresent gas volumes, pathways, and gas-water contact with associated effects on

storage and mass transfer estimates. The close runner-up model (Model 4) is a suitable
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candidate for use in transitional and continuous flow regimes (identifying the different

shapes of gas clusters), but the underlying rules need to be modified to closely match

the gas flow processes involved at high injection rates, which is beyond the scope of the

presented thesis.

4.3.3 Importance of the Entry Threshold Fields

From the discussions in the sections above, it is clear that the underlying structure

of the Te field is an important input for these models. Recall that each of the best-

performing metrics in Figure 4.4 corresponds to a best-fitting Te field. Are there any

similarities in the structures of these otherwise random best-fitting Te fields for the

different models? I try to identify one path of least resistance through the Te fields

by running Model 1 on them. This means that Model 1 runs on the best Te field for

each model version evaluated using the maximum Jaccard coefficient. I choose Model

1 because, in it, all parameters except the Te field are assumed fixed. The overlay of

the so-obtained gas fingers on the experimental image shows that they partially cover

the actual paths of the gas finger (Figure 4.9). This answers the question pertaining to

the similarities in the underlying structure of the best-fitting Te fields.

Further, this observation (from Figure 4.9) provides strategies to handle the importance

of the Te fields in spite of its uncertainty for these models. The strategy of Trevisan

et al. [2017] was to run their IP model over multiple realisations of their Te field to

account for the uncertainty of the geological heterogeneity in their experimental setup.

This seems a viable approach in this regard. Additionally, my comparison metric can

be used to identify the “good performing”Te fields for each model type. One could

operate a (geostatistical) Bayesian inference to estimate (or conditionally simulate) the

Te fields, e.g., using Markov chain- Monte Carlo (MCMC) methods for random fields

[Xu et al., 2020], a parameter Ensemble Kalman filter (EnKf) (e.g., Kalman Ensemble

generator by [Nowak, 2009]) or transformed versions [Schöniger et al., 2012a].

4.3.4 Best-fitting Gas Saturation Values

Recall that the results presented in the table specified by Figure 4.4 used the best-fitting

gas saturation values (Sg) resulting from the time matching procedure per model and



70 4 Model Selection of Competing Models

250

200

150

100

50 

0  

Z
 (

m
m

)

250

200

150

100

50 

0  

Z
 (

m
m

)

0  50 100 150 200 250

X (mm)

250

200

150

100

50 

0  

Z
 (

m
m

)

0  50 100 150 200 250

X (mm)

0  50 100 150 200 250

X (mm)

Model 1 Model 2 Model 3 Model 4

10-A 10-B 10-C

100-A 100-B 100-C

250-A 250-B 250-C

Figure 4.9: Figure shows the Te field chosen for the maximum Jaccard coefficient per model
version. It is produced using Model 1, in which only Te fields vary; the other
parameters are constant. Grey-coloured gas fingers represent the experimental
image. Please note that each of the nine images has five different coloured fingers.
The colours not visible in any of the sub-images are due to the overlap of pixels.
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realization (of Te field). Now, I investigate these best-fitting Sg values from my proposed

range for each model per metric (Section 4.1). Remember that the experimental data

and model outputs are binary (gas-presence/gas-absence) images. The gas saturation

values are an overall value provided to the entire gas cluster, i.e. all gas blocks in the

binary image are replaced by the same gas saturation value. Varying the gas-saturation

value varies the Vmod in Equation 3.2, thus altering the corresponding time-matched

image from the model outputs. Thus, the value of the metric changes when I change

the gas-saturation value. In Table 4.2, I present the best-performing gas-saturation

values corresponding to the best metric values for the three experimental triplicates

(table specified by Figure 4.4).

While some of the gas-saturation values reported in Table 4.2 are comparable to those

found in the experimental data, some are infeasible. For example, a value of Sg = 0.02

(appears multiple times in Table 4.2) for the entire gas cluster is clearly too low.

I further investigate the distribution of the gas saturation (Sg) values per model (sub-)

version for all 500 Te field realizations. For that, I present a sample of nine scatter

plots for Sg (matched per Te field realization) versus the metric (Jaccard coefficient

and Diffused Jaccard coefficient (high)) for selected models (Model 1, Model 3 and

Model 4) and experiments 10-A, 100-A, and 250-A in Figure 4.10. I pick the sub-

versions of Models 3 and 4 with the best-performing parameter values: nb and c, for

the corresponding cases (see Table 4.1).

There is no clear optimal value of Sg, i.e. the values do not show a cluster of points

at an exceptionally high metric value for any particular Sg value (see Figs. 4.10a,

4.10b, 4.10c, 4.10f, 4.10g and 4.10h). It instead seems to be an individual choice of

these models per Te field. For example, in the case of non-blurred images (evaluation

using J), more strict models (Model 1 and 2) stick to specific Sg values (see Figure

4.10a). For blurred images of the same strict models, the spectrum of well-performing

Sg values increases, but it still does not tend to one optimal value (see Figure 4.10b).

The blurring of the images spatially diffuses the pixels, and the actual structure of the

gas finger becomes less relevant, which makes up for the conceptual weakness of Models

1 and 2, allowing them to cope with more varied Sg values. In other words, conceptually

strong models are more flexible in their choice of Sg values. This is further supported

by the observed spread of Sg values for Model 3 with nb = 8 (Figure 4.10c), which
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stands for Model 4 with c value 5.

produced a gas finger with a close resemblance to the original experimental image for

10-A (see Figure 4.3 and 4.7).

Despite the flexibility of choice of Sg values, conceptually strong models are expected

to favour a particular Sg value. For Model 3, which ranks best in most scenarios of

the table specified by Figure 4.4, the sub-version with nb = 50 does favour a single

Sg value (see Figs. 4.10d, 4.10e, and 4.10i). However, this optimal Sg value is not

always realistic. For example, the converged Sg value for Model 3 (nb = 50) is 0.12

for experiment 250-A (see Figure 4.10i). Van De Ven et al. [2020] reported typical Sg

values between 0.2 to 0.4 for the inner core and 0.03 to 0.2 for the outer shell of each gas

finger, for the high injection rate (100 ml/min, 250 ml/min and 498 ml/min) triplicate

experiments of Van De Ven and Mumford [2019]. Thus, the value of Sg = 0.12 for the

entire gas cluster is lower than that observed and reported in Van De Ven et al. [2020].

As earlier discussed in Section 4.3.2, Model 3 does not adequately predict the shape

and structure of the gas clusters consisting of multiple fingers. Thus, the favoured Sg
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value is merely the model’s best attempt to fit the corresponding data.

For the close runner-up Model 4 with c = 5, one does not observe any most favoured

optimal Sg value (see Figs. 4.10f, 4.10g, and 4.10h). Recall that this model version’s

performance is highly sensitive to the input of the entry threshold (Te).

Therefore, the models apparently use the Sg values to compensate either for their own

conceptual weakness or for “poor”Te field inputs. Thus, from Figure 4.10, I can conclude

that none of the models can predict the real physical Sg values and thus are not recom-

mended for Sg calibration. As a possible way out, one could develop data assimilation

or geostatistical inversion schemes for Te fields as already mentioned in Section 4.3.3.

Then, more plausible Sg values could be obtained as only the conceptual weakness of

models would remain as the major error source. Alternatively, model versions with

variable gas-saturated blocks [e.g., Ioannidis et al., 1996, Mumford et al., 2010, Koch

and Nowak, 2015, Molnar et al., 2019] are an optional extension of macroscopic-IP

models, which may be investigated for better calibration of Sg values.

4.4 Summary and Conclusions

I compared the performance of four macroscopic IP models against the data from nine

gas-injection in homogeneous water-saturated sand experiments, using time-matching

and (Diffused) Jaccard coefficient(s). These models are tested for transitional and

continuous gas-flow regimes for the first time. I identified the strengths and weaknesses

of these modelling strategies for simulating gas flow in water-saturated sand. Also, I

calibrated a few of these model parameters.

Summarizing the results, I conclude that Models 1 and 2 are unsuitable for use in

transitional and continuous gas flow regimes, even with high image blurring levels

(Section 4.3.1). In particular, these models are completely weak for experiments at

higher injection rates.

Models 3 and 4 perform better than Models 1 and 2 but do not accurately represent the

gas finger patterns observed in the experiments (Section 4.3.1 and 4.3.2). In previous

studies, IP-type models have been used extensively only in the capillary flow regime.

The results from the model comparison show that IP models at a macroscopic scale
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with variation as Model 3 can be used in transitional gas flow regime (single slightly

thick gas finger) but cannot appropriately predict the gas-finger patterns seen in the

experiments of the continuous gas flow regime (multiple fingers) (Section 4.3.2). Model

4 is a potential candidate for use in the transitional and continuous gas flow regimes,

provided its rules are modified to reproduce the gas-flow behaviour at high injection

rates (Section 4.3.2). The modification of Model 4’s underlying rules is beyond the

scope of the present study.

The blurring of images can be used as an efficient tool for reducing the detailed level

of information in the images, depending on the application and the scale of interest. It

is pointless to ask for a pixel-to-pixel match at and above the scale of the experiments

used in this study, given the strong dependence of gas flow on pore-scale aspects of

the porous medium (here: sand pack). This exercise can thus help use models like 3

or 4, which partially consider the viscous effects found at high gas injection rates for

such applications. With blurring, i.e. at large scales where individual structures of the

gas fingers are irrelevant, Models 3 and 4 may be used for continuous gas flow regimes

(Section 4.3.1 and 4.3.2).

The underlying structure of the Te fields is a critical input for the good performance

of these models (Section 4.3.3). Moreover, the best models (3 or 4) are also the most

sensitive to this input. The internal randomness of the invasion decision can partially

compensate for the high uncertainty in the structure of the Te fields (Section 4.3.1 and

4.3.2). Also, strategies like running multiple realizations of the Te field can help tackle

this uncertainty of the Te fields. Further research could be conducted to identify the un-

derlying structure of the Te fields, e.g., using geostatistical inversion methods. I do not

recommend these models for calibrating parameters like gas saturation (Section 4.3.4),

at least as long as there is a dominant uncertainty in Te fields.





5 Method of Forced Probabilities to

Compute Bayesian Model Evidence∗

In Chapter 1, I discussed the importance of Bayesian Model Selection (BMS) as a

tool for the inter-comparison of models in sparsely known uncertain systems. Also, in

Section 1.1.5, I highlighted the challenges in computing the Bayesian Model Evidence

(BME) for BMS. In addition to these challenges, for a model-data system involving

binary (yes/no) decision output (like in this thesis), the likelihood function becomes a

Dirac-delta function, thus leading to likelihood values of zero for practically all sampled

parameter values of the model. Thus, the BME value would tend to zero, and any model

would be rejected as infinitely poor. This becomes a problem, especially for long-time

sequences of repeated outputs. For example, in a lotto game, getting the first number

right is not that difficult, but getting the exact sequence of six numbers in a row right

is almost impossible.

For such model-data systems involving binary output, with highly discretized atomic-

event-type data and Markov chain models, I propose a method discussed in this chapter

to compute BME with a reasonably low computational effort. Observed states are

called atomic events if each individual possible outcome can be enumerated and they

are mutually exclusive and collectively exhaustive. Markov Chain models are stochastic

models that fulfil the Markov Chain property, i.e. the probability distribution of model

states in the next (time) step depends solely on the previous step, not on any prior

state to that. I call this method of BME computation theMethod of Forced Probabilities

(MFP) due to its core idea: instead of evaluating millions of forward runs that may

fit the data by random chance, the model is forced to follow the data during each

time step. One records the individual probabilities of the model performing these

exact transitions as if they were done without any constraints. Following a strict

∗This chapter contains text fragments and figures from my publication Banerjee et al. [2023].
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mathematical derivation, one computes BME as the product of these probabilities. By

exploiting the Markov Chain property of the model with this procedure, it is possible

to compute BME in previously nearly impossible cases without resorting to any kind

of approximations.

Model order reduction techniques offer an alternative approach for optimization, pa-

rameter sampling or Bayesian analysis of high-dimensional problems. Reduced-order

models are computationally cheap abstractions of the original, high-fidelity models

[Zhang et al., 2016]. Examples of such reduced-order modelling techniques include

but are not limited to, models obtained using projection-based model reduction meth-

ods (e.g., polynomial chaos expansion [Xiu and Karniadakis, 2002], proper orthogonal

decomposition [Willcox and Peraire, 2002]), response surface models (e.g., polynomi-

als, kriging, radial basis functions, artificial neural networks, etc.[Razavi et al., 2012])

and, lower-fidelity models (physically reliable simple abstractions of the system under

study [Razavi et al., 2012]). Although such reduced-order models assist in solving the

computing time problem, they are only approximate. In contrast, my method (MFP)

is exact. Also, my method tackles the challenge of evaluating BME rather than the

computational efficiency issue of complex high-fidelity models. Further, my method

can be used in combination with all reduced-order modelling approaches that maintain

the Markov property. Other options include an abstraction of summary statistics from

data (so-called approximate Bayesian computation [Beaumont, 2010]), manual-visible

techniques (like moments matching [Mumford et al., 2015]), or the use of plausible,

non-Bayesian metrics [Banerjee et al., 2021].

In the following section, I introduce the MFP approach for computing BME (Sec-

tion 5.1), and illustrate it on a didactic example (Section 5.2). In Section 5.3, I intro-

duce a test case for demonstration: I apply the method on Model 4 from Section 2.3.6.

The corresponding highly resolved data set is from an experiment with gas injection

into water-saturated, homogeneous sand at the rate of 0.1 ml/min (Experiment nr.

0.1-A of Section 2.2), and highlight the challenges in using this data set (Section 5.3.1).

I also design a synthetic data scenario for the proof-of-concept of the method (Sec-

tion 5.3.2) and list the implementation steps of the MFP for the case-study under

the different data scenarios (Section 5.4). Further, I add a list of general algorithmic

steps of MFP in Section 5.4.3. Section 5.5 discusses the results obtained from the syn-

thetic (Section 5.5.1) and real-data scenarios (Section 5.5.2). Finally, I summarize the

contributions of this study and draw conclusions in Section 5.5.3.
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5.1 Method of Forced Probabilities (MFP): Key Idea

For the purpose of this study, let us redefine Equation 2.13 as:

Ik =

∫∫
Uk

p (y0 | ωk,θk,Mk) · p (ωk,θk | Mk) dωk dθk. (5.1)

Here, the parameter space Uk is split into uncertain parameters θk and random events

ωk, p(y0 | ωk,θk,Mk) is the likelihood of the parameters (ωk and θk) of model Mk to

have generated the data set y0, and p(ωk,θk | Mk) is the prior probability density

of these parameters. Uncertain parameters θk comprise those parameters and inputs

of the model with unknown or non-measurable values. Random events within the

model ωk represent apparently stochastic system behaviour that cannot be explained

deterministically (but only distribution-wise) by the model’s equations, assumptions or

mechanisms (see also Section 2.3.6).

Using the law of total probability [Kolmogorov, 1950], the double integral of Equation

5.1 is split into an inner integral over random events and an outer integral over uncertain

parameters:

Ik =

∫ [∫
p (y0 | ωk,θk,Mk) · p (ωk | θk,Mk) dωk

]
· p (θk | Mk) dθk

=

∫
p (y0 | θk,Mk) · p (θk | Mk) dθk. (5.2)

The key idea of the Method of Forced Probabilities is to replace the inner integral (over

random events) with a single analytical solution and use an MC integration (Equation

2.14) only for solving the outer integral over uncertain parameters (θk), for models

obeying the Markov Chain property. This means that for random events ωk, as opposed

to simulating thousands of forward model runs and waiting for a random match with

the observed data, one instead records the individual probabilities p(ωk | θk,Mk) of

the model performing the exact transitions observed in the data at each time step.

Using the Markov chain property, the product of these probabilities corresponds to

p(y0 | θk,Mk) in Equation 5.2:
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p(y0 | θk,Mk) =
tmax−1∏
t=0

P (y0(t+ 1) | y0(t),θk,Mk) , (5.3)

where P (y0(t+ 1) | y0(t),θk,Mk) is the probability of transition in y0 (in accordance

with the data) from time step t to t+ 1, and tmax is the total number of time steps in

the experimental data. The idea is to plug this exact analytical solution into Equation

5.2 and use the MC method only for the uncertain parameters.

If numerical scaling becomes an issue for Equation 5.3, one can simply work in (nega-

tive) logarithmic scale:

− ln p(y0 | θk,Mk)

= −
tmax−1∑
t=0

lnP (y0(t+ 1) | y0(t),θk,Mk) . (5.4)

Further, even after using the logarithmic scale, numerical issues with the BME values

can arise during averaging (after exponentiating Equation 5.4) for the outer integral

of Equation 5.2 due to the scale and span of individual values. This is addressed by a

numerical trick that involves subtracting a common BME value at the logarithmic scale,

such that the exponent of Equation 5.4 (Equation 5.2) is closer to zero, see Appendix

C.2.

One may argue that the act of multiplying individual likelihoods in order of appearance

in a time sequence is close to the process done in data assimilation methods, where a

time-series of time slice-wise likelihoods and cumulative BME values can be spit out as

a simple by-product. This analogy is most apparent when comparing to particle-filter-

like schemes for data assimilation [Gustafsson, 2010]. Moreover, just like my BME

computation can be used for parameter selection / Bayesian update of parameters, this

could also offer the path to parameter estimation in data-assimilation mode. Some

data assimilation schemes perform a joint estimation of system states and uncertain

parameters, typically called augmented state vector approaches [e.g., Ramgraber et al.,

2019] or parameter-space schemes [e.g., Nowak, 2009, Schöniger et al., 2012b]. Without

going into further detail, this opens a future pathway to apply the MFP method in
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(real-time) data assimilation for either state forecasting, parameter updating, or both

at once.

5.2 Implementation Illustrated with a Didactic Example

As a toy model for illustrating the implementation of the method, let us consider a

simple Markov Chain with two output states (0 and 1) and a fixed (instead of uncertain)

parameter πk (e.g., a repeated coin flip experiment). Thus, the Bayesian integral in

Equation 5.1 simplifies to:

p (y0 | Mk)

=

∫
Uk

p(y0 | ωk,θk,Mk) · p(ωk | θk,Mk)dωk, (5.5)

i.e. θk is fixed, and the outer integral disappears. Note here that the integration

domain Uk only contains the random events. The transition probabilities of the model

are defined as:

Pk(b | a) =

πk if b ̸= a

1− πk if b = a
(5.6)

Here, b is an output state at a particular flip, and a is an output state in the previous

flip.

0 11−πk
πk

πk

1−πk

Figure 5.1: Transition graph of toy Markov chain model.

For a number of flips tmax = 3 (i.e., t = 0, 1, 2, 3), the possible predictions by the model

are shown in the probability tree diagram in Figure 5.2. Additionally, in this diagram,

let us fix the initial condition at t = 0 to y(0) = 0. Let us assume that the true

observation data sequence is 0110 (highlighted in red in Figure 5.2).
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0

0

0
0 00001−πk

1 0001πk1−πk

1
1 00111−πk

0 0010πk

πk
1−π

k

1

1
1 01111−πk

0 0110πk1−πk

0
0 01001−πk

1 0101πk

πk

π k

Figure 5.2: Probability tree diagram for the toy Markov chain model with tmax = 3. The true
sequence or observed series of outcomes is highlighted in red.

In such a simple tree structure with equiprobable branching (πk = 0.5), it is obvious

that the probability (BME) of observing the single true path with likelihood one is
1

number of paths
. Now imagine if the sequences’ length tmax increases (a deeper tree) or

the dimension of the state space is increased (more than two branches for each node),

the complexity of the probability tree diagram will increase exponentially (see Appendix

C.1 for more details). For example, for a binary tree with tmax = 100, one ends up

with 2100 different paths. This would further diminish the BME value and increase

the computational effort to completely sample all possible paths in direct MC-based

approaches based on the conventional Equation 2.14.

Most real-world applications involve a more complex structure, where the branches

are not equiprobable or complete enumeration is not possible anymore. In such cases,

an MC approach would be used to sample each random path in proportion to its

probability, requiring an even more significant number of samples to represent all paths,

including the ones with very low probability, statistically sufficiently well. Note that it is

not enough to “hit”the one path that coincides with the observation, but for an accurate

approximation of BME, one needs an accurate representation of low probabilities just

as well (zeros play an essential role in arithmetic averaging), see, e.g. Schöniger et al.

[2014].
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In contrast, the MFP simply calculates BME as the probability of mimicking the ob-

served state changes, i.e., a flip from 0 to 1 and then staying at 1 and finally flip again

to 0:

p(y0 | θk,Mk) = πk · (1− πk) · πk.

With πk = 0.5, this equals to the enumeration or MC solution of 1
8
. This means that

one only needs to calculate a finite product over a set of tmax (here: three) values.

Therefore, the method (MFP) scales linearly with tmax and does not exponentially

explode like full enumeration or MC methods.

5.3 Demonstration on a Real Case-Study

I demonstrate the applicability of MFP on a more complex model with Markov Chain

property: a version of the macroscopic Invasion percolation model (Model 4: Sec-

tion 2.3.6). Recall that Models 1, 2 and 3 are deterministic for any given value of θ

and a frozen set of random Pe values (see Equations 2.2 - 2.5). So, there would be

no random events ω within these models. That means computing BME would focus

only on the outer parameter-related integral of Equation 5.2. The inner integral would

degenerate to a simple yes or no problem. Without addressing measurement errors or

any other form of randomness between the model and data, the answer would be a

straightforward rejection with BME = 0. Thus, to include the macroscopic IP models

in the BME comparison using MFP, a modification of the model to include random

events ω is required. This is why I use Model 4 (Section 2.3.6) for this demonstration.

In this case-study, I compare Model 4 to experimental binary-image data from gas

injection in homogeneous, water-saturated sand at an injection rate of 0.1 ml/min, see

Section 2.2. The experimental data is a time-series of 2D binary images (around 10,000

images), obtained at the rate of 30 frames per second for a total of 330s [Van De Ven

and Mumford, 2019]. An ideal data set for MFP would be where each atomic step

(individual invasion events or re-invasion events for each block) is separately visible in

time. I pick this particular data set because of its high resolution in both space and

time. However, the data obtained is not free from some challenges that need to be

overcome to use MFP.
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5.3.1 Challenges in Using the Real Experimental Data

1. Firstly, non-atomic events are observed in the data set even at this high temporal

resolution. This means that, from the one-time step to the next step, multiple

atomic events (e.g. invasions, re-invasions) are found to occur so that their exact

sequence is not given uniquely.

2. Secondly, at some time steps, the experimental data shows re-invasion at a block

that is incompatible with the model’s deterministic re-invasion rule as specified

in Equation 2.8.

3. Thirdly, at some time steps, invasion of gas occurs at a block that does not

appear to be connected to the cluster containing the original gas injection block,

violating the assumptions behind Model 4 (see Section 2.3.4). This disconnection

could result from the data’s optical detection limits.

4. Fourthly, in some time steps, the number of gas pixels also decreases from the

previous time step. This violates the mass conservation principle that the model

(in the absence of a variable gas density) simplifies to a volume balance.

With the configuration of Model 4, using MFP would thus lead to zero probability

events because of the aforementioned observations (second to fourth) in the data set.

This would lead to, within the scope of the present work, meaningless BME compu-

tations. This is not an artefact of MFP but would also occur in all other methods to

compute BME. The MFP is able to map it to individual zero-probability events, while

other BME computation methods would merely return an overall zero value for the

entire inner integral of Equation 5.2.

5.3.2 Synthetic Data

For a test in the absence of all problems that real experimental data bring about, I

use synthetic model-generated data. By using synthetic data, I first test MFP under

ideal conditions. To that purpose, I run Model 4, with cell selection weighting factor

(Section 2.3.6): c = 15 on a particular invasion threshold field (Te,syn) with no re-

invasion events (i.e. the rule given by Equation 2.8 is removed) and use the results

instead of a real data set. Thus, my synthetic data set consists of a sequence of atomic
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events and no measurement errors. It is now guaranteed that the models can follow

the data with a non-zero probability. Figure 5.3(a) shows this synthetic truth.

Next, I introduce irregularities in this synthetic data set in a controlled manner. Thus,

as a next step, I add non-atomicity to the synthetic data set, which is also observed

in the real data set. To make non-atomic synthetic data, I regularly omit time steps,

such that Model 4 would need nev = 2, 3, 6 iterations to get from one state to the next.

This means I keep only every second, third, and sixth state from our atomic synthetic

data set.

5.4 Implementation on Model 4 for Synthetic and Real

Data

In this section, I discuss the setup and implementation of the MFP on Model 4 for

both the synthetic data set and the real experimental data set. First, I describe the

common implementation setup for both types of data sets. Then, in Section 5.4.1 and

Section 5.4.2, I will highlight the difference in scenario setups for the corresponding

data sets.

I choose three cell selection weighting factors (c) (Section 2.3.6) to correspond to one

rather random (c = 5), one more deterministic (c = 100) and one model version in

between (c = 15) of Model 4. This results in three model versions of Model 4 for this

study. The choice of these three different cell selection weighting factors can be thought

of as representative sand pack experiments with different force-dominated regimes:

viscous (c = 5) or capillary (c = 100) [Van De Ven and Mumford, 2019]. The invasion

threshold field makes up the uncertain parameters θk over which one has to marginalize

the inner integral (random gas-invasion decisions of Model 4) through the outer integral

of Equation 5.2 to obtain BME. In contrast to the didactic example of Section 5.2

(Figure 5.2), for Model 4, I consider at each “node”of the decision tree a random

decision of gas migration. These random decisions each have multiple, situation-specific

possibilities for invasion and re-invasion (illustrated in Figure 5.4) instead of binary

decisions.
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Figure 5.3: To visualize the different Model 4 versions and the synthetic scenarios (Sec-
tion 5.4.1): this figure shows a sample of 10 model runs for each combination
and compares them to the synthetic data set. More frequently invaded cells ap-
pear more opaque, and their colour shading indicates the relative time from the
first to the last invaded cell. From left to right c values are 5, 15, and 100.
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Figure 5.4: Schematic to visualize Model 4 (especially their difference to the didactic example
in Figure 5.2); The blue block marks the injection block. The red-filled blocks
mark the currently invaded blocks. In the next step, any block on the interface
(red-rimmed blocks) might be invaded, and any one of the red-filled blocks or
none might be re-invaded

Also, unlike the didactic example in Section 5.2, the probabilities for each forced time-

step in Model 4 will not be a constant πk, or 1− πk, but they will depend on multiple

factors, namely: (1) the cell selection weighting factor (c), (2) the invasion threshold

(Te) field that depends on the randomized Pe fields and, (3) the current shape of the

cluster of gas-invaded blocks at the current time-step. Recall, from Section 2.3.6, the

cumulative sum Te,cum (Equation 2.9) and its connection to the uniformly distributed

random variable R in Equation 2.10. The model chooses to invade the block with the

index i (of the ascending order structure) and not any other neighbouring block if and

only if Equation 2.10 is fulfilled for i and not for i− 1, i.e.,

Te,cum[i− 1] ≤ Rc ×
j=n∑
j=1

Te[j] < Te,cum[i] (5.7)

Rearranging the terms in the equation above gives us two bounds, and R must be

between

(
Te,cum[i− 1]∑j=n

j=1 Te[j]

) 1
c

≤ R <

(
Te,cum[i]∑j=n
j=1 Te[j]

) 1
c

. (5.8)
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The interval width between these bounds is the probability of this exact invasion at

the block i. Note here that, for the block with index i = 1, the lower bound remains

undefined by Equation 2.9 and is set to zero.

When investigating non-atomic steps in the data, one cannot simply evaluate the tran-

sition kernel of the model implied by Equation 5.8 but must think about a workaround.

One can view it like an excerpt of a complete probability tree diagram as shown in

Figure 5.2, where nev atomic events occur. The difficulty lies in not knowing the states

and their ordering in between. One knows the start and the end and can only guess the

sequence of atomic events that happened in between. This means that any permutation

of the events could be a suitable choice.

A reasonable treatment is to consider all the permutations, i.e. compute the BME over

all these possible permutations. Only permutations that do not lead to a path the

model can traverse by its underlying rules (see Section 2.3.6) and give, by definition, a

probability of zero can be excluded. Moreover, further, to not favour any specific one of

the remaining permutations, it is reasonable (and statistically correct) to average their

BME (see Figure 5.5). I call this workaround a mini-Monte Carlo (mini-MC) approach.

If one assumes that the number nev of the non-atomic events is bounded by a constant

m throughout the whole experiment, one increases computational effort by a factor of

m!, but the linear complexity of the method in tmax as mentioned in Section 5.2 remains

preserved. It is reasonable to assume m ≪ tmax, and thus an exhaustive search on only

a small scale is employed and does not affect the overall effort significantly.

5.4.1 Synthetic Scenarios

Here, I specify scenario setups to treat the synthetic data set from Section 5.3.2. Figure

5.3 visualizes the randomness of Model 4 with 10 model runs for each of the model

versions (c = 5 or 15 or 100). I split up my evaluations into three synthetic data

scenarios as follows.

Scenario 1: In this scenario, I plug in the true invasion threshold field from Sec-

tion 5.3.2 (i.e. the field Te,syn used to generate the synthetic data set) for all 3 model

versions (visualization in Figure 5.3 (b)) and evaluate BME with the MFP on the

atomic synthetic data and the non-atomic synthetic data (i.e, with 2, or 3, or 6− step
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Figure 5.5: Schematic for the workaround for non-atomic data steps. In the experiment path
y0,a, the step from a = 2 to a = 3 consists of 5 atomic events. Each blue path
corresponds to one out of n paths of atomic events leading to y0,3, with n being
the number of possible permutations of the order of the atomic events. (Here, in
the schematic it is n = 5! = 120)

jumps). This scenario represents gas-injection experiment repetitions in the same sand

pack without any disturbances to the setup (ideally).

Scenario 2: In this scenario, I draw an ensemble of 1000 invasion threshold fields by

adding small, random noise to the true invasion threshold field (Te,syn). Then, I plug

each of these fields into the 3 model versions (visualization in Figure 5.3 (c)) for both

the atomic and non-atomic synthetic data (with 2, or 3 − step jumps). This scenario

represents gas-injection experiment repetitions in the same sand pack with smoothed-

out local heterogeneities or disturbances, e.g. due to grain re-arrangement during the

injection of gas.

Scenario 3: This scenario involves an ensemble of 1000 independent random invasion

threshold fields, each of which is plugged into the 3 model versions (visualization in

Figure 5.3 (d)) for both the atomic and non-atomic synthetic data (with 2, or 3− step

jumps). This scenario represents gas-injection experiment repetitions, where the sand

is repacked after each experiment.
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5.4.2 Real Data Scenario

For the real data, I use the longest sub-sequence of the real-experimental data with

non-decreasing ninvasions ≥ nre−invasions number of invaded gas blocks (7 steps between

image number 239 and 246), which excludes the third and fourth problem in the data

mentioned in Section 5.3.1. Within that sub-sequence, the workarounds can be imple-

mented without computational difficulties.

When using the real data sequence, I use a setup similar to Scenario 3 of Section 5.4.1

with 7000 random invasion threshold fields. The difference is that I now use Model 4

with the ability for re-invasions (recall that Section 5.4.1 uses Model 4 without Equation

2.8) so that they can better resemble the real data set, which belongs to the discontinu-

ous gas flow regime (see Section 2.1). An immediate evaluation of these models leads to

BME=0 for almost all invasion threshold fields; because of its deterministic re-invasion

decision (rule specified in Equation 2.8), the model wants to re-invade a wrong block

and is punished with complete Bayesian rejection. Theoretically, the BME value of 0

is correct, but it has no practical significance.

The focus of this case-study is primarily method development and not model develop-

ment. Therefore, I probabilistically change the model. I assign a 90% probability to

the model’s decision to re-invade the block obtained from the rule specified in Equa-

tion 2.8 or not re-invade any block. The remaining probability of 10% is uniformly

distributed among the other blocks of the gas cluster for the re-invasion of water. That

means any block of the current gas cluster can be re-invaded with a probability of at

least 0.1
ngas,cluster

, see Figure 5.6. Note that ngas,cluster only accounts for the blocks in the

respective cluster. Also, I have to treat the injection cluster differently as it has one

less choice since the injection block cannot be re-invaded.

I also need to adjust the workaround for the non-atomic data (Figure 5.5) because I now

have a re-invasion rule in the models. To do that, I combine the different orderings

of re-invasions with the orderings of invasions from before and leave the rest of the

non-atomic modification unchanged. Note that an atomic time-step may also have

no re-invasion at all, since ninvasions ≥ nre−invasions. The total number of orderings is

then norderings = (ninvasions!)
2/(ninvasions − nre−invasions)!. For example, a combination of

non-atomic events with 5 invasions and 2 re-invasions leads to 2400 different orderings,
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Figure 5.6: Illustration of the modification to tackle the second challenge in data from Sec-
tion 5.3.1, where water re-invasion in gas-occupied blocks occur not according to
the model’s choice (guided by Equation 2.8): The blue block marks the injection
block. The red blocks are gas-occupied. In this example, the top gas cluster
has a probability of 0.1

ngas,top
= 0.1

5 and the injection cluster has a probability of
0.1

ngas,injection
= 0.1

6 , for a re-invasion of water in the respective cluster.

which happens to be the maximum number for the real-data sequence used in this

case-study.

5.4.3 List of Algorithmic Steps†

Before I discuss the results from my case-study, I summarize the general algorithmic

steps of the MFP. These steps are the same for all models obeying the Markov Chain

property combined with exact data (knowledge of each atomic event).

(1) List all possible events in the data, both reproducible and non-reproducible, by

the model. For example, in the case of the demonstration case-study, the non-

atomic events of the data fall under the model non-reproducible events category.

(2) State the formula for the probabilities of events being executed by the model.

These could be individual, fixed values, evaluations of a probability distribution

function or a combination of both. In this case-study, it is stated by Equation

5.8.

†The code implementation of the method of forced probabilities was done by my co-author Mr.
Peter Walter as part of his Bachelor thesis (BSc. SimTech) and Masters Project (MSc. SimTech
Projektarbeit) at the University of Stuttgart.



92 5 Method of Forced Probabilities to Compute Bayesian Model Evidence

(3) In the original model code, code a new update rule to force the next model state,

similar to a restart capability of a code.

(4) Propagate and accumulate probabilities through all time steps, i.e. a simple

multiplication. At this stage, a possible code break-off criterion can also be

included to identify and flag zero-probability events.

The implementation of the MFP code is mostly non-intrusive because no re-writing of

the code is necessary. However, step (3) requires good restart abilities of the model

code with forced model states per time step. Also, the simplest way to achieve step (2)

is to add a line to the original code that outputs the probability of the forced event.

5.5 Results and Conclusions from the Case-Study

Now, I discuss the results obtained from the case-study. Table 5.1 contains the BME

values on a negative logarithmic scale (the smaller these values are, the better the

model) obtained using MFP on Model 4 for both synthetic data as well as real data.

5.5.1 Results from Synthetic Data Scenarios

In both Scenarios 1 and 2, the model version with c = 15 has the best BME values (see

bold font in Synthetic Scenario 1 and 2 of Table 5.1). For Scenario 1, this is expected

because this model version and threshold field were used to generate the synthetic data.

For Scenario 2, the threshold fields were close to the synthetic data setup; therefore, the

correct model version still had the best BME value. Also, according to expectations, all

the model versions had significantly worse BME values for Scenario 3, where entirely

random entry threshold fields were used. However, the ranking also changed, and the

more random model version (c = 5) emerged as the best model in Scenario 3.

Why Does the Model Ranking Change for Scenario 3?

Let us first look at the two extreme model versions to understand why the ranking

changes. The model version with c = 100 is almost deterministic in its choice of a
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Table 5.1: Table containing the BME values obtained in the three synthetic scenarios and the
real scenario on a negative logarithm scale, the ensemble sizes nMC , number of
atomic events nev occurring within a non-atomic step and, computed Bayes factors
BF k2

k1
. Note, here the model versions (k1, k2), are denoted by their respective c

values. The best-performing model is highlighted with bold font − ln BME value.

Scenario nMC nev c = 5 c = 15 c = 100 BF 15
5

BF 5
100

BF 15
100

Synthetic

1 1

1 3034.6 2672.3 3063.3 2.6e157 3.0e12 6.1e169

2 3099.9 2741.0 3124.6 7.5e155 5.3e10 4.0e166

3 3169.8 2817.5 3202.3 9.7e152 1.3e14 1.3e167

6 3301.9 2961.8 3345.5 4.8e147 9.1e18 4.4e166

2 1000

1 3201.2 2931.1 3474.1 2.1e117 3.4e118 7.1e235

2 3246.7 2972.1 3496.0 1.7e119 2.0e108 3.4e227

3 3292.6 3013.2 3519.0 2.3e121 2.1e98 5.0e219

3 1000

1 5942.7 6647.7 8461.9 6.4e− 307 1.2e1094 8.0e787

2 5942.1 6644.5 8453.3 9.0e− 306 3.9e1090 3.5e785

3 5939.6 6638.3 8439.8 3.6e− 304 7.0e1085 2.5e782

Real 7000 3− 5 269.22 294.29 336.40 1.3e− 11 1.5e29 1.9e19

gas pathway, which is different for each invasion threshold field. This is why this

model version can get good BME values (small − lnBME) if and only if the invasion

threshold field closely matches the true field (Te,syn), which is highly unlikely when

one uses entirely random invasion threshold fields. If this is put colloquially, the few

good predictions of the c = 100 model version do not make up for the many bad ones.

The more random (c = 5) model version is not as deterministic in its choice of the gas

pathway as c = 100 is, and so, it is largely unimpaired by the choice of the invasion

threshold field. This is why the random model version (c = 5) achieves mediocre values

for any invasion threshold field. Thus, in the scenario where the invasion threshold field

is highly uncertain, it has an advantage that helps it emerge as the best model version

in Scenario 3. The model version with c = 15 is not identified as the best model when

uncertainty in the threshold field is increased. This indicates that the entry threshold

field is a highly sensitive and important parameter for Model 4 to function correctly.
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Effect of Non-Atomic Synthetic Data

The introduction of non-atomicity in the synthetic data does not change the ranking

of the models in any scenario (see, − lnBME values for nev values other than 1 for

Synthetic Scenarios (1, 2, and 3) in Table 5.1) but makes it slightly less decisive in

comparison to nev = 1 for all the synthetic scenarios of Table 5.1. This coincides with

the synthetic data set becoming, in a sense, weaker or less informative if parts of it are

unknown in ordering. This is visible in Table 5.1 as, despite the general rise of − ln

BME values with increasing nev, their differences become slightly smaller. Looking

at the Bayes factors between the competing models makes it easier to see this effect:

they generally decrease with increasing nev. There are only a few exceptions to this

observation. For example, the Bayes Factors BF 15
5
between the models in Scenario 2

increases with the increased non-atomicity in the synthetic data. However, looking at

the orders of magnitude of the values in comparison, it can be safely concluded that

this does not affect or change the level of decisiveness.

5.5.2 Results from Real Data Scenario

Initially, I evaluated the model versions on the complete real data set. This helped

gather information on the magnitude of the effect of the challenges in the real data for

implementation of MFP, as discussed in Section 5.3.1. It is noticed that non-atomic

events with a very high number of events nev are pretty common in the data set,

which leads to very high computation time for the mini-MC workaround explained in

Section 5.4, thus making a BME evaluation infeasible even with MFP.

The events of wrong block re-invasion (the second problem in data discussed in Sec-

tion 5.3.1) in the data set are plenty, but I am able to tackle them with the workaround

mentioned in Section 5.4.2. In the later time-steps of the data, block invasion in non-

gas injection clusters (third problem in data discussed in Section 5.3.1) or events with

decreasing numbers of invaded gas blocks (fourth problem in data discussed in Sec-

tion 5.3.1) are predominant. However, I have no fix to this problem in the real data

set.

Thus, I decide to look for a sub-sequence of time steps in the data that aligns with

the model’s assumptions and has a reasonably small number of non-atomic events (for
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reasonable computation time of mini-MC runs, see Figure 5.5). The resulting sequence

of time steps in the data is the one mentioned in Section 5.4.2. For that sequence,

− lnBME is between 269 and 360 for the probability of correctly predicting seven steps,

which is a small probability already. This is not a fault of the MFP but of the match

between the models used and their corresponding data set of this study.

Regarding the ranking of the model versions, one sees a similar pattern as in the

synthetic Scenario 3. The best model version is the one with c = 5, followed by

c = 15 and then c = 100 (see Row: Real from Table 5.1). The uncertainty in the

invasion threshold fields is handled better by a random (c=5) model than by the more

deterministic models. Therefore, more information about the invasion threshold fields

is necessary for these models to accurately predict the gas path under the experimental

data’s conditions and scale.

5.5.3 Conclusions

In conclusion, my method MFP makes it possible to calculate BME for Markov-Chain

type models and discrete atomic data in previously impossible cases. The method works

well, is mostly non-intrusive to the model and has a linear computational cost. Also,

my method enables a fully Bayesian assessment of a macroscopic IP model for the first

time.

In my case-study, the method was demonstrated only on a relatively small sequence

of real data. This is because the large distance between the model outputs and the

real data leads to many zero-probability events. So, for more conclusive results, better

models or more-informative data are required, i.e. data with no or few non-atomic

events and an improved Model 4.

When I use MFP to evaluate the BME for imperfect models or data or both, resulting

in practically futile BME values (BME = 0), I can adapt my approach and use MFP to

detect events leading to such values in the model and the data by flagging them. This

exercise helps determine the structural errors in the model or the mismatch between

the model concepts and the observations.

Summarizing the results from the implementation of MFP on Model 4 and gas-injection

experimental data, I can conclude that both the model and the experimental data have
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a scope for improvement. The rules in Model 4 could be updated by looking at specific

types of events, e.g. the ones that get the model rejected or result in poor performance

(like the deterministic re-invasion events in the current version). The experimental data

technique processing could be updated to have more discrete and atomic data steps.

However, experimental data or model improvement is beyond the scope of this study.
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Looking back at the introduction of my thesis, there are many challenges involved in

testing macroscopic IP models in the presence of data. I systematically contributed

towards overcoming these challenges using three research questions (RQs).

RQ1: “How to appropriately compare time-ignorant macroscopic IP models to time-

dependent experimental image data?”

Contribution 1: An appropriate method to compare time-ignorant macroscopic IP

models to the time-dependent experimental image data is: volume-based time matching

followed by computing the (Diffused) Jaccard coefficient to assess the quality of fit.

To treat the challenge of the time-ignorance of IP-type models in RQ1, I implemented

a volume-based time matching between experimental images and model output images.

Once the model outputs were aligned with respective experimental images on the time

axis, I computed the Jaccard coefficient to quantify the similarity between the exper-

imental and model images (answering the RQ1). Traditional comparison of images

based on perception is neither quantitative nor objective and can be extremely tedious.

In contrast, the Jaccard coefficient is both quantitative and objective, and its evalua-

tion can easily be automated. While the Jaccard coefficient quantifies a pixel-by-pixel

agreement between images and is close to a “measure of perception”, I introduced blur-

ring in the images to compute the Diffused Jaccard coefficient. This blurring of images

allows one to compare models and experiments across various levels of detail in the

data, thus allowing comparisons across multiple scales. When I compared the results

from my proposed method with that obtained using the traditional spatial-moments

comparison method, the latter turned out to be less intuitive and sometimes misleading.

The Diffused Jaccard coefficient can be seen as sliding between rigorous pixel-by-pixel

∗This chapter contains text fragments from my publications Banerjee et al. [2021], Banerjee et al.
[2023] and Banerjee et al..
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assessment to aggregated (blurred) assessment over space as done in spatial moments.

The advantage is that a single insightful number is available for ranking, and this slider

(over the blur radius) can be used for model investigation and improvement. The most

meaningful blur radius for a specific application has to be decided by the user so that

it reflects the intended purpose of identification, e.g. in an application of identifying

the radius of a gas contamination zone in the subsurface to protect the groundwater

table, a relatively high blur radius can be used. The method can be extended to any

application involving high-resolution model output and experimental data as raster im-

ages. Further, this metric can be used for model calibration (identification of best-fit

parameter values) and for comparison of alternative model types.

RQ2: “Using the comparison approach developed in research question 1 on the dif-

ferent macroscopic IP model versions, how to determine which model version is better

at describing which of these gas-flow regime experiments? Can specific deficits and

recommendations be derived?”

Contribution 2: The inter-comparison of competing macroscopic IP model versions

identifies “suitable”and “less adequate”models for the transitional and continuous gas-

flow regime experiments for the first time. This comparison process also highlights the

models’ strengths and weaknesses.

To answer RQ2, I compared four competing macroscopic IP model versions against

nine experiments belonging to the transitional and continuous gas flow regimes, using

the tool developed to answer RQ1. These models were tested for transitional and

continuous gas-flow regimes for the first time. To test the models with a different

detailed level of information in the data, I used three different blur-radii to compute

the Diffused Jaccard coefficient for assessing the model-data fit. On the one hand, I

could distinguish that certain versions of the macroscopic IP models are unsuitable for

use in transitional and continuous gas flow regimes, even with high levels of blurring

in images. On the other hand, I could identify macroscopic IP-model versions that

are suitable for the transitional gas flow regime and have the potential to be used in

continuous gas flow regime if further research towards refinement of their rules for gas-

invasion, water-re-invasion, finger branching and so on are done. For example, in their

present state, I recommend the use of macroscopic IP Models 3 (with > 1 block invaded

per step; Section 2.3.5) and 4 (with a stochastic modification of the gas-invasion rule;

Section 2.3.6) with high blurring (i.e. with large blur radius) for large-scale applications
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in the continuous gas flow regime, where the details of the gas-cluster structure are

insignificant. Besides, I identified that the structure of the Te field is a critical input

for the good performance of these models. Further, in the absence of a good fit of

the structure of Te field to the original experimental porous medium, the more flexible

models (e.g. Model 4 with low c values, see Section 4.3.1) fare well. I discovered that

these models are not fit for calibration of parameters like gas saturation as long as there

is a dominant uncertainty in the Te fields.

RQ3: “How can we efficiently compute Bayesian Model Evidence for extremely large

data sets like highly space-time resolved image data, knowing that all existing compu-

tational algorithms would be computationally infeasible? If yes, can we pinpoint very

detailed strengths and weaknesses of the models?”

Contribution 3: The method of forced probabilities (MFP) is an effective technique

to compute Bayesian model evidence for models following the Markov-chain property

and complete data.

There are challenges involved in computing Bayesian model evidence for IP-type models

with binary outputs and extensive space-time-resolved image data. This limits using

the Bayesian model selection framework for the inter-comparison of the different IP-

type model hypotheses if no - potentially misleading - approximation methods shall be

applied. Therefore, to answer RQ3, I developed the MFP to calculate BME for models

with Markov-Chain property (like IP-type models) and discrete detailed atomic data

in previously impossible cases. In this method, I replaced numerous forward runs

of the model (to compute BME using numerical methods) with a single analytical

equation developed, taking the Markov property into account. The method works well,

is primarily non-intrusive to the model and has a linear computational cost. Under

certain conditions, my method enabled a fully Bayesian assessment of an IP-type model

and an elaborate gas-injection experimental data set, which was impossible before. By

testing the MFP on an IP-type model, I confirmed some conclusions of my earlier

model inter-comparison study (answer to RQ2): e.g. the importance of Te fields on

an excellent performance of the models. Going beyond the findings from my model

selection study (answer to RQ2), using MFP, I detected and flagged events in the

model that caused a mismatch with the data. Information about such events is, in

general, helpful in determining the mismatch between model concepts and observations,
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which is essential to develop more accurate model formulations and experimental data-

processing techniques. MFP, in the current stage of development, is applicable for

models with Markov Chain property and complete noise-free observation data.

Through my thesis’ contributions, I enabled the testing of IP-type models in the pres-

ence of experimental data for gas flow in saturated porous media. I addressed the

uncertainty in modelling these systems by enabling a Bayesian assessment. In these

models, this allowed detection of the uncaptured or incorrectly captured gas flow pro-

cesses in the saturated subsurface, thus paving the way for future refinement of the

model rules and parameters.

To use these models in flow regimes, where viscous effects cannot be ignored, the model

rules must be redefined. A possible extension could be a mix of Model 3’s rule of in-

vading more blocks per step combined with a stochastic invasion rule similar to that

of Model 4. The rule for this extension would also need to be adapted to closely

mimic the gas flow behaviour in the continuous flow regime, e.g., with finger invasion

rules enabling the growth of multiple parallel thick fingers. For using the models in

capillary-dominated flow regimes, to accurately represent the water re-invasion pro-

cesses, a probabilistic re-invasion rule instead of a deterministic one is recommended.

Also, I recommend that the refinement of models be executed bearing not only the flow

regimes but also the scale and the purpose of application in mind.

Simultaneously, through my analyses, insights into experimental methods were also

obtained. For example, improved detection limits in experiments could prevent obser-

vations: (1) tunnelling of gas pixels into non-neighbours of the injection gas cluster

(2) the non-increasing gas pixels between images at successive time steps, in the data

(Chapter 5).

The results of my thesis and the obtained conclusions stimulate future areas of research:

• Efforts are needed towards reducing the uncertainty of the invasion threshold

(Te) fields used as input to the models. At the scale of the experiments used

in this thesis, it is impossible to determine the exact structure of the invasion

threshold field. One strategy for accounting for the uncertainty of the geological

heterogeneity in the experimental setup is to run the corresponding IP model over

multiple realisations of the Te field [Trevisan et al., 2017]. The other strategy is
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to investigate and identify the Te fields’ underlying structure, e.g., using geosta-

tistical inversion methods. The comparison metric (Diffused Jaccard coefficient)

can identify the “good performing”Te fields for each model type. One could then

operate a (geostatistical) Bayesian inference to estimate (or conditionally simu-

late) the Te fields, e.g., using Markov chain- Monte Carlo (MCMC) methods for

random fields [Xu et al., 2020], a parameter Ensemble Kalman filter (EnKf) (e.g.,

Kalman Ensemble generator by Nowak [2009]) or transformed versions [Schöniger

et al., 2012a].

• The MFP, in its current stage of development, requires that the data be noise-

free. A possible direction of research is modifying MFP to apply to noisy data

(e.g. with statistical assumptions on the distribution of black/white detection

errors). A straightforward idea would be to perturb the available data with

several realisations of randomly generated noise and then handle each realisation

with my method. However, this multiplies computational costs by a substantial

factor to host these repetitions.

• The tools I developed in my thesis are not limited to gas flow in water-saturated

porous media systems. The Diffused Jaccard metric can be extended to model

calibration and model comparisons for multiphase (other than gas-water) flow

regimes in porous media and, again, in any other discipline that works with

raster model output and data. The MFP can be applied to gas (fluid) migration

in fractured-porous media under the conditions of Markov-style model formula-

tion and complete observations (e.g. in thin slices or with high-resolution 3D

micro-tomography). It can also be applied to systems involving experiments

and models at the microscopic scale, where appropriate monitoring techniques

resolve individual pores [e.g., Gao et al., 2021]. Other than multiphase flow

applications, MFP can be used in applications such as counting processes (e.g.

as in traffic), discrete computerised systems (e.g. network traffic), probabilistic

Markov-style model-based river water quality monitoring [González-Nicolás et al.,

2021], tracer experiments / Lagrangian movement (e.g. fluorescent microparti-

cles to monitor turbulent flow [Adrian, 2005]), stochastic models for discrete,

dynamic systems and complete observation (e.g. chemical reaction modelling),

statistics-based data-driven soil-plant-atmosphere modelling [Gong et al., 2013]

and micro-seismic modelling [Shapiro, 2008] to name a few.
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Modelling a physical system is the art of mathematically formulating our understanding

of such systems. Comprehensive testing of a class of models against observations helps

confirm or dismiss our concepts and beliefs regarding the system’s behaviour. My thesis

is an effort to confirm, clarify, and update the concepts of gas flow behaviour in the

subsurface.



A Appendix to Chapter 2

Image-Data Processing

Here, I elaborate on details of the image processing technique for the experimental

data described in Section 2.2. The following details are adapted from Van De Ven and

Mumford [2019] and Van De Ven et al. [2020].

Each pixel of a grey-scale image obtained using the light transmission technique [Tidwell

and Glass, 1994], has an intensity value for the transmitted light. A group of pixels

is considered a block of a chosen discretization scale, and the mean of the intensities

of all the pixels contained within a block is assigned as intensity value per block. In

this way, the images are discretized as blocks of averaged intensity values. Thereafter,

either the gas saturation data or the optical density (OD) data for detecting the gas

presence is calculated as follows.

In this thesis, I have used the OD values to obtain gas presence/absence type image

data. To calculate the OD per block from the light intensity values of the block-

averaged greyscale image, Equation A.1 is used from Kechavarzi et al. [2000]:

OD = − log10

(
I

Isat

)
. (A.1)

A detection limit for OD is calculated based on the variance of a zone of the experiment

that is known to not contain any gas throughout the experiment. The blocks where the

OD values exceed the detection limit are considered gas-occupied at a certain saturation

value [Van De Ven and Mumford, 2019].

If one wants to convert the light intensity values from the grey-scale images to liquid

saturation data, a few methods are proposed by Niemet and Selker [2001]. I list method
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C from Niemet and Selker [2001] because its underlying assumptions fit the experimen-

tal conditions of this thesis. This method is proposed for homogeneous sands where

pores drain independently, randomly and completely. The water-solid contact angle

is assumed as zero degrees. Additionally, it is assumed that, after wetting, a film of

liquid remains on the surface of the solid grains. Hence, the available pore space is the

space in between the water films. Based on these assumptions, the effective saturation

Seff between complete and residual water-saturated images can be calculated using

Equation A.2:

Seff = 1−
ln
(

I
Is

)
ln
(

Ires
Isat

) , (A.2)

where I is the intensity of light transmitted through the medium per block, Isat and

Ires are the intensities of light transmitted through a completely water-saturated image

and an image with residual saturation of water, respectively [Niemet and Selker, 2001].

The gas saturation Sg can be evaluated from the effective saturation using Equation

A.3, where Sw is the actual water saturation and Sres is the residual water saturation

in the experiment. Measurement error for gas saturation is calculated based on the

variance of wetting saturation (Sw) in a zone of completely water-saturated pixels, i.e.

where the expected Sw = 1.

Sw = Seff (1− Sres) + Sres

Sg = 1− Sw

(A.3)



B Appendix to Chapter 4∗

I present more visual evidence from my analyses supporting the results and conclusions

from Sections 4.3.1 — 4.4. Figure B.1 contains the experimental images and their

blurred versions for experiments 10-B, 100-B and 250-B.

Figure B.2 contains the experimental images and their blurred versions for experiments

10-C, 100-C and 250-C.

This is followed by corresponding best-fitting model realizations obtained using the

maximum Jaccard coefficient for these experiments (Figures B.3 and B.4).

The best-fitting model realizations to the experimental triplicate at 10 ml/min, 100

ml/min, and 250 ml/min, obtained using the maximum Diffused Jaccard coefficient

(low) metric, are shown in Figures B.5 - B.7.

Figures B.8 - B.10 contain the best-fitting model realizations to the experimental tripli-

cate at 10 ml/min, 100 ml/min, and 250 ml/min, obtained using the maximum Diffused

Jaccard coefficient (med) metric.

The best-fitting model realizations to the experimental triplicate at 10 ml/min, 100

ml/min, and 250 ml/min, obtained using the maximum Diffused Jaccard coefficient

(high) metric, are shown in Figures B.11 - B.13.

∗This appendix contains figures from the Supporting Information to my publication Banerjee et al.
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Figure B.1: Final experimental image of the experiments 10-B, 100-B and 250-B. Row 2-4
contains the blurred version of the images of Row 1 for the three different blur-
radii.
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Figure B.2: Final experimental image of the experiments 10-C, 100-C and 250-C. Row 2-4
contains the blurred version of the images of Row 1 for the three different blur-
radii.
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Figure B.3: Model images for the different model versions with the best fit to non-blurred
experimental images (with highest Jaccard value) from experiment no. 10-B,
100-B and 250-B. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1,
Model 2, Model 3 and Model 4, respectively.
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Figure B.4: Model images for the different model versions with the best fit to non-blurred
experimental images (with highest Jaccard value) from experiment no. 10-C,
100-C and 250-C. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1,
Model 2, Model 3 and Model 4, respectively.
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Figure B.5: Model images for the different model versions with the best fit to blurred exper-
imental images (with highest Diffused Jaccard (low) value) from experiment no.
10-A, 100-A and 250-A. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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Figure B.6: Model images for the different model versions with the best fit to blurred exper-
imental images (with highest Diffused Jaccard (low) value) from experiment no.
10-B, 100-B and 250-B. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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Figure B.7: Model images for the different model versions with the best fit to blurred exper-
imental images (with highest Diffused Jaccard (low) value) from experiment no.
10-C, 100-C and 250-C. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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Figure B.8: Model images for the different model versions with the best fit to blurred experi-
mental images (with highest Diffused Jaccard (med) value) from experiment no.
10-A, 100-A and 250-A. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.



114 B Appendix to Chapter 4

10-B 100-B 250-B

M
o

d
e
l 
1

M
o

d
e
l 
2

M
o

d
e

l 
3

M
o

d
e
l 
4

250

200

150

100

50

0

Z
 (

m
m

)

250

200

150

100

50

0

Z
 (

m
m

)

250

200

150

100

50

0

Z
 (

m
m

)

0 50 10
0

15
0

20
0

25
0

X (mm)

250

200

150

100

50

0

Z
 (

m
m

)

0 50 10
0

15
0

20
0

25
0

X (mm)

0 50 10
0

15
0

20
0

25
0

X (mm)

Figure B.9: Model images for the different model versions with the best fit to blurred experi-
mental images (with highest Diffused Jaccard (med) value) from experiment no.
10-B, 100-B and 250-B. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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Figure B.10: Model images for the different model versions with the best fit to blurred experi-
mental images (with highest Diffused Jaccard (med) value) from experiment no.
10-C, 100-C and 250-C. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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Figure B.11: Model images for the different model versions with the best fit to blurred experi-
mental images (with highest Diffused Jaccard (high) value) from experiment no.
10-A, 100-A and 250-A. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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Figure B.12: Model images for the different model versions with the best fit to blurred experi-
mental images (with highest Diffused Jaccard (high) value) from experiment no.
10-B, 100-B and 250-B. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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Figure B.13: Model images for the different model versions with the best fit to blurred experi-
mental images (with highest Diffused Jaccard (high) value) from experiment no.
10-C, 100-C and 250-C. Row 1, Row 2, Row 3 and Row 4 correspond to Model
1, Model 2, Model 3 and Model 4, respectively.
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C.1 Monte Carlo Simulations Grow Exponentially in tmax

Let us prove here that the required size of MC simulations grows exponentially in tmax.

Based on the tree structure in the didactic example from Section 5.2, one can see that

there are N = 2tmax equiprobable branches. Therefore, the probability of the correct

branch (the one with non-zero likelihood) is exactly:

Ptrue =
1

N
=

1

2tmax
= 2−tmax = BME, (C.1)

which apparently is the situation-specific definition of BME. When approximating

BME via MC sampling with i = 1 . . . n independent random realizations, then each

realization i has a constant and independent probability of finding or not finding the

correct branch. This situation is described exactly by the Binomial distribution. The

Binomial distribution is a discrete probability distribution of the number of success

events k out of n independent trials:

P (X = k) =

(
n

k

)
pk (1− p)(n−k) (C.2)

where p is the probability of success, and 1 − p is the probability of not obtaining

success. Here, I define n as number of MC trials, X is the (random under repeti-

tion of the entire MC simulation) number of times the MC finds the correct branch

(i.e., the one with Likelihood = 1). For a given execution of MC with given n, one will

find k times the correct branch and n− k times any branch with Likelihood = 0.

∗This appendix contains text fragments from my publication Banerjee et al. [2023]
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Also, in the context of the example from Section 5.2, the probability parameter p of

the Binomial distribution is equal to BME = Ptrue. From the MC results, one would

estimate:

B̂MEMC =
k

n
= p̂ ≈ BME

Just for reassurance, the asymptotic MC result for BME at n → ∞ converges to the

exact solution:

E

[
X

n

]
=

1

n
E [X] = p = BME.

But can one estimate the MC error in this approximation, e.g., expressed as the coef-

ficient of variation (CV)? For the Binomial distribution, it is known that:

Variance of X: Var[X] = n · p · (1− p)

Mean of X: E[X] = n · p

As the conversion from k to the estimate of p is simply a division by n, applying the

rules of linearized uncertainty quantification one sees that:

Variance of
X

n
: Var

[
X

n

]
=

p · (1− p)

n

Mean of
X

n
: E

[
X

n

]
= p

Using this in the definition of the coefficient of variation:

CV of
X

n
=CV

[
B̂ME

]
=

√
Var

[
X
n

]
E
[
X
n

]
=

√
1− p√
n · √p
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For small values of p as in the given example with p = 2−tmax , one can replace 1−p ≈ 1,

and hence:

CV of
X

n
for small p: CV =

1√
n · √p

=
1

√
n ·

√
2−tmax

=
2

tmax
2√
n

.

Thus, the number of MC runs required for a desired accuracy (expressed as a desired

value of the CV) is:

nrequired =
2tmax

CV 2
desired

.

This shows that the number n of required MC samples increases, for a given precision

requirement, exponentially in tmax. The base 2 of the exponent originates from the tree

structure, where each node expands into two further branches. In real applications,

where the evolution of the model over time has more than two possibilities, the base

will simply increase, so the exponential growth will be even stronger.

C.2 Tackling Numerical Instabilities in Computation of

BME

Here, I provide details on the approach of handling numerical instabilities in the BME

computation when using MC integration (Eq. 2.14) for the uncertain parameters in

Eq. 5.2.

To avoid very small likelihoods (BME values from the perspective of random events ω)

turning into numerical zeros, I divide each sample likelihood by the maximum likelihood

encountered in the whole ensemble, max{p(y0 | θk,Mk)}, yielding values between 0 and

1. Then, Eq. 5.2 rewrites as:
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Ik = max{p(y0 | θk,Mk)}
∫

p (y0 | θk,Mk)

max{p(y0 | θk,Mk)}
· p (θk | Mk) dθk.

Taking the logarithm and applying the MC approximation of the integral yields:

ln Ik = lnmax{p(y0 | θk,Mk)} − lnN

+ ln
N∑
r=1

p (y0 | θk,r,Mk)

max{p(y0 | θk,Mk)}
.
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M. Höge, T. Wöhling, and W. Nowak. A primer for model selection: The decisive

role of model complexity. Water Resources Research, 54(3):1688–1715, 2018. doi:

10.1002/2017WR021902.

J. Holden. Darcy’s Law, pages 63–64. John Wiley & Sons, Ltd, 2005. ISBN

9780471478447. doi: 10.1002/047147844X.gw146.

M. A. Ioannidis, I. Chatzis, and F. A. L. Dullien. Macroscopic percolation model of

immiscible displacement: Effects of buoyancy and spatial structure. Water Resources

Research, 32(11):3297–3310, 1996. doi: 10.1029/95WR02216.

J. W. Jawitz, M. D. Annable, G. G. Demmy, and P. S. Rao. Estimating nonaqueous

phase liquid spatial variability using partitioning tracer higher temporal moments.

Water Resources Research, 2003. ISSN 00431397. doi: 10.1029/2002WR001309.

H. Jeffreys. Theory of probability. Clarendon Press, Oxford, U.K., 3rd edition, 1961.

W. Ji, A. Dahmani, D. P. Ahlfeld, J. D. Lin, and E. Hill III. Laboratory study of

air sparging: Air flow visualization. Groundwater Monitoring & Remediation, 13(4):

115–126, 1993. doi: 10.1111/j.1745-6592.1993.tb00455.x.

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical

Association, 90:773–795, 1995. doi: 10.1080/01621459.1995.10476572.

C. Kechavarzi, K. Soga, and P. Wiart. Multispectral image analysis method to deter-

mine dynamic fluid saturation distribution in two-dimensional three-fluid phase flow

laboratory experiments. Journal of Contaminant Hydrology, 2000. ISSN 01697722.

doi: 10.1016/S0169-7722(00)00133-9.

T. Kloek and H. K. van Dijk. Bayesian estimates of equation system parameters:

An application of integration by monte carlo. Econometrica, 46:1–19, 1978. doi:

10.2307/1913641.

J. Koch and W. Nowak. Predicting dnapl mass discharge and contaminated site

longevity probabilities: Conceptual model and high-resolution stochastic simulation.

Water Resources Research, 51(2):806–831, 2015. doi: 10.1002/2014WR015478.

A. Kolmogorov. Foundations of the theory of probability. Chelsea Publishing Company,

New York, 1950.



128 Bibliography

B. H. Kueper and J. I. Gerhard. Variability of point source infiltration rates for two-

phase flow in heterogeneous porous media. Water Resources Research, 1995. ISSN

19447973. doi: 10.1029/95WR02329.

B. H. Kueper and D. B. McWhorter. The use of macroscopic percolation theory to

construct large-scale capillary pressure curves. Water Resources Research, 1992.

ISSN 19447973. doi: 10.1029/92WR01176.

R. Lenormand, E. Touboul, and C. Zarcone. Numerical models and experiments on im-

miscible displacements in porous media. Journal of Fluid Mechanics, 189(November):

165–187, 1988. ISSN 14697645. doi: 10.1017/S0022112088000953.
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M. Stöhr and A. Khalili. Dynamic regimes of buoyancy-affected two-phase flow in

unconsolidated porous media. Phys. Rev. E, 73:036301, Mar 2006. doi: https://10.

1103/PhysRevE.73.036301.

P.-N. Tan, M. Steinbach, and V. Kumar. Association Analysis: Basic Concepts and

Algorithms. Introduction to Data mining, 2005. ISSN 1600-0765. doi: 10.1111/j.

1600-0765.2011.01426.x.

V. C. Tidwell and R. J. Glass. X ray and visible light transmission for laboratory mea-

surement of two-dimensional saturation fields in thin-slab systems. Water Resources

Research, 30(11):2873–2882, 1994. ISSN 19447973. doi: 10.1029/94WR00953.



132 Bibliography

L. Trevisan, R. Pini, A. Cihan, J. T. Birkholzer, Q. Zhou, and T. H. Illangasekare. Ex-

perimental analysis of spatial correlation effects on capillary trapping of supercritical

CO2 at the intermediate laboratory scale in heterogeneous porous media. Water

Resources Research, 2015. ISSN 19447973. doi: 10.1002/2015WR017440.

L. Trevisan, T. H. Illangasekare, and T. A. Meckel. Modelling plume behavior through

a heterogeneous sand pack using a commercial invasion percolation model. Geome-

chanics and Geophysics for Geo-Energy and Geo-Resources, 3(3):327–337, 2017. ISSN

23638427. doi: 10.1007/s40948-017-0055-5.

F. T.-C. Tsai and X. Li. Inverse groundwater modeling for hydraulic conductivity

estimation using bayesian model averaging and variance window. Water Resources

Research, 44, 2008. doi: 10.1029/2007WR006576.

F. T.-C. Tsai and X. Li. Reply to comment by ming ye et al. on “inverse ground-

water modeling for hydraulic conductivity estimation using bayesian model aver-

aging and variance window”. Water Resources Research, 46, 2010. doi: 10.1029/

2009WR008591.

I. N. Tsimpanogiannis and Y. C. Yortsos. The critical gas saturation in a porous

medium in the presence of gravity. Journal of Colloid and Interface Science, 2004.

ISSN 00219797. doi: 10.1016/j.jcis.2003.09.036.

C. Van De Ven and K. G. Mumford. Visualization of gas dissolution following upward

gas migration in porous media: Technique and implications for stray gas. Advances

in Water Resources, 115:33–43, 2018. ISSN 0309-1708. doi: 10.1016/j.advwatres.

2018.02.015.

C. J. Van De Ven and K. G. Mumford. Characterization of gas injection flow patterns

subject to gravity and viscous forces. Vadose Zone Journal, 18(1):1–11, 2019. ISSN

1539-1663. doi: 10.2136/vzj2019.02.0014.

C. J. Van De Ven, J. E. Abraham, and K. G. Mumford. Laboratory investigation of

free-phase stray gas migration in shallow aquifers using modified light transmission.

Advances in Water Resources, 2020. ISSN 03091708. doi: 10.1016/j.advwatres.2020.

103543.

A. Vengosh, N. Warner, R. Jackson, and T. Darrah. The Effects of Shale Gas

Exploration and Hydraulic Fracturing on the Quality of Water Resources in the



Bibliography 133

United States. Procedia Earth and Planetary Science, 2013. ISSN 18785220. doi:

10.1016/j.proeps.2013.03.213.

A. Vengosh, R. Jackson, N. Warner, T. Darrah, and A. Kondash. A critical review of

the risks to water resources from unconventional shale gas development and hydraulic

fracturing in the united states. Environmental science & technology, 48, 03 2014. doi:

10.1021/es405118y.

G. Wagner, P. Meakin, J. Feder, and T. Jøssang. Buoyancy-driven invasion percolation

with migration and fragmentation. Physica A: Statistical Mechanics and its Applica-

tions, 245(3-4):217–230, 1997. ISSN 03784371. doi: 10.1016/S0378-4371(97)00324-5.

C. J. Werth, C. Zhang, M. L. Brusseau, M. Oostrom, and T. Baumann. A review of non-

invasive imaging methods and applications in contaminant hydrogeology research.

Journal of Contaminant Hydrology, 2010. ISSN 01697722. doi: 10.1016/j.jconhyd.

2010.01.001.

D. Wilkinson. Percolation model of immiscible displacement in the presence of buoyancy

forces. Physical Review A, 1984. ISSN 10502947. doi: 10.1103/PhysRevA.30.520.

D. Wilkinson and J. F. Willemsen. Invasion percolation: A new form of percolation

theory. Journal of Physics A: Mathematical and General, 1983. ISSN 13616447. doi:

10.1088/0305-4470/16/14/028.

K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decom-

position. AIAA Journal, 40(11):2323–2330, 2002. doi: 10.2514/2.1570.

T. A. Witten and L. M. Sander. Diffusion-limited aggregation. Phys. Rev. B, 27:

5686–5697, May 1983. doi: 10.1103/PhysRevB.27.5686.

A. W. Woods and S. Norris. Dispersion and dissolution of a buoyancy driven gas plume

in a layered permeable rock. Water Resources Research, 52(4):2682–2697, 2016. doi:

10.1002/2015WR018159.

D. Xiu and G. E. Karniadakis. The wiener–askey polynomial chaos for stochastic

differential equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2002.

doi: 10.1137/S1064827501387826.



134 Bibliography

T. Xu, S. Reuschen, W. Nowak, and H.-J. Hendricks Franssen. Preconditioned

crank-nicolson markov chain monte carlo coupled with parallel tempering: An ef-

ficient method for bayesian inversion of multi-gaussian log-hydraulic conductivity

fields. Water Resources Research, 56(8):e2020WR027110, 2020. doi: 10.1029/

2020WR027110.

M. Ye, P. D. Meyer, and S. P. Neuman. On model selection criteria in multimodel

analysis. Water Resources Research, 44, 2008. doi: 10.1029/2008WR006803.

M. Ye, D. Lu, S. P. Neuman, and P. D. Meyer. Comment on “inverse groundwater

modeling for hydraulic conductivity estimation using bayesian model averaging and

variance window” by frank t.-c. tsai and xiaobao li. Water Resources Research, 46,

2010a. doi: 10.1029/2009WR008501.

M. Ye, K. F. Pohlmann, J. B. Chapman, G. M. Pohll, and D. M. Reeves. A model-

averaging method for assessing groundwater conceptual model uncertainty. Ground

Water, 48:716–728, 2010b. doi: 10.1111/j.1745-6584.2009.00633.x.

A. Zellner and P. E. Rossi. Bayesian analysis of dichotomous quantal response models.

Journal of Econometrics, 25:365–393, 1984. doi: 10.1016/0304-4076(84)90007-1.

Y. Zhang, Y. Liu, G. Pau, S. Oladyshkin, and S. Finsterle. Evaluation of multiple

reduced-order models to enhance confidence in global sensitivity analyses. Interna-

tional Journal of Greenhouse Gas Control, 49:217–226, 2016. ISSN 1750-5836. doi:

10.1016/j.ijggc.2016.03.003.



 

Institut für Wasser- und 
Umweltsystemmodellierung 
Universität Stuttgart 
 
 
Pfaffenwaldring 61 
70569 Stuttgart (Vaihingen) 
Telefon (0711) 685 - 60156  
Telefax (0711) 685 - 51073  
E-Mail: iws@iws.uni-stuttgart.de 
http://www.iws.uni-stuttgart.de 

 
 
Direktoren 
Prof. Dr.-Ing. Rainer Helmig 
Prof. Dr.-Ing. Wolfgang Nowak 
Prof. Dr.-Ing. Silke Wieprecht 
 
Emeriti 
Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Jürgen Giesecke 
Prof. Dr.h.c. Dr.-Ing. E.h. Helmut Kobus, PhD 
 
 

Lehrstuhl für Wasserbau und  
Wassermengenwirtschaft 
Leiterin: Prof. Dr.-Ing. Silke Wieprecht 
Stellv.:  Dr.-Ing. Kristina Terheiden 
Versuchsanstalt für Wasserbau 
Leiter:   Stefan Haun, PhD 
 
Lehrstuhl für Hydromechanik  
und Hydrosystemmodellierung 
Leiter:   Prof. Dr.-Ing. Rainer Helmig 
Stellv.:  apl. Prof. Dr.-Ing. Holger Class 
 
Lehrstuhl für Stochastische Simulation und  
Sicherheitsforschung für Hydrosysteme 
Leiter:  Prof. Dr.-Ing. Wolfgang Nowak 
Stellv.:  apl. Prof. Dr.-Ing. Sergey Oladyshkin 
Hydrogeophysik der Vadosen Zone 
(mit Forschungszentrum Jülich) 
Leiter:  Prof. Dr. J.A. Sander Huisman 
 
VEGAS, Versuchseinrichtung zur  
Grundwasser- und Altlastensanierung 
Leiter: Dr.-Ing. Simon Kleinknecht 
 PD Dr.-Ing. Claus Haslauer 

 
 
 

Verzeichnis der Mitteilungshefte 
 

1 Röhnisch, Arthur: Die Bemühungen um eine Wasserbauliche Versuchsanstalt an der 
Technischen Hochschule Stuttgart, und Fattah Abouleid, Abdel: Beitrag zur Berechnung 
einer in lockeren Sand gerammten, zweifach verankerten Spundwand, 1963 

2 Marotz, Günter: Beitrag zur Frage der Standfestigkeit von dichten Asphaltbelägen im 
Großwasserbau, 1964 

3 Gurr, Siegfried: Beitrag zur Berechnung zusammengesetzter ebener Flächentrag-werke 
unter besonderer Berücksichtigung ebener Stauwände, mit Hilfe von Rand-wert- und 
Lastwertmatrizen, 1965 

4 Plica, Peter: Ein Beitrag zur Anwendung von Schalenkonstruktionen im Stahlwasserbau, 
und Petrikat, Kurt: Möglichkeiten und Grenzen des wasserbaulichen Versuchswesens, 
1966 

5 Plate, Erich: Beitrag zur Bestimmung der Windgeschwindigkeitsverteilung in der durch 
eine Wand gestörten bodennahen Luftschicht, und Röhnisch, Arthur; Marotz, Günter: 
Neue Baustoffe und Bauausführungen für den Schutz der Böschungen und der Sohle 
von Kanälen, Flüssen und Häfen; Gestehungskosten und jeweilige Vorteile, sowie Unny, 
T.E.: Schwingungsuntersuchungen am Kegelstrahlschieber, 1967 

6 Seiler, Erich: Die Ermittlung des Anlagenwertes der bundeseigenen Binnenschiffahrts-
straßen und Talsperren und des Anteils der Binnenschiffahrt an diesem Wert, 1967 



2 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
7 Sonderheft anläßlich des 65. Geburtstages von Prof. Arthur Röhnisch mit Beiträgen von 

Benk, Dieter; Breitling, J.; Gurr, Siegfried; Haberhauer, Robert; Honekamp, Hermann; 
Kuz, Klaus Dieter; Marotz, Günter; Mayer-Vorfelder, Hans-Jörg; Miller, Rudolf; Plate, 
Erich J.; Radomski, Helge; Schwarz, Helmut; Vollmer, Ernst; Wildenhahn, Eberhard; 
1967 

8 Jumikis, Alfred: Beitrag zur experimentellen Untersuchung des Wassernachschubs in 
einem gefrierenden Boden und die Beurteilung der Ergebnisse, 1968 

9 Marotz, Günter: Technische Grundlagen einer Wasserspeicherung im natürlichen Un-
tergrund, 1968 

10 Radomski, Helge: Untersuchungen über den Einfluß der Querschnittsform wellenförmi-
ger Spundwände auf die statischen und rammtechnischen Eigenschaften, 1968 

11 Schwarz, Helmut: Die Grenztragfähigkeit des Baugrundes bei Einwirkung vertikal gezo-
gener Ankerplatten als zweidimensionales Bruchproblem, 1969 

12 Erbel, Klaus: Ein Beitrag zur Untersuchung der Metamorphose von Mittelgebirgsschnee-
decken unter besonderer Berücksichtigung eines Verfahrens zur Bestimmung der ther-
mischen Schneequalität, 1969 

13 Westhaus, Karl-Heinz: Der Strukturwandel in der Binnenschiffahrt und sein Einfluß auf 
den Ausbau der Binnenschiffskanäle, 1969 

14 Mayer-Vorfelder, Hans-Jörg: Ein Beitrag zur Berechnung des Erdwiderstandes unter An-
satz der logarithmischen Spirale als Gleitflächenfunktion, 1970 

15 Schulz, Manfred: Berechnung des räumlichen Erddruckes auf die Wandung kreiszylind-
rischer Körper, 1970 

16 Mobasseri, Manoutschehr: Die Rippenstützmauer. Konstruktion und Grenzen ihrer 
Standsicherheit, 1970 

17 Benk, Dieter: Ein Beitrag zum Betrieb und zur Bemessung von Hochwasserrückhaltebe-
cken, 1970  

18 Gàl, Attila: Bestimmung der mitschwingenden Wassermasse bei überströmten Fisch-
bauchklappen mit kreiszylindrischem Staublech, 1971, vergriffen 

19 Kuz, Klaus Dieter: Ein Beitrag zur Frage des Einsetzens von Kavitationserscheinungen 
in einer Düsenströmung bei Berücksichtigung der im Wasser gelösten Gase, 1971, ver-
griffen 

20 Schaak, Hartmut: Verteilleitungen von Wasserkraftanlagen, 1971 

21 Sonderheft zur Eröffnung der neuen Versuchsanstalt des Instituts für Wasserbau der 
Universität Stuttgart mit Beiträgen von Brombach, Hansjörg; Dirksen, Wolfram; Gàl, At-
tila; Gerlach, Reinhard; Giesecke, Jürgen; Holthoff, Franz-Josef; Kuz, Klaus Dieter; Ma-
rotz, Günter; Minor, Hans-Erwin; Petrikat, Kurt; Röhnisch, Arthur; Rueff, Helge; Schwarz, 
Helmut; Vollmer, Ernst; Wildenhahn, Eberhard; 1972 

22 Wang, Chung-su: Ein Beitrag zur Berechnung der Schwingungen an Kegelstrahlschie-
bern, 1972 

23 Mayer-Vorfelder, Hans-Jörg: Erdwiderstandsbeiwerte nach dem Ohde-Variationsverfah-
ren, 1972 

24 Minor, Hans-Erwin: Beitrag zur Bestimmung der Schwingungsanfachungsfunktionen 
überströmter Stauklappen, 1972, vergriffen 

25 Brombach, Hansjörg: Untersuchung strömungsmechanischer Elemente (Fluidik) und die 
Möglichkeit der Anwendung von Wirbelkammerelementen im Wasserbau, 1972, vergrif-
fen 

26 Wildenhahn, Eberhard: Beitrag zur Berechnung von Horizontalfilterbrunnen, 1972 

27 Steinlein, Helmut: Die Eliminierung der Schwebstoffe aus Flußwasser zum Zweck der 
unterirdischen Wasserspeicherung, gezeigt am Beispiel der Iller, 1972 

28 Holthoff, Franz Josef: Die Überwindung großer Hubhöhen in der Binnenschiffahrt durch 
Schwimmerhebewerke, 1973 

 



Verzeichnis der Mitteilungshefte 3  
 
29 Röder, Karl: Einwirkungen aus Baugrundbewegungen auf trog- und kastenförmige Kon-

struktionen des Wasser- und Tunnelbaues, 1973 

30 Kretschmer, Heinz: Die Bemessung von Bogenstaumauern in Abhängigkeit von der Tal-
form, 1973 

31 Honekamp, Hermann: Beitrag zur Berechnung der Montage von Unterwasserpipelines, 
1973 

32 Giesecke, Jürgen: Die Wirbelkammertriode als neuartiges Steuerorgan im Wasserbau, 
und Brombach, Hansjörg: Entwicklung, Bauformen, Wirkungsweise und Steuereigen-
schaften von Wirbelkammerverstärkern, 1974 

33 Rueff, Helge: Untersuchung der schwingungserregenden Kräfte an zwei hintereinander 
angeordneten Tiefschützen unter besonderer Berücksichtigung von Kavitation, 1974 

34 Röhnisch, Arthur: Einpreßversuche mit Zementmörtel für Spannbeton - Vergleich der 
Ergebnisse von Modellversuchen mit Ausführungen in Hüllwellrohren, 1975 

35 Sonderheft anläßlich des 65. Geburtstages von Prof. Dr.-Ing. Kurt Petrikat mit Beiträgen 
von:  Brombach, Hansjörg; Erbel, Klaus; Flinspach, Dieter; Fischer jr., Richard; Gàl, At-
tila; Gerlach, Reinhard; Giesecke, Jürgen; Haberhauer, Robert; Hafner Edzard; Hausen-
blas, Bernhard; Horlacher, Hans-Burkhard; Hutarew, Andreas; Knoll, Manfred; Krum-
met, Ralph; Marotz, Günter; Merkle, Theodor; Miller, Christoph; Minor, Hans-Erwin; Neu-
mayer, Hans; Rao, Syamala; Rath, Paul; Rueff, Helge; Ruppert, Jürgen; Schwarz, Wolf-
gang; Topal-Gökceli, Mehmet; Vollmer, Ernst; Wang, Chung-su; Weber, Hans-Georg; 
1975 

36 Berger, Jochum: Beitrag zur Berechnung des Spannungszustandes in rotationssymmet-
risch belasteten Kugelschalen veränderlicher Wandstärke unter Gas- und Flüssigkeits-
druck durch Integration schwach singulärer Differentialgleichungen, 1975 

37 Dirksen, Wolfram: Berechnung instationärer Abflußvorgänge in gestauten Gerinnen mit-
tels Differenzenverfahren und die Anwendung auf Hochwasserrückhaltebecken, 1976 

38 Horlacher, Hans-Burkhard: Berechnung instationärer Temperatur- und Wärmespan-
nungsfelder in langen mehrschichtigen Hohlzylindern, 1976 

39 Hafner, Edzard: Untersuchung der hydrodynamischen Kräfte auf Baukörper im Tiefwas-
serbereich des Meeres, 1977, ISBN 3-921694-39-6 

40 Ruppert, Jürgen: Über den Axialwirbelkammerverstärker für den Einsatz im Wasserbau, 
1977, ISBN 3-921694-40-X 

41 Hutarew, Andreas: Beitrag zur Beeinflußbarkeit des Sauerstoffgehalts in Fließgewäs-
sern an Abstürzen und Wehren, 1977, ISBN 3-921694-41-8, vergriffen 

42 Miller, Christoph: Ein Beitrag zur Bestimmung der schwingungserregenden Kräfte an 
unterströmten Wehren, 1977, ISBN 3-921694-42-6 

43 Schwarz, Wolfgang: Druckstoßberechnung unter Berücksichtigung der Radial- und 
Längsverschiebungen der Rohrwandung, 1978, ISBN 3-921694-43-4 

44 Kinzelbach, Wolfgang: Numerische Untersuchungen über den optimalen Einsatz variab-
ler Kühlsysteme einer Kraftwerkskette am Beispiel Oberrhein, 1978, ISBN 3-921694-44-
2 

45 Barczewski, Baldur: Neue Meßmethoden für Wasser-Luftgemische und deren Anwen-
dung auf zweiphasige Auftriebsstrahlen, 1979, ISBN 3-921694-45-0 

 

46 Neumayer, Hans: Untersuchung der Strömungsvorgänge in radialen Wirbelkammerver-
stärkern, 1979, ISBN 3-921694-46-9 

47 Elalfy, Youssef-Elhassan: Untersuchung der Strömungsvorgänge in Wirbelkammerdio-
den und -drosseln, 1979, ISBN 3-921694-47-7 

48 Brombach, Hansjörg: Automatisierung der Bewirtschaftung von Wasserspeichern, 1981, 
ISBN 3-921694-48-5 

49 Geldner, Peter: Deterministische und stochastische Methoden zur Bestimmung der 
Selbstdichtung von Gewässern, 1981, ISBN 3-921694-49-3, vergriffen 



4 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
50 Mehlhorn, Hans: Temperaturveränderungen im Grundwasser durch Brauchwasserein-

leitungen, 1982, ISBN 3-921694-50-7, vergriffen 

51 Hafner, Edzard: Rohrleitungen und Behälter im Meer, 1983, ISBN 3-921694-51-5 

52 Rinnert, Bernd: Hydrodynamische Dispersion in porösen Medien: Einfluß von Dichteun-
terschieden auf die Vertikalvermischung in horizontaler Strömung, 1983,  
ISBN 3-921694-52-3, vergriffen 

53 Lindner, Wulf: Steuerung von Grundwasserentnahmen unter Einhaltung ökologischer 
Kriterien, 1983, ISBN 3-921694-53-1, vergriffen 

54 Herr, Michael; Herzer, Jörg; Kinzelbach, Wolfgang; Kobus, Helmut; Rinnert, Bernd: Me-
thoden zur rechnerischen Erfassung und hydraulischen Sanierung von Grundwasser-
kontaminationen, 1983, ISBN 3-921694-54-X 

55 Schmitt, Paul: Wege zur Automatisierung der Niederschlagsermittlung, 1984,  
ISBN 3-921694-55-8, vergriffen 

56 Müller, Peter: Transport und selektive Sedimentation von Schwebstoffen bei gestautem 
Abfluß, 1985, ISBN 3-921694-56-6 

57 El-Qawasmeh, Fuad: Möglichkeiten und Grenzen der Tropfbewässerung unter beson-
derer Berücksichtigung der Verstopfungsanfälligkeit der Tropfelemente, 1985,  
ISBN 3-921694-57-4, vergriffen 

58 Kirchenbaur, Klaus: Mikroprozessorgesteuerte Erfassung instationärer Druckfelder am 
Beispiel seegangsbelasteter Baukörper, 1985, ISBN 3-921694-58-2 

59 Kobus, Helmut (Hrsg.): Modellierung des großräumigen Wärme- und Schadstofftrans-
ports im Grundwasser, Tätigkeitsbericht 1984/85 (DFG-Forschergruppe an den Univer-
sitäten Hohenheim, Karlsruhe und Stuttgart), 1985, ISBN 3-921694-59-0, vergriffen 

60 Spitz, Karlheinz: Dispersion in porösen Medien: Einfluß von Inhomogenitäten und Dich-
teunterschieden, 1985, ISBN 3-921694-60-4, vergriffen 

61 Kobus, Helmut: An Introduction to Air-Water Flows in Hydraulics, 1985,  
ISBN 3-921694-61-2 

62 Kaleris, Vassilios: Erfassung des Austausches von Oberflächen- und Grundwasser in 
horizontalebenen Grundwassermodellen, 1986, ISBN 3-921694-62-0 

63 Herr, Michael: Grundlagen der hydraulischen Sanierung verunreinigter Porengrundwas-
serleiter, 1987, ISBN 3-921694-63-9 

64 Marx, Walter: Berechnung von Temperatur und Spannung in Massenbeton infolge Hyd-
ratation, 1987, ISBN 3-921694-64-7 

65 Koschitzky, Hans-Peter: Dimensionierungskonzept für Sohlbelüfter in Schußrinnen zur 
Vermeidung von Kavitationsschäden, 1987, ISBN 3-921694-65-5 

66 Kobus, Helmut (Hrsg.): Modellierung des großräumigen Wärme- und Schadstofftrans-
ports im Grundwasser, Tätigkeitsbericht 1986/87 (DFG-Forschergruppe an den Univer-
sitäten Hohenheim, Karlsruhe und Stuttgart) 1987, ISBN 3-921694-66-3 

67 Söll, Thomas: Berechnungsverfahren zur Abschätzung anthropogener Temperaturano-
malien im Grundwasser, 1988, ISBN 3-921694-67-1 

68 Dittrich, Andreas; Westrich, Bernd: Bodenseeufererosion, Bestandsaufnahme und Be-
wertung, 1988, ISBN 3-921694-68-X, vergriffen 

69 Huwe, Bernd; van der Ploeg, Rienk R.: Modelle zur Simulation des Stickstoffhaushaltes 
von Standorten mit unterschiedlicher landwirtschaftlicher Nutzung, 1988,  
ISBN 3-921694-69-8, vergriffen 

70 Stephan, Karl: Integration elliptischer Funktionen, 1988, ISBN 3-921694-70-1 

71 Kobus, Helmut; Zilliox, Lothaire (Hrsg.): Nitratbelastung des Grundwassers, Auswirkun-
gen der Landwirtschaft auf die Grundwasser- und Rohwasserbeschaffenheit und Maß-
nahmen zum Schutz des Grundwassers. Vorträge des deutsch-französischen Kolloqui-
ums am 6. Oktober 1988, Universitäten Stuttgart und Louis Pasteur Strasbourg (Vor-
träge in deutsch oder französisch, Kurzfassungen zweisprachig), 1988,  
ISBN 3-921694-71-X 



Verzeichnis der Mitteilungshefte 5  
 
72 Soyeaux, Renald: Unterströmung von Stauanlagen auf klüftigem Untergrund unter Be-

rücksichtigung laminarer und turbulenter Fließzustände,1991, ISBN 3-921694-72-8  

73 Kohane, Roberto: Berechnungsmethoden für Hochwasserabfluß in Fließgewässern mit 
übeströmten Vorländern, 1991, ISBN 3-921694-73-6 

74 Hassinger, Reinhard: Beitrag zur Hydraulik und Bemessung von Blocksteinrampen in 
flexibler Bauweise, 1991, ISBN 3-921694-74-4, vergriffen 

75 Schäfer, Gerhard: Einfluß von Schichtenstrukturen und lokalen Einlagerungen auf die 
Längsdispersion in Porengrundwasserleitern, 1991, ISBN 3-921694-75-2 

76 Giesecke, Jürgen: Vorträge, Wasserwirtschaft in stark besiedelten Regionen; Umwelt-
forschung mit Schwerpunkt Wasserwirtschaft, 1991, ISBN 3-921694-76-0 

77 Huwe, Bernd: Deterministische und stochastische Ansätze zur Modellierung des Stick-
stoffhaushalts landwirtschaftlich genutzter Flächen auf unterschiedlichem Skalenniveau, 
1992, ISBN 3-921694-77-9, vergriffen 

78 Rommel, Michael: Verwendung von Kluftdaten zur realitätsnahen Generierung von Kluft-
netzen mit anschließender laminar-turbulenter Strömungsberechnung, 1993,  
ISBN 3-92 1694-78-7 

79 Marschall, Paul: Die Ermittlung lokaler Stofffrachten im Grundwasser mit Hilfe von Ein-
bohrloch-Meßverfahren, 1993, ISBN 3-921694-79-5, vergriffen 

80 Ptak, Thomas: Stofftransport in heterogenen Porenaquiferen: Felduntersuchungen und 
stochastische Modellierung, 1993, ISBN 3-921694-80-9, vergriffen 

81 Haakh, Frieder: Transientes Strömungsverhalten in Wirbelkammern, 1993,  
ISBN 3-921694-81-7 

82 Kobus, Helmut; Cirpka, Olaf; Barczewski, Baldur; Koschitzky, Hans-Peter: Versuchsein-
richtung zur Grundwasser- und Altlastensanierung VEGAS, Konzeption und Programm-
rahmen, 1993, ISBN 3-921694-82-5 

83 Zang, Weidong: Optimaler Echtzeit-Betrieb eines Speichers mit aktueller Abflußregene-
rierung, 1994, ISBN 3-921694-83-3, vergriffen 

84 Franke, Hans-Jörg: Stochastische Modellierung eines flächenhaften Stoffeintrages und 
Transports in Grundwasser am Beispiel der Pflanzenschutzmittelproblematik, 1995,  
ISBN 3-921694-84-1 

85 Lang, Ulrich: Simulation regionaler Strömungs- und Transportvorgänge in Karstaquife-
ren mit Hilfe des Doppelkontinuum-Ansatzes: Methodenentwicklung und Parameteri-
denti-fikation, 1995, ISBN 3-921694-85-X, vergriffen 

86 Helmig, Rainer: Einführung in die Numerischen Methoden der Hydromechanik, 1996, 
ISBN 3-921694-86-8, vergriffen 

87 Cirpka, Olaf: CONTRACT: A Numerical Tool for Contaminant Transport and Chemical 
Transformations - Theory and Program Documentation -, 1996,  
ISBN 3-921694-87-6 

88 Haberlandt, Uwe: Stochastische Synthese und Regionalisierung des Niederschlages für 
Schmutzfrachtberechnungen, 1996, ISBN 3-921694-88-4 

89 Croisé, Jean: Extraktion von flüchtigen Chemikalien aus natürlichen Lockergesteinen 
mittels erzwungener Luftströmung, 1996, ISBN 3-921694-89-2, vergriffen 

90 Jorde, Klaus: Ökologisch begründete, dynamische Mindestwasserregelungen bei Aus-
leitungskraftwerken, 1997, ISBN 3-921694-90-6, vergriffen 

91 Helmig, Rainer: Gekoppelte Strömungs- und Transportprozesse im Untergrund - Ein 
Beitrag zur Hydrosystemmodellierung-, 1998, ISBN 3-921694-91-4, vergriffen 

92 Emmert, Martin:  Numerische Modellierung nichtisothermer Gas-Wasser Systeme in po-
rösen Medien, 1997, ISBN 3-921694-92-2 

93 Kern, Ulrich: Transport von Schweb- und Schadstoffen in staugeregelten Fließgewäs-
sern am Beispiel des Neckars, 1997, ISBN 3-921694-93-0, vergriffen 

94 Förster, Georg:  Druckstoßdämpfung durch große Luftblasen in Hochpunkten von Rohr-
leitungen 1997, ISBN 3-921694-94-9 



6 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
95 Cirpka, Olaf: Numerische Methoden zur Simulation des reaktiven Mehrkomponenten-

transports im Grundwasser, 1997, ISBN 3-921694-95-7, vergriffen 

96 Färber, Arne: Wärmetransport in der ungesättigten Bodenzone: Entwicklung einer ther-
mischen In-situ-Sanierungstechnologie, 1997, ISBN 3-921694-96-5  

97 Betz, Christoph: Wasserdampfdestillation von Schadstoffen im porösen Medium: Ent-
wicklung einer thermischen In-situ-Sanierungstechnologie, 1998, SBN 3-921694-97-3 

98 Xu, Yichun: Numerical Modeling of Suspended Sediment Transport in Rivers, 1998, 
ISBN 3-921694-98-1, vergriffen 

99 Wüst, Wolfgang: Geochemische Untersuchungen zur Sanierung CKW-kontaminierter 
Aquifere mit Fe(0)-Reaktionswänden, 2000, ISBN 3-933761-02-2 

100 Sheta, Hussam: Simulation von Mehrphasenvorgängen in porösen Medien unter Einbe-
ziehung von Hysterese-Effekten, 2000, ISBN 3-933761-03-4 

101 Ayros, Edwin: Regionalisierung extremer Abflüsse auf der Grundlage statistischer Ver-
fahren, 2000, ISBN 3-933761-04-2, vergriffen 

102 Huber, Ralf: Compositional Multiphase Flow and Transport in Heterogeneous Porous 
Media, 2000, ISBN 3-933761-05-0 

103 Braun, Christopherus: Ein Upscaling-Verfahren für Mehrphasenströmungen in porösen 
Medien, 2000, ISBN 3-933761-06-9 

104 Hofmann, Bernd: Entwicklung eines rechnergestützten Managementsystems zur Beur-
teilung von Grundwasserschadensfällen, 2000, ISBN 3-933761-07-7 

105 Class, Holger: Theorie und numerische Modellierung nichtisothermer Mehrphasenpro-
zesse in NAPL-kontaminierten porösen Medien, 2001, ISBN 3-933761-08-5 

106 Schmidt, Reinhard: Wasserdampf- und Heißluftinjektion zur thermischen Sanierung kon-
taminierter Standorte, 2001, ISBN 3-933761-09-3 

107 Josef, Reinhold: Schadstoffextraktion mit hydraulischen Sanierungsverfahren unter An-
wendung von grenzflächenaktiven Stoffen, 2001, ISBN 3-933761-10-7 

108 Schneider, Matthias: Habitat- und Abflussmodellierung für Fließgewässer mit unschar-
fen Berechnungsansätzen, 2001, ISBN 3-933761-11-5 

109 Rathgeb, Andreas: Hydrodynamische Bemessungsgrundlagen für Lockerdeckwerke an 
überströmbaren Erddämmen, 2001, ISBN 3-933761-12-3 

110 Lang, Stefan: Parallele numerische Simulation instätionärer Probleme mit adaptiven Me-
thoden auf unstrukturierten Gittern, 2001, ISBN 3-933761-13-1 

111 Appt, Jochen; Stumpp Simone: Die Bodensee-Messkampagne 2001, IWS/CWR Lake 
Constance Measurement Program 2001, 2002, ISBN 3-933761-14-X 

112 Heimerl, Stephan: Systematische Beurteilung von Wasserkraftprojekten, 2002,  
ISBN 3-933761-15-8, vergriffen 

113 Iqbal, Amin: On the Management and Salinity Control of Drip Irrigation, 2002,  
ISBN 3-933761-16-6 

114 Silberhorn-Hemminger, Annette: Modellierung von Kluftaquifersystemen:  Geostatisti-
sche Analyse und deterministisch-stochastische Kluftgenerierung, 2002, ISBN 3-
933761-17-4 

115 Winkler, Angela: Prozesse des Wärme- und Stofftransports bei der In-situ-Sanierung mit 
festen Wärmequellen, 2003, ISBN 3-933761-18-2 

116 Marx, Walter: Wasserkraft, Bewässerung, Umwelt - Planungs- und Bewertungsschwer-
punkte der Wasserbewirtschaftung, 2003, ISBN 3-933761-19-0 

117 Hinkelmann, Reinhard: Efficient Numerical Methods and Information-Processing Tech-
niques in Environment Water, 2003, ISBN 3-933761-20-4 

118 Samaniego-Eguiguren, Luis Eduardo: Hydrological Consequences of Land Use / Land 
Cover and Climatic Changes in Mesoscale Catchments, 2003, ISBN 3-933761-21-2 

119 Neunhäuserer, Lina: Diskretisierungsansätze zur Modellierung von Strömungs- und 
Transportprozessen in geklüftet-porösen Medien, 2003, ISBN 3-933761-22-0 



Verzeichnis der Mitteilungshefte 7  
 
120 Paul, Maren: Simulation of Two-Phase Flow in Heterogeneous Poros Media with Adap-

tive Methods, 2003, ISBN 3-933761-23-9 

121 Ehret, Uwe: Rainfall and Flood Nowcasting in Small Catchments using Weather Radar, 
2003, ISBN 3-933761-24-7 

122 Haag, Ingo: Der Sauerstoffhaushalt staugeregelter Flüsse am Beispiel des Neckars - 
Analysen, Experimente, Simulationen -, 2003, ISBN 3-933761-25-5 

123 Appt, Jochen: Analysis of Basin-Scale Internal Waves in Upper Lake Constance, 2003, 
ISBN 3-933761-26-3 

124 Hrsg.: Schrenk, Volker; Batereau, Katrin; Barczewski, Baldur; Weber, Karolin und Ko-
schitzky, Hans-Peter: Symposium Ressource Fläche und VEGAS - Statuskolloquium 
2003, 30. September und 1. Oktober 2003, 2003, ISBN 3-933761-27-1 

125 Omar Khalil Ouda: Optimisation of Agricultural Water Use: A Decision Support System 
for the Gaza Strip, 2003, ISBN 3-933761-28-0 

126 Batereau, Katrin: Sensorbasierte Bodenluftmessung zur Vor-Ort-Erkundung von Scha-
densherden im Untergrund, 2004, ISBN 3-933761-29-8 

127 Witt, Oliver: Erosionsstabilität von Gewässersedimenten mit Auswirkung auf den 
Stofftransport bei Hochwasser am Beispiel ausgewählter Stauhaltungen des Ober-
rheins, 2004, ISBN 3-933761-30-1 

128 Jakobs, Hartmut: Simulation nicht-isothermer Gas-Wasser-Prozesse in komplexen 
Kluft-Matrix-Systemen, 2004, ISBN 3-933761-31-X 

129 Li, Chen-Chien: Deterministisch-stochastisches Berechnungskonzept zur Beurteilung 
der Auswirkungen erosiver Hochwasserereignisse in Flussstauhaltungen, 2004,  
ISBN 3-933761-32-8 

130 Reichenberger, Volker; Helmig, Rainer; Jakobs, Hartmut; Bastian, Peter; Niessner, Jen-
nifer: Complex Gas-Water Processes in Discrete Fracture-Matrix Systems: Up-scaling, 
Mass-Conservative Discretization and Efficient Multilevel Solution, 2004,  
ISBN 3-933761-33-6  

131 Hrsg.: Barczewski, Baldur; Koschitzky, Hans-Peter; Weber, Karolin; Wege, Ralf:  
VEGAS - Statuskolloquium 2004, Tagungsband zur Veranstaltung am 05. Oktober 2004 
an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2004, ISBN 3-933761-34-4 

132 Asie, Kemal Jabir: Finite Volume Models for Multiphase Multicomponent Flow through 
Porous Media. 2005, ISBN 3-933761-35-2 

133 Jacoub, George: Development of a 2-D Numerical Module for Particulate Contaminant 
Transport in Flood Retention Reservoirs and Impounded Rivers, 2004, 
ISBN 3-933761-36-0  

134 Nowak, Wolfgang: Geostatistical Methods for the Identification of Flow and Transport 
Parameters in the Subsurface, 2005, ISBN 3-933761-37-9 

135 Süß, Mia: Analysis of the influence of structures and boundaries on flow and transport 
processes in fractured porous media, 2005, ISBN 3-933761-38-7 

136 Jose, Surabhin Chackiath: Experimental Investigations on Longitudinal Dispersive Mix-
ing in Heterogeneous Aquifers, 2005, ISBN: 3-933761-39-5 

137 Filiz, Fulya: Linking Large-Scale Meteorological Conditions to Floods in Mesoscale 
Catchments, 2005, ISBN 3-933761-40-9 

138 Qin, Minghao: Wirklichkeitsnahe und recheneffiziente Ermittlung von Temperatur und 
Spannungen bei großen RCC-Staumauern, 2005, ISBN 3-933761-41-7 

139 Kobayashi, Kenichiro: Optimization Methods for Multiphase Systems in the Subsurface 
- Application to Methane Migration in Coal Mining Areas, 2005, ISBN 3-933761-42-5 

140 Rahman, Md. Arifur: Experimental Investigations on Transverse Dispersive Mixing in 
Heterogeneous Porous Media, 2005, ISBN 3-933761-43-3 

141 Schrenk, Volker: Ökobilanzen zur Bewertung von Altlastensanierungsmaßnahmen, 
2005, ISBN 3-933761-44-1 

 



8 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
142 Hundecha, Hirpa Yeshewatesfa: Regionalization of Parameters of a Conceptual Rain-

fall-Runoff Model, 2005, ISBN: 3-933761-45-X 

143 Wege, Ralf: Untersuchungs- und Überwachungsmethoden für die Beurteilung natürli-
cher Selbstreinigungsprozesse im Grundwasser, 2005, ISBN 3-933761-46-8 

144 Breiting, Thomas: Techniken und Methoden der Hydroinformatik - Modellierung von 
komplexen Hydrosystemen im Untergrund, 2006, ISBN 3-933761-47-6 

145 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Müller, Martin: Ressource Untergrund: 
10 Jahre VEGAS: Forschung und Technologieentwicklung zum Schutz von Grundwas-
ser und Boden, Tagungsband zur Veranstaltung am 28. und 29. September 2005 an der 
Universität Stuttgart, Campus Stuttgart-Vaihingen, 2005, ISBN 3-933761-48-4 

146 Rojanschi, Vlad: Abflusskonzentration in mesoskaligen Einzugsgebieten unter Berück-
sichtigung des Sickerraumes, 2006, ISBN 3-933761-49-2  

147 Winkler, Nina Simone: Optimierung der Steuerung von Hochwasserrückhaltebecken-
systemen, 2006, ISBN 3-933761-50-6 

148 Wolf, Jens:  Räumlich differenzierte Modellierung der Grundwasserströmung alluvialer 
Aquifere für mesoskalige Einzugsgebiete, 2006, ISBN: 3-933761-51-4 

149 Kohler, Beate: Externe Effekte der Laufwasserkraftnutzung, 2006, ISBN 3-933761-52-2 

150 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias: VEGAS-Statuskol-
loquium 2006, Tagungsband zur Veranstaltung am 28. September 2006 an der Univer-
sität Stuttgart, Campus Stuttgart-Vaihingen, 2006, ISBN 3-933761-53-0 

151 Niessner, Jennifer: Multi-Scale Modeling of Multi-Phase - Multi-Component Processes 
in Heterogeneous Porous Media, 2006, ISBN 3-933761-54-9 

152 Fischer, Markus: Beanspruchung eingeerdeter Rohrleitungen infolge Austrocknung bin-
diger Böden, 2006, ISBN 3-933761-55-7 

153 Schneck, Alexander: Optimierung der Grundwasserbewirtschaftung unter Berücksichti-
gung der Belange der Wasserversorgung, der Landwirtschaft und des Naturschutzes, 
2006, ISBN 3-933761-56-5 

154 Das, Tapash: The Impact of Spatial Variability of Precipitation on the Predictive Uncer-
tainty of Hydrological Models, 2006, ISBN 3-33761-57-3 

155 Bielinski, Andreas: Numerical Simulation of CO2 sequestration in geological formations, 
2007, ISBN 3-933761-58-1 

156 Mödinger, Jens: Entwicklung eines Bewertungs- und Entscheidungsunterstützungssys-
tems für eine nachhaltige regionale Grundwasserbewirtschaftung, 2006,  
ISBN 3-933761-60-3 

157 Manthey, Sabine: Two-phase flow processes with dynamic effects in porous media - 
parameter estimation and simulation, 2007, ISBN 3-933761-61-1 

158 Pozos Estrada, Oscar: Investigation on the Effects of Entrained Air in Pipelines, 2007, 
ISBN 3-933761-62-X 

159 Ochs, Steffen Oliver: Steam injection into saturated porous media – process analysis 
including experimental and numerical investigations, 2007, ISBN 3-933761-63-8 

160 Marx, Andreas: Einsatz gekoppelter Modelle und Wetterradar zur Abschätzung von Nie-
derschlagsintensitäten und zur Abflussvorhersage, 2007, ISBN 3-933761-64-6 

161 Hartmann, Gabriele Maria: Investigation of Evapotranspiration Concepts in Hydrological 
Modelling for Climate Change Impact Assessment, 2007, ISBN 3-933761-65-4 

162 Kebede Gurmessa, Tesfaye: Numerical Investigation on Flow and Transport Character-
istics to Improve Long-Term Simulation of Reservoir Sedimentation, 2007,  
ISBN 3-933761-66-2 

163 Trifković, Aleksandar: Multi-objective and Risk-based Modelling Methodology for Plan-
ning, Design and Operation of Water Supply Systems, 2007, ISBN 3-933761-67-0 

164 Götzinger, Jens: Distributed Conceptual Hydrological Modelling - Simulation of Climate, 
Land Use Change Impact and Uncertainty Analysis, 2007, ISBN 3-933761-68-9 



Verzeichnis der Mitteilungshefte 9  
 
165 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias: VEGAS – Kollo-

quium 2007, Tagungsband zur Veranstaltung am 26. September 2007 an der Universität 
Stuttgart, Campus Stuttgart-Vaihingen, 2007, ISBN 3-933761-69-7 

166 Freeman, Beau: Modernization Criteria Assessment for Water Resources Planning; Kla-
math Irrigation Project, U.S., 2008, ISBN 3-933761-70-0 

167 Dreher, Thomas: Selektive Sedimentation von Feinstschwebstoffen in Wechselwirkung 
mit wandnahen turbulenten Strömungsbedingungen, 2008, ISBN 3-933761-71-9 

168 Yang, Wei: Discrete-Continuous Downscaling Model for Generating Daily Precipitation 
Time Series, 2008, ISBN 3-933761-72-7 

169 Kopecki, Ianina: Calculational Approach to FST-Hemispheres for Multiparametrical Ben-
thos Habitat Modelling, 2008, ISBN 3-933761-73-5 

170 Brommundt, Jürgen: Stochastische Generierung räumlich zusammenhängender Nieder-
schlagszeitreihen, 2008, ISBN 3-933761-74-3 

171 Papafotiou, Alexandros: Numerical Investigations of the Role of Hysteresis in Heteroge-
neous Two-Phase Flow Systems, 2008, ISBN 3-933761-75-1 

172 He, Yi: Application of a Non-Parametric Classification Scheme to Catchment Hydrology, 
2008, ISBN 978-3-933761-76-7 

173 Wagner, Sven: Water Balance in a Poorly Gauged Basin in West Africa Using Atmos-
pheric Modelling and Remote Sensing Information, 2008, ISBN 978-3-933761-77-4 

174 Hrsg.: Braun, Jürgen; Koschitzky, Hans-Peter; Stuhrmann, Matthias; Schrenk, Volker: 
VEGAS-Kolloquium 2008 Ressource Fläche III, Tagungsband zur Veranstaltung am 
01. Oktober 2008 an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2008,  
ISBN 978-3-933761-78-1 

175 Patil, Sachin: Regionalization of an Event Based Nash Cascade Model for Flood Predic-
tions in Ungauged Basins, 2008, ISBN 978-3-933761-79-8 

176 Assteerawatt, Anongnart: Flow and Transport Modelling of Fractured Aquifers based on 
a Geostatistical Approach, 2008, ISBN 978-3-933761-80-4 

177 Karnahl, Joachim Alexander: 2D numerische Modellierung von multifraktionalem 
Schwebstoff- und Schadstofftransport in Flüssen, 2008, ISBN 978-3-933761-81-1 

178 Hiester, Uwe: Technologieentwicklung zur In-situ-Sanierung der ungesättigten Boden-
zone mit festen Wärmequellen, 2009, ISBN 978-3-933761-82-8 

179 Laux, Patrick: Statistical Modeling of Precipitation for Agricultural Planning in the Volta 
Basin of West Africa, 2009, ISBN 978-3-933761-83-5 

180 Ehsan, Saqib: Evaluation of Life Safety Risks Related to Severe Flooding, 2009,  
ISBN 978-3-933761-84-2 

181 Prohaska, Sandra: Development and Application of a 1D Multi-Strip Fine Sediment 
Transport Model for Regulated Rivers, 2009, ISBN 978-3-933761-85-9 

182 Kopp, Andreas: Evaluation of CO2 Injection Processes in Geological Formations for Site 
Screening, 2009, ISBN 978-3-933761-86-6 

183 Ebigbo, Anozie: Modelling of biofilm growth and its influence on CO2 and water (two-
phase) flow in porous media, 2009, ISBN 978-3-933761-87-3 

184 Freiboth, Sandra: A phenomenological model for the numerical simulation of multiphase 
multicomponent processes considering structural alterations of porous media, 2009,  
ISBN 978-3-933761-88-0 

185 Zöllner, Frank: Implementierung und Anwendung netzfreier Methoden im Konstruktiven 
Wasserbau und in der Hydromechanik, 2009, ISBN 978-3-933761-89-7 

186 Vasin, Milos: Influence of the soil structure and property contrast on flow and transport 
in the unsaturated zone, 2010, ISBN 978-3-933761-90-3 

187 Li, Jing: Application of Copulas as a New Geostatistical Tool, 2010,  
ISBN 978-3-933761-91-0 

188 AghaKouchak, Amir: Simulation of Remotely Sensed Rainfall Fields Using Copulas, 
2010, ISBN 978-3-933761-92-7 



10 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
189 Thapa, Pawan Kumar: Physically-based spatially distributed rainfall runoff modelling for 

soil erosion estimation, 2010, ISBN 978-3-933761-93-4 

190 Wurms, Sven: Numerische Modellierung der Sedimentationsprozesse in Retentionsan-
lagen zur Steuerung von Stoffströmen bei extremen Hochwasserabflussereignissen, 
2011, ISBN 978-3-933761-94-1 

191 Merkel, Uwe: Unsicherheitsanalyse hydraulischer Einwirkungen auf Hochwasserschutz-
deiche und Steigerung der Leistungsfähigkeit durch adaptive Strömungsmodellierung, 
2011, ISBN 978-3-933761-95-8 

192 Fritz, Jochen: A Decoupled Model for Compositional Non-Isothermal Multiphase Flow in 
Porous Media and Multiphysics Approaches for Two-Phase Flow, 2010,  
ISBN 978-3-933761-96-5 

193 Weber, Karolin (Hrsg.): 12. Treffen junger WissenschaftlerInnen an Wasserbauinstitu-
ten, 2010, ISBN 978-3-933761-97-2 

194 Bliefernicht, Jan-Geert: Probability Forecasts of Daily Areal Precipitation for Small River 
Basins, 2011, ISBN 978-3-933761-98-9 

195 Hrsg.: Koschitzky, Hans-Peter; Braun, Jürgen: VEGAS-Kolloquium 2010 In-situ-Sanie-
rung - Stand und Entwicklung Nano und ISCO -, Tagungsband zur Veranstaltung am 07. 
Oktober 2010 an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2010, 
ISBN 978-3-933761-99-6 

196 Gafurov, Abror: Water Balance Modeling Using Remote Sensing Information - Focus on 
Central Asia, 2010, ISBN 978-3-942036-00-9 

197 Mackenberg, Sylvia: Die Quellstärke in der Sickerwasserprognose: Möglichkeiten und 
Grenzen von Labor- und Freilanduntersuchungen, 2010, ISBN 978-3-942036-01-6 

198 Singh, Shailesh Kumar: Robust Parameter Estimation in Gauged and Ungauged Basins, 
2010, ISBN 978-3-942036-02-3 

199 Doğan, Mehmet Onur: Coupling of porous media flow with pipe flow, 2011, 
ISBN 978-3-942036-03-0 

200 Liu, Min: Study of Topographic Effects on Hydrological Patterns and the Implication on 
Hydrological Modeling and Data Interpolation, 2011, ISBN 978-3-942036-04-7 

201 Geleta, Habtamu Itefa: Watershed Sediment Yield Modeling for Data Scarce Areas, 
2011, ISBN 978-3-942036-05-4 

202 Franke, Jörg: Einfluss der Überwachung auf die Versagenswahrscheinlichkeit von Stau-
stufen, 2011, ISBN 978-3-942036-06-1 

203 Bakimchandra, Oinam: Integrated Fuzzy-GIS approach for assessing regional soil ero-
sion risks, 2011, ISBN 978-3-942036-07-8 

204 Alam, Muhammad Mahboob: Statistical Downscaling of Extremes of Precipitation in 
Mesoscale Catchments from Different RCMs and Their Effects on Local Hydrology, 
2011, ISBN 978-3-942036-08-5 

205 Hrsg.: Koschitzky, Hans-Peter; Braun, Jürgen: VEGAS-Kolloquium 2011 Flache Ge-
othermie - Perspektiven und Risiken, Tagungsband zur Veranstaltung am 06. Oktober 
2011 an der Universität Stuttgart, Campus Stuttgart-Vaihingen, 2011, ISBN 978-3-
933761-09-2 

206 Haslauer, Claus: Analysis of Real-World Spatial Dependence of Subsurface Hydraulic 
Properties Using Copulas with a Focus on Solute Transport Behaviour, 2011,  
ISBN 978-3-942036-10-8 

207 Dung, Nguyen Viet: Multi-objective automatic calibration of hydrodynamic models – 
development of the concept and an application in the Mekong Delta, 2011,  
ISBN 978-3-942036-11-5 

208 Hung, Nguyen Nghia: Sediment dynamics in the floodplain of the Mekong Delta, Vi-
etnam, 2011, ISBN 978-3-942036-12-2 

209 Kuhlmann, Anna: Influence of soil structure and root water uptake on flow in the unsatu-
rated zone, 2012, ISBN 978-3-942036-13-9 



Verzeichnis der Mitteilungshefte 11  
 
210 Tuhtan, Jeffrey Andrew: Including the Second Law Inequality in Aquatic Ecodynamics:  

A Modeling Approach for Alpine Rivers Impacted by Hydropeaking, 2012, 
ISBN 978-3-942036-14-6 

211 Tolossa, Habtamu: Sediment Transport Computation Using a Data-Driven Adaptive 
Neuro-Fuzzy Modelling Approach, 2012, ISBN 978-3-942036-15-3 

212 Tatomir, Alexandru-Bodgan: From Discrete to Continuum Concepts of Flow in Fractured 
Porous Media, 2012, ISBN 978-3-942036-16-0 

213 Erbertseder, Karin: A Multi-Scale Model for Describing Cancer-Therapeutic Transport in 
the Human Lung, 2012, ISBN 978-3-942036-17-7 

214 Noack, Markus: Modelling Approach for Interstitial Sediment Dynamics and Reproduc-
tion of Gravel Spawning Fish, 2012, ISBN 978-3-942036-18-4 

215 De Boer, Cjestmir Volkert: Transport of Nano Sized Zero Valent Iron Colloids during 
Injection into the Subsurface, 2012, ISBN 978-3-942036-19-1 

216 Pfaff, Thomas: Processing and Analysis of Weather Radar Data for Use in Hydrology, 
2013, ISBN 978-3-942036-20-7 

217 Lebrenz, Hans-Henning: Addressing the Input Uncertainty for Hydrological Modeling by 
a New Geostatistical Method, 2013, ISBN 978-3-942036-21-4 

218 Darcis, Melanie Yvonne: Coupling Models of Different Complexity for the Simulation of 
CO2 Storage in Deep Saline Aquifers, 2013, ISBN 978-3-942036-22-1 

219 Beck, Ferdinand: Generation of Spatially Correlated Synthetic Rainfall Time Series in 
High Temporal Resolution - A Data Driven Approach, 2013, ISBN 978-3-942036-23-8 

220 Guthke, Philipp: Non-multi-Gaussian spatial structures: Process-driven natural genesis, 
manifestation, modeling approaches, and influences on dependent processes, 2013,  
ISBN 978-3-942036-24-5 

221 Walter, Lena: Uncertainty studies and risk assessment for CO2 storage in geological 
formations, 2013, ISBN 978-3-942036-25-2 

222 Wolff, Markus: Multi-scale modeling of two-phase flow in porous media including capil-
lary pressure effects, 2013, ISBN 978-3-942036-26-9 

223 Mosthaf, Klaus Roland: Modeling and analysis of coupled porous-medium and free flow 
with application to evaporation processes, 2014, ISBN 978-3-942036-27-6 

224 Leube, Philipp Christoph: Methods for Physically-Based Model Reduction in Time: Anal-
ysis, Comparison of Methods and Application, 2013, ISBN 978-3-942036-28-3 

225 Rodríguez Fernández, Jhan Ignacio: High Order Interactions among environmental var-
iables: Diagnostics and initial steps towards modeling, 2013, ISBN 978-3-942036-29-0 

226 Eder, Maria Magdalena: Climate Sensitivity of a Large Lake, 2013,  
ISBN 978-3-942036-30-6 

227 Greiner, Philipp: Alkoholinjektion zur In-situ-Sanierung von CKW Schadensherden in 
Grundwasserleitern: Charakterisierung der relevanten Prozesse auf unterschiedlichen 
Skalen, 2014, ISBN 978-3-942036-31-3 

228 Lauser, Andreas: Theory and Numerical Applications of Compositional Multi-Phase Flow 
in Porous Media, 2014, ISBN 978-3-942036-32-0 

229 Enzenhöfer, Rainer: Risk Quantification and Management in Water Production and Sup-
ply Systems, 2014, ISBN 978-3-942036-33-7 

230 Faigle, Benjamin: Adaptive modelling of compositional multi-phase flow with capillary 
pressure, 2014, ISBN 978-3-942036-34-4 

231 Oladyshkin, Sergey: Efficient modeling of environmental systems in the face of complex-
ity and uncertainty, 2014, ISBN 978-3-942036-35-1 

232 Sugimoto, Takayuki: Copula based Stochastic Analysis of Discharge Time Series, 2014,  
ISBN 978-3-942036-36-8 

233 Koch, Jonas: Simulation, Identification and Characterization of Contaminant Source Ar-
chitectures in the Subsurface, 2014, ISBN 978-3-942036-37-5 

 



12 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
234 Zhang, Jin: Investigations on Urban River Regulation and Ecological Rehabilitation 

Measures, Case of Shenzhen in China, 2014, ISBN 978-3-942036-38-2 

235 Siebel, Rüdiger: Experimentelle Untersuchungen zur hydrodynamischen Belastung und 
Standsicherheit von Deckwerken an überströmbaren Erddämmen, 2014, 
ISBN 978-3-942036-39-9 

236 Baber, Katherina: Coupling free flow and flow in porous media in biological and technical 
applications: From a simple to a complex interface description, 2014,  
ISBN 978-3-942036-40-5 

237 Nuske, Klaus Philipp: Beyond Local Equilibrium — Relaxing local equilibrium assump-
tions in multiphase flow in porous media, 2014, ISBN 978-3-942036-41-2 

238 Geiges, Andreas: Efficient concepts for optimal experimental design in nonlinear envi-
ronmental systems, 2014, ISBN 978-3-942036-42-9 

239 Schwenck, Nicolas: An XFEM-Based Model for Fluid Flow in Fractured Porous Media, 
2014, ISBN 978-3-942036-43-6 

240 Chamorro Chávez, Alejandro: Stochastic and hydrological modelling for climate change 
prediction in the Lima region, Peru, 2015, ISBN 978-3-942036-44-3 

241 Yulizar: Investigation of Changes in Hydro-Meteorological Time Series Using a Depth-
Based Approach, 2015, ISBN 978-3-942036-45-0 

242 Kretschmer, Nicole: Impacts of the existing water allocation scheme on the Limarí wa-
tershed – Chile, an integrative approach, 2015, ISBN 978-3-942036-46-7 

243 Kramer, Matthias: Luftbedarf von Freistrahlturbinen im Gegendruckbetrieb, 2015,  
ISBN 978-3-942036-47-4 

244 Hommel, Johannes: Modeling biogeochemical and mass transport processes in the sub-
surface: Investigation of microbially induced calcite precipitation, 2016,  
ISBN 978-3-942036-48-1 

245 Germer, Kai: Wasserinfiltration in die ungesättigte Zone eines makroporösen Hanges 
und deren Einfluss auf die Hangstabilität, 2016, ISBN 978-3-942036-49-8 

246 Hörning, Sebastian: Process-oriented modeling of spatial random fields using copulas, 
2016, ISBN 978-3-942036-50-4 

247 Jambhekar, Vishal: Numerical modeling and analysis of evaporative salinization in a 
coupled free-flow porous-media system, 2016, ISBN 978-3-942036-51-1 

248 Huang, Yingchun: Study on the spatial and temporal transferability of conceptual hydro-
logical models, 2016, ISBN 978-3-942036-52-8  

249 Kleinknecht, Simon Matthias: Migration and retention of a heavy NAPL vapor and reme-
diation of the unsaturated zone, 2016, ISBN 978-3-942036-53-5 

250 Kwakye, Stephen Oppong: Study on the effects of climate change on the hydrology of 
the West African sub-region, 2016, ISBN 978-3-942036-54-2 

251 Kissinger, Alexander: Basin-Scale Site Screening and Investigation of Possible Impacts 
of CO2 Storage on Subsurface Hydrosystems, 2016, ISBN 978-3-942036-55-9 

252 Müller, Thomas: Generation of a Realistic Temporal Structure of Synthetic Precipitation 
Time Series for Sewer Applications, 2017, ISBN 978-3-942036-56-6 

253 Grüninger, Christoph: Numerical Coupling of Navier-Stokes and Darcy Flow for Soil-
Water Evaporation, 2017, ISBN 978-3-942036-57-3 

254 Suroso: Asymmetric Dependence Based Spatial Copula Models: Empirical Investiga-
tions and Consequences on Precipitation Fields, 2017, ISBN 978-3-942036-58-0 

255 Müller, Thomas; Mosthaf, Tobias; Gunzenhauser, Sarah; Seidel, Jochen; Bárdossy, 
András: Grundlagenbericht Niederschlags-Simulator (NiedSim3), 2017, ISBN 978-3-
942036-59-7 

256 Mosthaf, Tobias: New Concepts for Regionalizing Temporal Distributions of Precipitation 
and for its Application in Spatial Rainfall Simulation, 2017, ISBN 978-3-942036-60-3 

 



Verzeichnis der Mitteilungshefte 13  
 
257 Fenrich, Eva Katrin: Entwicklung eines ökologisch-ökonomischen Vernetzungsmodells 

für Wasserkraftanlagen und Mehrzweckspeicher, 2018, ISBN 978-3-942036-61-0 

258 Schmidt, Holger: Microbial stabilization of lotic fine sediments, 2018, ISBN 978-3-
942036-62-7 

259 Fetzer, Thomas: Coupled Free and Porous-Medium Flow Processes Affected by Turbu-
lence and Roughness–Models, Concepts and Analysis, 2018, ISBN 978-3-942036-63-4 

260 Schröder, Hans Christoph: Large-scale High Head Pico Hydropower Potential Assess-
ment, 2018, ISBN 978-3-942036-64-1 

261 Bode, Felix: Early-Warning Monitoring Systems for Improved Drinking Water Resource 
Protection, 2018, ISBN 978-3-942036-65-8 

262 Gebler, Tobias: Statistische Auswertung von simulierten Talsperrenüberwachungsdaten 
zur Identifikation von Schadensprozessen an Gewichtsstaumauern, 2018, ISBN 978-3-
942036-66-5 

263 Harten, Matthias von: Analyse des Zuppinger-Wasserrades – Hydraulische Optimierun-
gen unter Berücksichtigung ökologischer Aspekte, 2018, ISBN 978-3-942036-67-2 

264 Yan, Jieru: Nonlinear estimation of short time precipitation using weather radar and sur-
face observations, 2018, ISBN 978-3-942036-68-9 

265 Beck, Martin: Conceptual approaches for the analysis of coupled hydraulic and geome-
chanical processes, 2019, ISBN 978-3-942036-69-6 

266 Haas, Jannik: Optimal planning of hydropower and energy storage technologies for fully 
renewable power systems, 2019, ISBN 978-3-942036-70-2 

267 Schneider, Martin: Nonlinear Finite Volume Schemes for Complex Flow Processes and 
Challenging Grids, 2019, ISBN 978-3-942036-71-9 

268 Most, Sebastian Christopher: Analysis and Simulation of Anomalous Transport in Porous 
Media, 2019, ISBN 978-3-942036-72-6 

269 Buchta, Rocco: Entwicklung eines Ziel- und Bewertungssystems zur Schaffung nach-
haltiger naturnaher Strukturen in großen sandgeprägten Flüssen des norddeutschen 
Tieflandes, 2019, ISBN 978-3-942036-73-3 

270 Thom, Moritz: Towards a Better Understanding of the Biostabilization Mechanisms of 
Sediment Beds, 2019, ISBN 978-3-942036-74-0 

271 Stolz, Daniel: Die Nullspannungstemperatur in Gewichtsstaumauern unter Berücksichti-
gung der Festigkeitsentwicklung des Betons, 2019, ISBN 978-3-942036-75-7 

272 Rodriguez Pretelin, Abelardo: Integrating transient flow conditions into groundwater well 
protection, 2020, ISBN: 978-3-942036-76-4 

273 Weishaupt, Kilian: Model Concepts for Coupling Free Flow with Porous Medium Flow at 
the Pore-Network Scale: From Single-Phase Flow to Compositional Non-Isothermal 
Two-Phase Flow, 2020, ISBN: 978-3-942036-77-1 

274 Koch, Timo: Mixed-dimension models for flow and transport processes in porous media 
with embedded tubular network systems, 2020, ISBN: 978-3-942036-78-8 

275 Gläser, Dennis: Discrete fracture modeling of multi-phase flow and deformation in frac-
tured poroelastic media, 2020, ISBN: 978-3-942036-79-5 

276 Seitz, Lydia: Development of new methods to apply a multi-parameter approach – A first 
step towards the determination of colmation, 2020, ISBN: 978-3-942036-80-1 

277 Ebrahim Bakhshipour, Amin: Optimizing hybrid decentralized systems for sustainable 
urban drainage infrastructures planning, 2021, ISBN: 978-3-942036-81-8 

278 Seitz, Gabriele: Modeling Fixed-Bed Reactors for Thermochemical Heat Storage with 
the Reaction System CaO/Ca(OH)2, 2021, ISBN: 978-3-942036-82-5 

279 Emmert, Simon: Developing and Calibrating a Numerical Model for Microbially En-
hanced Coal-Bed Methane Production, 2021, ISBN: 978-3-942036-83-2 

280 Heck, Katharina Klara: Modelling and analysis of multicomponent transport at the inter-
face between free- and porous-medium flow - influenced by radiation and roughness, 
2021, ISBN: 978-3-942036-84-9 



14 Institut für Wasser- und Umweltsystemmodellierung * Universität Stuttgart * IWS  
 
281 Ackermann, Sina: A multi-scale approach for drop/porous-medium interaction, 2021, 

ISBN: 978-3-942036-85-6 

282 Beckers, Felix: Investigations on Functional Relationships between Cohesive Sediment 
Erosion and Sediment Characteristics, 2021, ISBN: 978-3-942036-86-3 

283 Schlabing, Dirk: Generating Weather for Climate Impact Assessment on Lakes, 2021, 
ISBN: 978-3-942036-87-0 

284 Becker, Beatrix: Efficient multiscale multiphysics models accounting for reversible flow 
at various subsurface energy storage sites, 2021, ISBN: 978-3-942036-88-7 

285 Reuschen, Sebastian: Bayesian Inversion and Model Selection of Heterogeneities in 
Geo-statistical Subsurface Modeling, 2021, ISBN: 978-3-942036-89-4 

286 Michalkowski, Cynthia: Modeling water transport at the interface between porous GDL 
and gas distributor of a PEM fuel cell cathode, 2022, ISBN: 978-3-942036-90-0 

287  Koca, Kaan: Advanced experimental methods for investigating flow-biofilm-sediment in-
teractions, 2022, ISBN: 978-3-942036-91-7 

288  Modiri, Ehsan: Clustering simultaneous occurrences of extreme floods in the Neckar 
catchment, 2022, ISBN: 978-3-942036-92-4 

289 Mayar, Mohammad Assem: High-resolution spatio-temporal measurements of the col-
mation phenomenon under laboratory conditions, 2022, ISBN: 978-3-942036-93-1 

290 Schäfer Rodrigues Silva, Aline: Quantifying and Visualizing Model Similarities for Multi-
Model Methods, 2022, ISBN: 978-3-942036-94-8 

291 Moreno Leiva, Simón: Optimal planning of water and renewable energy systems for cop-
per production processes with sector coupling and demand flexibility, 2022, ISBN 978-
3-942036-95-5 

292 Schönau, Steffen: Modellierung von Bodenerosion und Sedimentaustrag bei Hochwas-
serereignissen am Beispiel des Einzugsgebiets der Rems, 2022, ISBN 978-3-942036-
96-2 

293 Glatz, Kumiko: Upscaling of Nanoparticle Transport in Porous Media, 2022, ISBN 978-
3-942036-97-9 

294 Pavía Santolamazza, Daniela: Event-based flood estimation using a random forest al-
gorithm for the regionalization in small catchments, 2022, ISBN 978-3-942036-98-6 

295 Haun, Stefan: Advanced Methods for a Sustainable Sediment Management of Reser-
voirs, 2022, ISBN 978-3-942036-99-3 

296 Herma, Felix: Data Processing and Model Choice for Flood Prediction, 2022,  
ISBN 978-3-910293-00-7 

297 Weinhardt, Felix: Porosity and permeability alterations in processes of biomineralization 
in porous media - microfluidic investigations and their interpretation, 2022,  
ISBN 978-3-910293-01-4 

298 Sadid, Najibullah: Bedload Transport Estimation in Mountainous Intermittent Rivers and 
Streams, 2023, ISBN 978-3-910293-02-1 

299 Mohammadi, Farid: A Surrogate-Assisted Bayesian Framework for Uncertainty-Aware 
Validation Benchmarks, 2023, ISBN 978-3-910293-03-8 

300 Praditia, Timothy: Physics-informed Neural Networks for Learning Dynamic, Distributed 
and Uncertain Systems, 2023, ISBN 978-3-910293-04-5 

301 Gyawali, Dhiraj Raj: Development and parameter estimation of conceptual snow-melt 
models using MODIS snow-cover distribution, 2023, ISBN 978-3-910293-05-2 

302 Görtz, Jan: Coupled modeling approach for physico-chemical processes during the de-
terioration of cement-based structures, 2023, ISBN 978-3-910293-06-9 

303 Veyskarami, Maziar: Coupled free-flow–porous media flow processes including drop for-
mation, 2023, ISBN 978-3-910293-07-6 

304  El Hachem, Abbas: Spatial Extent of Precipitation Extremes in Hydrology, 2023, ISBN 

 978-3-910293-08-3 



Verzeichnis der Mitteilungshefte 15  
 
305  Banerjee, Ishani: Stochastic Model Comparison and Refinement Strategies for Gas Mi-

gration in the Subsurface, 2023, ISBN 978-3-910293-09-0 

 

 

Die Mitteilungshefte ab der Nr. 134 (Jg. 2005) stehen als pdf-Datei über die Homepage des  

Instituts: www.iws.uni-stuttgart.de zur Verfügung. 


	Contents
	List of Figures
	List of Tables
	Nomenclature
	Abstract
	Zusammenfassung
	Introduction
	Background and Motivation
	Immiscible Gas Flow in Saturated Porous Media
	Numerical Models: Focusing on Invasion Percolation Models
	Addressing Conceptual Uncertainty in Numerical Models
	Challenges in Evaluating IP Models
	Challenges in Inter-Comparison of Models

	Goals and Approach
	Goals and Scope
	Research Questions and Contributions
	Approach and Outline


	State of the Art: Models, Experimental Data and Methods
	Gas Flow Regimes
	Experiments
	Models
	Classification of Modelling Approaches
	Invasion Percolation Models
	Model 1
	Model 2
	Model 3
	Model 4

	Existing Methods of Comparison
	Perceptual Comparison
	Comparison of Spatial Moments

	Bayesian Model Evidence

	Model-to-Experiment Comparison method
	Volume-Based Time Matching for IP-type Models
	Proposed Metric of Comparison: (Diffused) Jaccard Coefficient
	Method Demonstration: Case-Study
	Steps of the Model-Experiment-Comparison
	Results from Comparison Based on Final Experimental Image
	Results from Comparison Based On Experimental Time-Series

	Summary and Conclusions

	Model Selection of Competing Models
	Steps of Model Comparison Study
	Blur-radii for Diffused Jaccard Coefficient
	Results and Discussion
	Overall Ranking of Models
	Detailed Discussion of the Model Selection Results
	Importance of the Entry Threshold Fields
	Best-fitting Gas Saturation Values

	Summary and Conclusions

	Method of Forced Probabilities to Compute Bayesian Model Evidence
	Method of Forced Probabilities (MFP): Key Idea
	Implementation Illustrated with a Didactic Example
	Demonstration on a Real Case-Study
	Challenges in Using the Real Experimental Data
	Synthetic Data

	Implementation on Model 4 for Synthetic and Real Data
	Synthetic Scenarios
	Real Data Scenario
	List of Algorithmic Steps

	Results and Conclusions from the Case-Study
	Results from Synthetic Data Scenarios
	Results from Real Data Scenario
	Conclusions


	Summary, Conclusions and Outlook
	Appendix to Chapter 2
	Appendix to Chapter 4
	Appendix to Chapter 5
	Monte Carlo Simulations Grow Exponentially in tmax
	Tackling Numerical Instabilities in Computation of BME

	Bibliography

