
NEAT: Network Experiment Automation Tool
1. KuVS FG NetSoft 2017

Andreas Schmidt, Thorsten Herfet
Telecommunications Lab
Saarland Informatics Campus - Saarbrücken

October 13, 2017



Motivation

Executing network experiments is crucial for validating results.

Current Challenges

▶ Experimentation process is highly manual and seldomly reproducible.
▶ In many cases, network simulations or purely virtual networks are used which lack

fidelity and suffer from resource limitations.
▶ Peer reviews are nearly impossible (also due to lack of time, but thats a different story...).

Networking experiments can be made more reliable, automated and reproducible.

2 / 18



Motivation

Executing network experiments is crucial for validating results.

Current Challenges

▶ Experimentation process is highly manual and seldomly reproducible.
▶ In many cases, network simulations or purely virtual networks are used which lack

fidelity and suffer from resource limitations.
▶ Peer reviews are nearly impossible (also due to lack of time, but thats a different story...).

Networking experiments can be made more reliable, automated and reproducible.

2 / 18



Motivation

Executing network experiments is crucial for validating results.

Current Challenges

▶ Experimentation process is highly manual and seldomly reproducible.
▶ In many cases, network simulations or purely virtual networks are used which lack

fidelity and suffer from resource limitations.
▶ Peer reviews are nearly impossible (also due to lack of time, but thats a different story...).

Networking experiments can be made more reliable, automated and reproducible.

2 / 18



Rules for Reproducible Computational Research

Experimentation Rules

▶ §1: “For every result, keep track of how it was produced”.
▶ §3: “Archive the exact versions of all external programs used”.
▶ §4: “Version control all custom scripts”.
▶ §5: “Record all intermediate results, when possible in standardized formats”.

Analysis & Collaboration Rules

▶ §2: “Avoid Manual Data Manipulation Steps”.
▶ §7: “Always Store Raw Data behind Plots”
▶ §10: “Provide Public Access to Scripts, Runs, and Results”

[Sandve2013]: “Ten Simple Rules for Reproducible Computational Research”

3 / 18



Rules for Reproducible Computational Research

Experimentation Rules

▶ §1: “For every result, keep track of how it was produced”.
▶ §3: “Archive the exact versions of all external programs used”.
▶ §4: “Version control all custom scripts”.
▶ §5: “Record all intermediate results, when possible in standardized formats”.

Analysis & Collaboration Rules

▶ §2: “Avoid Manual Data Manipulation Steps”.
▶ §7: “Always Store Raw Data behind Plots”
▶ §10: “Provide Public Access to Scripts, Runs, and Results”

[Sandve2013]: “Ten Simple Rules for Reproducible Computational Research”

3 / 18



An Abstract Network Experiment

Goal: Gather evidence that approach A provides Z in environments such as E.

Prepare

▶ Wire and configure topology: Nodes & Links (loss, delay, throughput).
▶ [Deploy SDN controller: Setup and connect nodes.]
▶ Add end-hosts: Connect and install applications.

Execute
▶ Start an application on a certain host.
▶ [Trigger an SDN function.]

Cleanup

▶ Gather the execution data (pcap, csv, flow stats, logs, ...).
▶ Remove hosts and reset topology.

4 / 18



An Abstract Network Experiment

Goal: Gather evidence that approach A provides Z in environments such as E.

Prepare

▶ Wire and configure topology: Nodes & Links (loss, delay, throughput).
▶ [Deploy SDN controller: Setup and connect nodes.]
▶ Add end-hosts: Connect and install applications.

Execute
▶ Start an application on a certain host.
▶ [Trigger an SDN function.]

Cleanup

▶ Gather the execution data (pcap, csv, flow stats, logs, ...).
▶ Remove hosts and reset topology.

4 / 18



An Abstract Network Experiment

Goal: Gather evidence that approach A provides Z in environments such as E.

Prepare

▶ Wire and configure topology: Nodes & Links (loss, delay, throughput).
▶ [Deploy SDN controller: Setup and connect nodes.]
▶ Add end-hosts: Connect and install applications.

Execute
▶ Start an application on a certain host.
▶ [Trigger an SDN function.]

Cleanup

▶ Gather the execution data (pcap, csv, flow stats, logs, ...).
▶ Remove hosts and reset topology.

4 / 18



An Abstract Network Experiment

Goal: Gather evidence that approach A provides Z in environments such as E.

Prepare

▶ Wire and configure topology: Nodes & Links (loss, delay, throughput).
▶ [Deploy SDN controller: Setup and connect nodes.]
▶ Add end-hosts: Connect and install applications.

Execute
▶ Start an application on a certain host.
▶ [Trigger an SDN function.]

Cleanup

▶ Gather the execution data (pcap, csv, flow stats, logs, ...).
▶ Remove hosts and reset topology.

4 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.ymlParse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

5 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.ymlParse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

5 / 18



Version Control and Continuous Integration

Goal: Fully automate and document the development process.

Benefits
▶ Check-in code and build artefacts automatically (§3,4).
▶ Every software component is associated and changes are tracked (§3,4).
▶ Inconsistencies with manual processes are avoided (§1).

Software Solutions
▶ GitLab (+CI): open source, self-hosted, ...
▶ Redmine + Jenkins: open source, self-hosted, ...
▶ GitHub + Travis: public, (enterprise versions exist)
▶ ...

6 / 18



Version Control and Continuous Integration

Goal: Fully automate and document the development process.

Benefits
▶ Check-in code and build artefacts automatically (§3,4).
▶ Every software component is associated and changes are tracked (§3,4).
▶ Inconsistencies with manual processes are avoided (§1).

Software Solutions
▶ GitLab (+CI): open source, self-hosted, ...
▶ Redmine + Jenkins: open source, self-hosted, ...
▶ GitHub + Travis: public, (enterprise versions exist)
▶ ...

6 / 18



Version Control and Continuous Integration

Goal: Fully automate and document the development process.

Benefits
▶ Check-in code and build artefacts automatically (§3,4).
▶ Every software component is associated and changes are tracked (§3,4).
▶ Inconsistencies with manual processes are avoided (§1).

Software Solutions
▶ GitLab (+CI): open source, self-hosted, ...
▶ Redmine + Jenkins: open source, self-hosted, ...
▶ GitHub + Travis: public, (enterprise versions exist)
▶ ...

6 / 18



NEAT: In Detail

Create A New Software Version
▶ hobbes@dev-pc|~/ryu$ git commit -m "Tweak latency weights."

[master 650b41e] Tweak latency weights.
Date: Mon Sep 25 17:14:32 2017 +0200
3 files changed, 118 insertions(+)

Create A New Software Artefact
▶ GitLab CI builds, compiles and creates the Docker image ryu:650b41e.
▶ ryu:650b41e is pushed to registry.uds.on.

7 / 18



NEAT: In Detail

Create A New Software Version
▶ hobbes@dev-pc|~/ryu$ git commit -m "Tweak latency weights."

[master 650b41e] Tweak latency weights.
Date: Mon Sep 25 17:14:32 2017 +0200
3 files changed, 118 insertions(+)

Create A New Software Artefact
▶ GitLab CI builds, compiles and creates the Docker image ryu:650b41e.
▶ ryu:650b41e is pushed to registry.uds.on.

7 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.ymlParse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

8 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.ymlParse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

8 / 18



Experiment Description

Goal: Machine- and human-readable description of all experiment parameters.

Benefits
▶ Origins of results are thoroughly tracked (§1).
▶ Description can be shipped or checked into version control (§4).

Formats
▶ YAML: many features, easy to read, ...
▶ JSON: least features, no comments, ...
▶ XML: most structure, highly verbose, hard to write
▶ ...

9 / 18



Experiment Description

Goal: Machine- and human-readable description of all experiment parameters.

Benefits
▶ Origins of results are thoroughly tracked (§1).
▶ Description can be shipped or checked into version control (§4).

Formats
▶ YAML: many features, easy to read, ...
▶ JSON: least features, no comments, ...
▶ XML: most structure, highly verbose, hard to write
▶ ...

9 / 18



Experiment Description

Goal: Machine- and human-readable description of all experiment parameters.

Benefits
▶ Origins of results are thoroughly tracked (§1).
▶ Description can be shipped or checked into version control (§4).

Formats
▶ YAML: many features, easy to read, ...
▶ JSON: least features, no comments, ...
▶ XML: most structure, highly verbose, hard to write
▶ ...

9 / 18



Experiment Description | Example

rtt_experiment3.yml

controller:
minion: ctrl.uds.on
image: registry.uds.on/LARN/ryu:650b41e
args: --relaying=True stp

links:
- minion: n1.uds.on,

interfaces:
eth0:

bandwidth: 10Mbps,
delay: 20ms

server:
minion: h2.uds.on
image: registry.uds.on/LARN/rtt:v0.7
args: --server=True
ip: 10.5.1.21/24,
mac: ’AB:CD:EF:01:23:67’,
port: 8081

client: ...
10 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.ymlParse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

11 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.ymlParse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

11 / 18



Configuration Management (CM)

Goal: Bring the experimentation system to a well-defined state.

Benefits
▶ Left-overs are avoided (misconfigured links, ...).
▶ Many tools use configuration files that can be checked in (§1).

Software Solutions
▶ SaltStack: very consistent, good introspection
▶ Puppet: model- not code-driven, complex definitions
▶ Chef: no push, configurations in code (Ruby)
▶ Ansible: ssh-based, simple, inconsistent formats
▶ ...

12 / 18



Configuration Management (CM)

Goal: Bring the experimentation system to a well-defined state.

Benefits
▶ Left-overs are avoided (misconfigured links, ...).
▶ Many tools use configuration files that can be checked in (§1).

Software Solutions
▶ SaltStack: very consistent, good introspection
▶ Puppet: model- not code-driven, complex definitions
▶ Chef: no push, configurations in code (Ruby)
▶ Ansible: ssh-based, simple, inconsistent formats
▶ ...

12 / 18



Configuration Management (CM)

Goal: Bring the experimentation system to a well-defined state.

Benefits
▶ Left-overs are avoided (misconfigured links, ...).
▶ Many tools use configuration files that can be checked in (§1).

Software Solutions
▶ SaltStack: very consistent, good introspection
▶ Puppet: model- not code-driven, complex definitions
▶ Chef: no push, configurations in code (Ruby)
▶ Ansible: ssh-based, simple, inconsistent formats
▶ ...

12 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.ymlParse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

13 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.yml

Parse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

13 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.yml

Parse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

13 / 18



Software-Defined Networking (SDN) &
Network Function Virtualization (NFV)

Goal: Do not hide networking behaviour in proprietary hard-/software.

Benefits
▶ Network behaviour is transparently defined by the SDN/NFV applications (§1).
▶ Network code is under version control (§3,4).

Deployment Solutions

▶ Docker Containers: specific software, and libraries in one confined image.
▶ SaltStack States: no virtualization, installed on the system.
▶ Virtual Machines: high system emulation overhead, highest flexibility.
▶ ...

14 / 18



Software-Defined Networking (SDN) &
Network Function Virtualization (NFV)

Goal: Do not hide networking behaviour in proprietary hard-/software.

Benefits
▶ Network behaviour is transparently defined by the SDN/NFV applications (§1).
▶ Network code is under version control (§3,4).

Deployment Solutions

▶ Docker Containers: specific software, and libraries in one confined image.
▶ SaltStack States: no virtualization, installed on the system.
▶ Virtual Machines: high system emulation overhead, highest flexibility.
▶ ...

14 / 18



Software-Defined Networking (SDN) &
Network Function Virtualization (NFV)

Goal: Do not hide networking behaviour in proprietary hard-/software.

Benefits
▶ Network behaviour is transparently defined by the SDN/NFV applications (§1).
▶ Network code is under version control (§3,4).

Deployment Solutions

▶ Docker Containers: specific software, and libraries in one confined image.
▶ SaltStack States: no virtualization, installed on the system.
▶ Virtual Machines: high system emulation overhead, highest flexibility.
▶ ...

14 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.yml

Parse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

15 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.yml

Parse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

15 / 18



NEAT: In Action


Researcher


Testbed


Version Control

Continuous Integr.

Commit &
Push 1


Experiment
Description

Create or
Update 2


NEAT

Sta
rt

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.yml

Parse
4

Pull 5

Execute &

Collect
6

Retu
rn

7

15 / 18



NEAT: Evaluation

▶ hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.yml
Experiment took 86.4s.
Results are in rtt_experiment3_20171012_171829.xz.

▶ hobbes@testbed-hq|~/$ xz -l rtt_experiment3_20171012_171829.xz
client.csv
client.pcap
rtt_experiment3.yml
neat_log.txt
controller.log
server.csv
server.pcap

16 / 18



NEAT: Evaluation

▶ hobbes@testbed-hq|~/$ salt-run neat.run rtt_experiment3.yml
Experiment took 86.4s.
Results are in rtt_experiment3_20171012_171829.xz.

▶ hobbes@testbed-hq|~/$ xz -l rtt_experiment3_20171012_171829.xz
client.csv
client.pcap
rtt_experiment3.yml
neat_log.txt
controller.log
server.csv
server.pcap

16 / 18



Conclusion

g
Researcher


Testbed

3
Version Control

Continuous Integr.

Commit &
Push 1

p
Experiment
Description

Create or
Update 2

r
NEAT

St
ar
t

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt experiment3.yml

P
arse

4

Pull 5

Execute
&

C
ollect

6

Re
tu
rn

7

Summary

▶ Network experiments can be
made more reliable, automated
and reproducible.

▶ Using open source technologies,
experiments can be thoroughly
defined and executed.

▶ NEAT is our first prototype to
implement such a network
experiment automation.

▶ The code is available at
http://neat.larn.systems.

Thank you for your attention. Questions?

17 / 18

http://neat.larn.systems


Conclusion

g
Researcher


Testbed

3
Version Control

Continuous Integr.

Commit &
Push 1

p
Experiment
Description

Create or
Update 2

r
NEAT

St
ar
t

3

hobbes@testbed-hq|~/$ salt-run neat.run rtt experiment3.yml

P
arse

4

Pull 5

Execute
&

C
ollect

6

Re
tu
rn

7

Summary

▶ Network experiments can be
made more reliable, automated
and reproducible.

▶ Using open source technologies,
experiments can be thoroughly
defined and executed.

▶ NEAT is our first prototype to
implement such a network
experiment automation.

▶ The code is available at
http://neat.larn.systems.

Thank you for your attention. Questions?

17 / 18

http://neat.larn.systems


References

[ACM2016] ACM “Result and artifact review and badging.”
https://www.acm.org/publications/policies/artifact-review-badging.
Accessed: 2017-07-04.

[Sandve2013] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, “Ten Simple
Rules for Reproducible Computational Research” PLoS Computational
Biology, vol. 9, no. 10, pp. 1–4, 2013.

[Docker] https://docker.io/
[GitLab] https://about.gitlab.com/

[SaltStack] https://saltstack.com/
[YAML] http://www.yaml.org/start.html

17 / 18


	Backup

