Advanced Mathematical Methods

WS 2018/19

1 Linear Algebra

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics

Outline: Linear Algebra

1.8 Eigenvalues and eigenvectors

Readings

- Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. Further Mathematics for Economic Analysis. Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- Lecture 21: Eigenvalues and Eigenvectors https://www.youtube.com/watch?v=IXNXrLcoerU
- Lecture 22: Powers of a square matrix and Diagonalization https://www.youtube.com/watch?v=13r9QY6cmjc

1.8 Eigenvalues and eigenvectors

assume a scalar λ exists such that

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

λ : eigenvalue
\boldsymbol{x} : eigenvector
find λ via the homogenous linear equation system
$(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=0$

1.8 Eigenvalues and eigenvectors

The properties of a quadratic homogenous linear equation system imply that:

- in any case a solution does exist;
- if $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \neq 0$, then $\overline{\boldsymbol{x}}=\mathbf{0}$ is the trivial solution;
- only if $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$ there is a non-trivial solution.

1.8 Eigenvalues and eigenvectors

Determination of the eigenvalues via characteristic equation:
$|\boldsymbol{A}-\lambda \boldsymbol{I}|=0 \Longleftrightarrow(-1)^{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\ldots+\alpha_{1} \lambda+\alpha_{0}=0$
for every (real or complex) eigenvalue λ_{i} of the $(n \times n)$-Matrix \boldsymbol{A} we can calculate the respective eigenvector $\boldsymbol{x}_{i} \neq \mathbf{0}$ solving the homogenous linear equation system

$$
\begin{equation*}
\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \boldsymbol{x}_{i}=\mathbf{0} . \tag{1}
\end{equation*}
$$

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_{i} we can find infinitely many eigenvectors \boldsymbol{x}_{i}

1.8 Eigenvalues and eigenvectors

\boldsymbol{A} und \boldsymbol{B} (quadratic matrices of order n) are similar if a regular $(n \times n)$ - matrix C exists, such that

$$
B=C^{-1} A C
$$

Special case: symmetric matrices
For a symmetric $(n \times n)$-matrix \boldsymbol{A} it holds that the normalized eigenvectors \tilde{x}_{j} with $j=1, \ldots, n$ have the property
(1) $\tilde{\boldsymbol{x}}_{j}^{\prime} \tilde{x}_{j}=1$ for all j and
(2) $\tilde{\boldsymbol{x}}_{i}^{\prime} \tilde{x}_{j}=0$ for all $i \neq j$.

1.8 Eigenvalues and eigenvectors

Principle axis theorem
collecting the normalized eigenvectors $\tilde{x}_{j}(j=1, \ldots, n)$ in a new matrix $\boldsymbol{T}=\left[\tilde{\boldsymbol{x}}_{1} \cdots \tilde{\boldsymbol{x}}_{n}\right]$ with the property $\boldsymbol{T}^{-1}=\boldsymbol{T}^{\prime}$ yields the diagonalization of \boldsymbol{A} as follows:

$$
\boldsymbol{D}=\boldsymbol{T}^{\prime} \boldsymbol{A} \boldsymbol{T}=\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]
$$

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

1) The product of the eigenvalues of a $(n \times n)$-matrix yields its determinant: $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_{i}=0$.
3) The matrices \boldsymbol{A} and \boldsymbol{A}^{\prime} have the same eigenvalues.
4) For a non-singular matrix \boldsymbol{A} with eigenvalues λ we have: $\left|\boldsymbol{A}^{-1}-\frac{1}{\lambda} \boldsymbol{I}\right|=0$.
5) Symmetric matrices have only real eigenvalues.
6) The rank of a symmetric matrix \boldsymbol{A} is equal to the number of eigenvalues different from zero.
