Advanced Mathematical Methods WS 2018/19

1 Linear Algebra

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics

EBERHARD KARLS UNIVERSITAT TÜBINGEN Wirtschafts- und Sozialwissenschaftliche Fakultät

-1-

Outline: Linear Algebra

1.8 Eigenvalues and eigenvectors

Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne

Strøm. *Further Mathematics for Economic Analysis.* Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- Lecture 21: Eigenvalues and Eigenvectors https://www.youtube.com/watch?v=IXNXrLcoerU
- Lecture 22: Powers of a square matrix and Diagonalization https://www.youtube.com/watch?v=13r9QY6cmjc

-4-

assume a scalar λ exists such that

$$Ax = \lambda x$$

- λ : eigenvalue
- **x**: eigenvector

find λ via the homogenous linear equation system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$

The properties of a quadratic homogenous linear equation system imply that:

- in any case a solution does exist;
- if det $(\mathbf{A} \lambda \mathbf{I}) \neq 0$, then $\bar{\mathbf{x}} = \mathbf{0}$ is the trivial solution;
- only if det $(\mathbf{A} \lambda \mathbf{I}) = 0$ there is a non-trivial solution.

Determination of the eigenvalues via characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \quad \Longleftrightarrow \quad (-1)^n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \ldots + \alpha_1 \lambda + \alpha_0 = 0$$

for every (real or complex) eigenvalue λ_i of the $(n \times n)$ -Matrix **A** we can calculate the respective eigenvector $\mathbf{x}_i \neq \mathbf{0}$ solving the homogenous linear equation system

$$(\boldsymbol{A} - \lambda_i \boldsymbol{I}) \boldsymbol{x}_i = \boldsymbol{0}$$
 . (1)

-7-

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_i we can find infinitely many eigenvectors \mathbf{x}_i

A und **B** (quadratic matrices of order *n*) are similar if a regular $(n \times n)$ - matrix **C** exists, such that

$$\boldsymbol{B} = \boldsymbol{C}^{-1} \boldsymbol{A} \boldsymbol{C}$$
 .

Special case: symmetric matrices For a symmetric $(n \times n)$ -matrix \boldsymbol{A} it holds that the normalized eigenvectors $\tilde{\boldsymbol{x}}_j$ with j = 1, ..., n have the property (1) $\tilde{\boldsymbol{x}}'_j \tilde{\boldsymbol{x}}_j = 1$ for all j and (2) $\tilde{\boldsymbol{x}}'_i \tilde{\boldsymbol{x}}_i = 0$ for all $i \neq j$.

Principle axis theorem

collecting the normalized eigenvectors $\tilde{\mathbf{x}}_j$ (j = 1, ..., n) in a new matrix $\mathbf{T} = [\tilde{\mathbf{x}}_1 \cdots \tilde{\mathbf{x}}_n]$ with the property $\mathbf{T}^{-1} = \mathbf{T}'$ yields the diagonalization of \mathbf{A} as follows:

$$\boldsymbol{D} = \boldsymbol{T}' \boldsymbol{A} \boldsymbol{T} = \boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

-9-

Properties of eigenvalues

- 1) The product of the eigenvalues of a $(n \times n)$ -matrix yields its determinant: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$.
- 2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_i = 0$.
- 3) The matrices A and A' have the same eigenvalues.
- 4) For a non-singular matrix **A** with eigenvalues λ we have: $|\mathbf{A}^{-1} - \frac{1}{\lambda}\mathbf{I}| = 0.$
- 5) Symmetric matrices have only real eigenvalues.
- 6) The rank of a symmetric matrix **A** is equal to the number of eigenvalues different from zero.