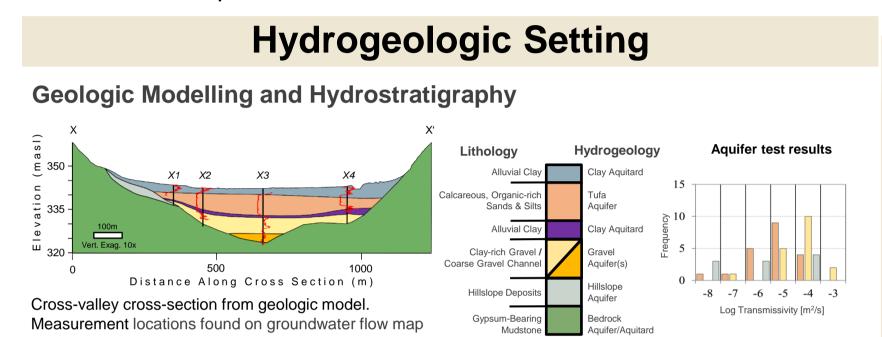
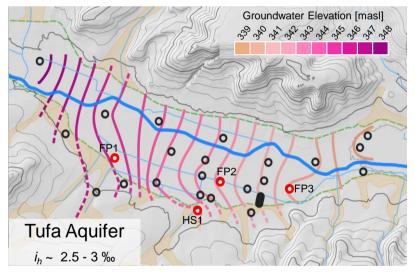
CRC 1253

CAMPOS

Hydrogeological Functioning of a Floodplain


Simon Martin¹, S. Klingler¹, C. Leven¹, P. Dietrich^{1,2}, O. A. Cirpka¹

Motivation


CATCHMENTS AS REACTORS

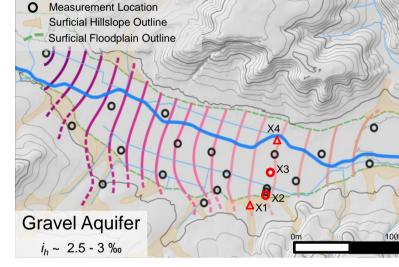
Subsurface heterogeneity is ubiquitous in sedimentary floodplains, however when presented as environmental filters, floodplains are often conceptually simplified.

Hypothesis: Internal subsurface structure controls the hydrogeologic function of floodplains

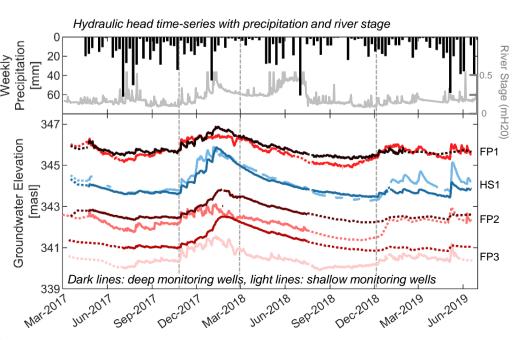
Groundwater Flow

General along valley flow with cross-valley groundwater flow near hillslopes and drainage channels

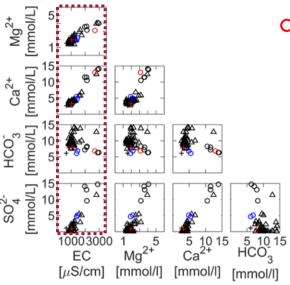
Groundwater Fluctuations


Tufa and Hillslope aguifers: highly responsive to rainfall events

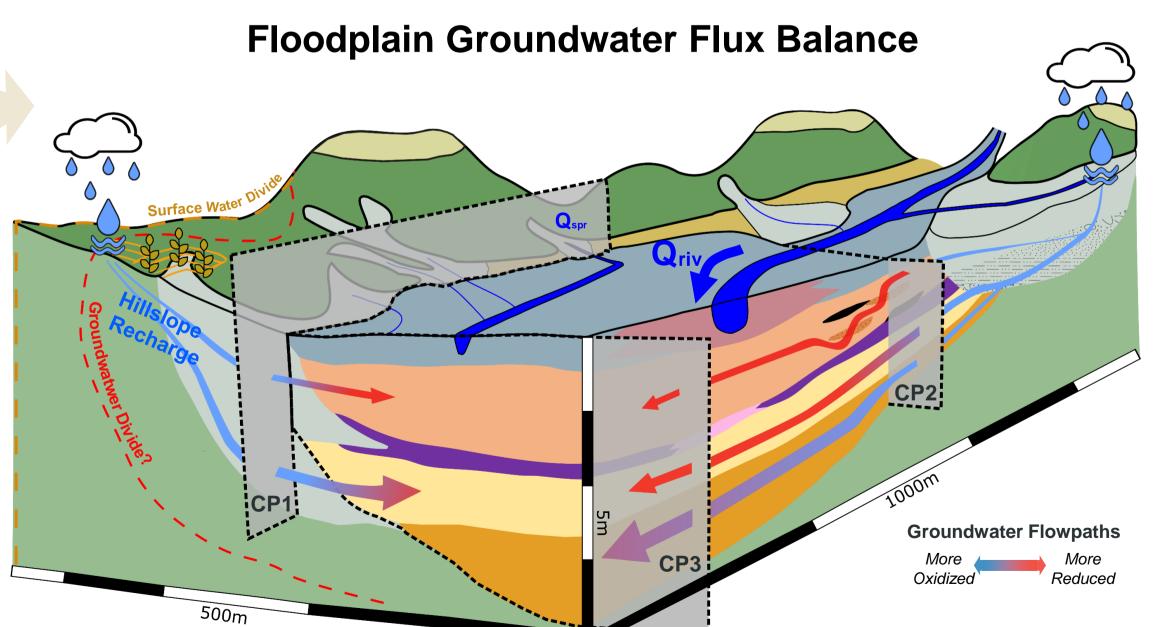
Gravel aquifer: responsive to rainfall during wet season (winter months)


Artesian conditions in winter 2017 / 2018 and extreme dry conditions in late summer / fall 2018

EBERHARD KARLS UNIVERSITÄT


TÜBINGEN

General along valley flow with minimal crossvalley groundwater flow

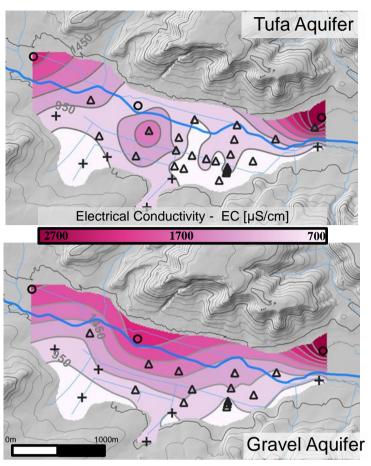


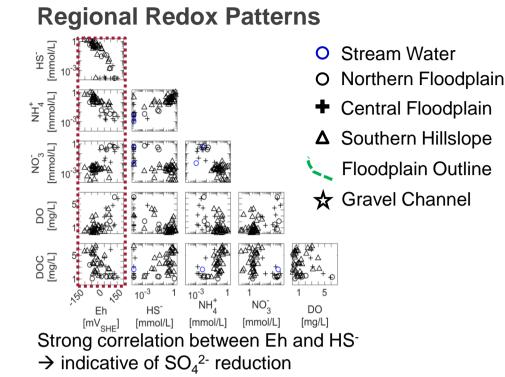
Regional Hydrochemistry

Strong correlations between EC, Ca^{2+} , Mg^{2+} and SO_4^{2-} \rightarrow indicative of gypsum dissolution

Strong cross-valley EC gradients in both aquifer systems \rightarrow highest EC near the northern tributary valleys \rightarrow north spring clusters with northern floodplain groundwater

Combining interpolated hydraulic head data and floodplain thickness (geologic model), total water and solute fluxes are evaluated across control planes (CP)


UFZ) HELMHOLTZ


supported by the Collaborative Research Center 1253 CAMPOS (Project 3: Floodplain Hydrology), funded by the German Research Foundation (DFG, GA SFB 1253/1 2017).

¹ Universität Tübingen, ² Helmholtz Center for Environmental Research – UFZ, Leipzig

- + North/South Spring
- O Stream Water
- O Northern Floodplain
- Central Floodplain
- **△** Southern Hillslope

Hydrogeochemistry

Cross-valley Eh gradient in both aquifers and alongvalley gradient in *Gravel aquifer* \rightarrow groundwater flow bypass in clean gravel channel

Aquifer

Hillslope

Tufa

Gravel

CP1: cross-valley flux through hillslope sediment into floodplain CP2: 2eam along-valley flux through floodplain aquifers *CP3:* downstream along-valley flux through floodplain aquifers

2	Scenario 2: high t	Scenario 2: high transmissivity features inc				
	Hillslope /Hillslope Hollows	7.6×10 ⁻⁵ /1.5×10 ⁻⁴				
	Tufa	6.7×10 ⁻⁵				
	Gravel / Gravel Channel	1.0×10 ⁻⁴ /1.2×10 ⁻³				
	Hydrologi	Hydrological Fluxes				
	Hydraulics:					
	In both scenarios, on-ave system can accommoda					

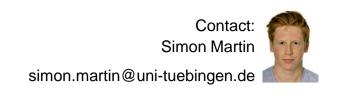
another release valve \rightarrow hillslope spring (Q_{spr})

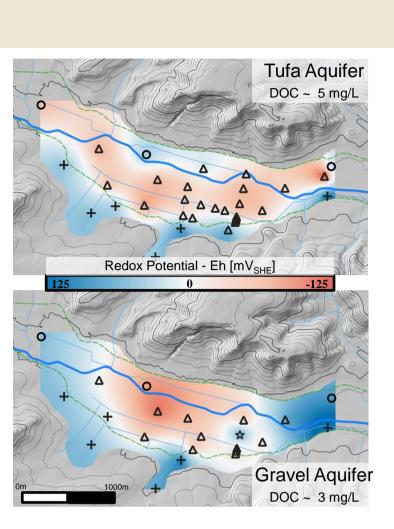
Aquifer

7.6×10⁻⁵

1.7×10⁻⁵

1.3×10⁻⁴


Scenario 1: geometric means of aquifer trar


Transmissivity [m²/s]

Fate of solutes:

- reduced floodplain setting
- to explain $NO_3^- / NH_4^+ \& SO_4^{2-} / HS^-$ patterns

River water quality:

Control Plane	Long-Term Average Water Flux [L/s]	Peak Water Flux [L/s]	Sulfur Load [kg/yr]	Nitrogen Load [kg/yr]			
er transmissivities							
CP1	0.12	0.20	24.2	3.42			
CP2	0.02	0.025	65.3	1.29			
CP3	0.04	0.05	26.7	3.13			
CP2	0.06	0.065	190	1.92			
CP3	0.16	0.165	111	10.8			
es included							
CP1	0.59	0.96	68	9.64			
CP2	0.07	0.10	199	3.93			
CP3	0.14	0.21	81.3	9.51			
CP2	0.42	0.45	2607	12.1			
CP3	0.80	0.86	902	10.9			
Q _{spr}	1	3					
HS Recharge	3.5	16					
Q _{riv}	1 x 10 ³	1 x 10 ⁴					

os, on-average, floodplain groundwater ommodate hillslope groundwater

> Dynamics of peak hillslope groundwater fluxes necessitate

Clean gravel channel acts as a flow bypass from the more

Require an improved description of nitrogen & sulfur cycling