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Standard Monod-type model (BM)
• Biomass as activity proxy
• Empirical Monod kinetics

Gene-informed model (GB)
(of Chavez Rodriguez et al.[4])
• Quantitative functional gene 

data as activity proxy 
• Mechanistic transcription & 

translation dynamics
• Microbial dormancy considered 

(data not shown)
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BACKGROUND

➢ Upscaled relevance of microbial 
small-scale spatial heterogeneity?

➢ Possible bio-kinetic constraints of 
pesticide degradation?

MATERIALS & METHODS

OBJECTIVES
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GeoSysBRNS (Centler et al.[6])
Geohydrology: OpenGeoSys 5 

Biogeochemistry: BRNS

RESULTS

Concentration difference (HET-HOM) in vertical profile
➢ Increased conc. in HET for continued time
➢ Prolonged detectability of pesticide in HET

With increasing spatial 
heterogeneity:
➢ Decreased upscaled pesticide 

degradation rate
➢ Higher residual pesticide 

concentrations
➢ Prolonged detectability
Compared to ideal conditions, in 
natural soils the spatial 
heterogeneity of microbes can 
diminish pesticide biodegradation.

Bio-kinetic constraints:
➢ Gene expression dynamics can 

control degree of persistence
Integration of genetic data is a 
powerful tool but requires carefull
calibration & evaluation.

CONCLUSION

Biomass-normed net growth rate (nNGR) as function of bioavailable 𝐂𝐋
nNGR < 0 no net micobial growth

no gene expression, 
no degradation

Microbes aggregated or (re)distributed evenly Biomass action kinetics Process based description

Natural soils vs. Ideal lab conditions

Microbial distribution scenarios

Log Gaussian Cox Process (Raynaud & Nunan[3])
• Creates stochastic aggregated point patterns
• Parametrised for natural microbial distributions

Fixed: Microbial abundance (λ) and spatial scale (β)
Altered for scenario definition: Variance (σ)

3 scenarios represent: i) ideal laboratory conditions, 
ii) lower and iii) upper end of natural heterogeneity

LGCP(λ,β,σ)

Compared microbial pesticide degradation models

Modelling tool for coupled reactive transport

Pesticide degradation time series

Spatial heterogeneity effects Bio-kinetic constraints

Residual pesticide amount in soil column

➢ Model type (BM vs. GB) most influential, 
heterogeneity as co-factor

➢ In GB model: degradation vastly constrained & 
thus reduced difference between 
heterogeneity scenarios

➢ HET constantly double residual pesticide 
amounts as HOM (for BM)

Drying,
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Standard models        vs. Gene-informed models
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σ

Pesticides are omnipresent diffuse environmental pollutants.
Their biodegradation in complex natural environments is often more

limited than expected from laboratory testing. Idealised experiments might neglect natural complexities such as the
heterogeneous distribution of microbes and standard kinetic degradation models might be oversimplified.

• Simple rate laws
• No process insights
• Microbial biomass 

unspecific activity proxy

• Complex interactions & 
feedbacks

• Insights into metabolic 
networks

• DNA, mRNA & enzyme 
concentrations as relevant 
activity proxies

Pesticide (MCPA) biodegradation

Hill function describes quasi 
steady-state substrate 
dependent gene expression.

≈ 67% of initial 
pesticide remains
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Models were calibrated by [4] with data provided by Bælum et al.[5].


