

Pollutant redistribution in heterogeneous system and data calibration with Semi-Laplace solution

Binlong Liu, Peter Grathwohl University of Tübingen

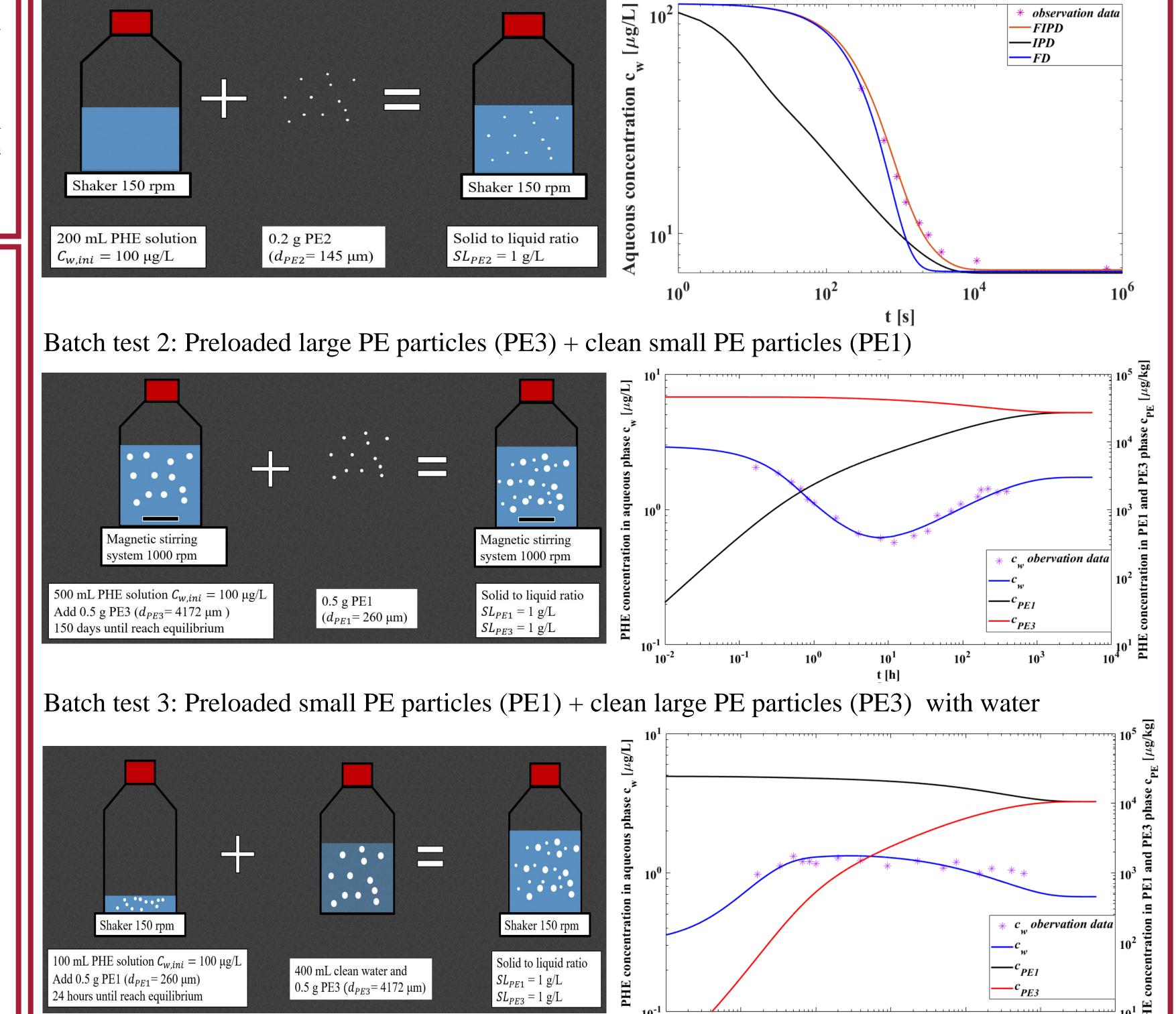
Introduction

- Pollutant redistribution in heterogeneous system is ubiquitous in the environment, but traditional numerical solutions are tedious and time-consuming.
- Semi-Laplace solution is easy to handle and numerical back transformation is very quick and efficient.
- Three sorption kinetic models (external film diffusion (FD), intraparticle diffusion (IPD) and film-intraparticle diffusion (FIPD)) are applied in Semi-Laplace solution to calibrate the batch test data.

Results

(1)

(2)


(3)

(4)

(5)

Batch test results:

Batch test 1: Sorptive uptake of small PE particles (PE2)

Theory

Mass balance equation:

$$\frac{\partial C_w}{\partial t} + \sum_{i=1}^n \beta_i \frac{\partial C_{PE,i}}{\partial t} = 0$$

Laplace transformation:

$$s\tilde{C}_w - C_w(0) + \sum_{i=1}^n \beta_i \left(s\tilde{C}_{PE,i} - C_{PE,i}(0) \right) = 0$$

Semi-Laplace solution in heterogeneous system:

$$\begin{split} \tilde{C}_{PE,i} &= \tilde{g}_{i}(s) \left(\tilde{C}_{w} - \frac{C_{PE,i}(0)}{sK_{PE,i}} \right) + \frac{C_{PE,i}(0)}{s} \\ \tilde{C}_{w} &= \frac{C_{w}(0) + \sum_{i=1}^{n} \beta_{i} \tilde{g}_{i}(s) \frac{C_{PE,i}(0)}{K_{PE,i}}}{s(1 + \sum_{i=1}^{n} \beta_{i} \tilde{g}_{i}(s))} \\ \tilde{G}_{i}(s) &= - \begin{cases} \frac{k_{i}K_{PE,i}}{k_{i} + \frac{1}{3}\rho_{PE,i}K_{PE,i}R_{i}s} & \text{FD} \\ D_{PE,i}K_{PE,i} \left(\sqrt{\frac{s}{D_{PE,i}}} \operatorname{coth} \left(R_{i}\sqrt{\frac{s}{D_{PE,i}}}\right) - \frac{1}{R_{i}}\right) \frac{3}{R_{i}s} & \text{IPD} \\ \frac{D_{PE,i}K_{PE,i} \left(\sqrt{\frac{s}{D_{PE,i}}} \operatorname{coth} \left(R_{i}\sqrt{\frac{s}{D_{PE,i}}}\right) - \frac{1}{R_{i}}\right) k_{i} \frac{3}{R_{i}s} & \text{FIPI} \\ \frac{k_{i} + D_{PE,i}K_{PE,i} \left(\sqrt{\frac{s}{D_{PE,i}}} \operatorname{coth} \left(R_{i}\sqrt{\frac{s}{D_{PE,i}}}\right) - \frac{1}{R_{i}}\right) k_{i} \frac{3}{R_{i}s} & \text{FIPI} \end{cases} \end{split}$$

 β_i : solid to liquid ratio of PE particle *i* ($\beta_i = m_{PE,i}/V_w$) [kg/L] C_w : solute concentration in aqueous phase [μ g/L] $C_w(0)$: initial solute concentration in aqueous phase [$\mu g/L$] $C_{PE,i}$: solute concentration in PE particle *i* [µg/kg] $C_{PE,i}(0)$: initial solute concentration in PE particle *i* [μ g/kg] s : complex Laplace coordinate $[T^{-1}]$ $K_{PE,i}$: PE particle *i*/water partitioning coefficient [μ g/kg]

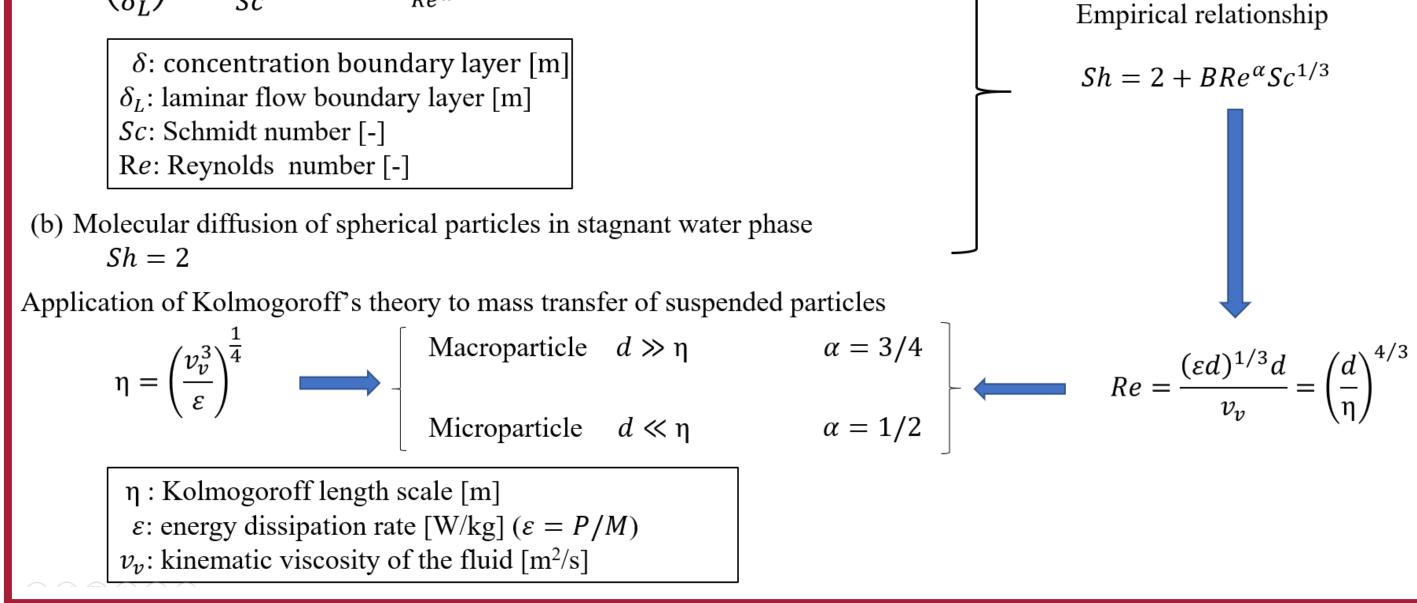
 k_i : mass transfer velocity of PE particle $i\left(k_i = \frac{D_{aq,i}}{\delta_i}\right)[m/s]$

 R_i : radius of PE particle *i* [m] $\rho_{PE,i}$: density of PE particle *i* [kg/L] $D_{PE,i}$: diffusion coefficient in PE particle *i* [m^2/s] *t* : time [s] $\tilde{g}_i(s)$: specific transform function between $C_{PE,i}$ and C_w in Laplace coordinate

Sherwood numbers to estimate the film thickness δ

$$h = \frac{k d}{D_{aq}} = \frac{d}{\delta} \Rightarrow \delta = \frac{d}{Sh}$$
 (6)

(a) Boundary layer theory (mass and momentum balance)


$$\left(\frac{\delta}{\delta_L}\right)^3 \sim \frac{1}{Sc}$$
 and $\delta_L \sim \frac{1}{Re^{\alpha}}$ for $Re < 10^5$

Particle size and distribution coefficient influence on pollutant redistribution (FD based curves):

Conclusions

1. The results show mass transfer shift from FD to IPD for small PE particles ($d_{PE1} = 260 \mu m$ and $d_{PE2} = 145 \mu m$) and large PE particles ($d_{PE3} = 4172 \mu m$) only follow the IPD.

- 2. The energy dissipation rate (ϵ) of magnetic stirrer system and shaking bed system are $10^{-4.2} \text{ m}^2/\text{s}^3$ and $10^{-1.5}$ m²/s³, respectively.
- 3. Sherwood numbers of PE particles increase with the increase of particle size. The fitting Sherwood numbers show good consistence to the Kolmogoroff's theory based empirical Sherwood number relationships ($Sh = 2 + 0.6Re^{\alpha}Sc^{1/3}, \alpha \in [0.5, 0.75]$).
- 4. The distribution coefficient (K_{PE}) of PE/water is around 15000 L/kg.
- 5. A transient overshooting concentration in aqueous phase occurs due to different sorption kinetics of particles. The greater the sorption kinetics difference, the higher the overshooting concentration.

Acknowledgement: This work was supported by the Collaborative Research Center 1253 CAMPOS (P5: Fractures Aquifers), funded by the German Research Foundation (DFG, Grant Agreement SFB 1253/1 2017). **Contact:** eva.blendinger@uni-tuebingen.de

