

Mathematisch-Naturwissenschaftliche Fakultät **Geographisches Institut** Geoökologie

Dynamics in Phosphorus Pools in Soils and Sediments along the Land-Freshwater Continuum of Agricultural Catchments

C. Nagel^a, Wen Shao^a, Niklas Wendenburg^a, Y. Oelmann^a, H. Neidhardt^a ^aGeoecology, Eberhardt Karls University Tübingen, Germany

suction cup

(Pore water)

treatments

MOTIVATION

- To recommend effective management measures and model future lacksquarescenarios of phosphate (PO_4^{3-}) inputs into surface waters, it is mandatory to understand the dynamics that affect the storage of PO_4^{3-} in our cultural landscapes
- The diffuse input of PO₄³⁻ from farmland represents a key factor ulletregarding the eutrophication of aquatic ecosystems in agricultural catchments

OVERARCHING AIM

- Unravel biogeochemical processes that change PO_4^{3-} storage pools and therefore the mobility of PO_4^{3-} in soils and sediments over time
- Advance our mechanistic understanding of PO₄³⁻ pool transformations under dynamic redox conditions
- Prolonged fertiliser application leads to legacy PO₄³⁻ that exceed crop requirements

MATERIAL AND METHODS

- Laboratory labeling and incubation experiment using stream bed sediment from an agricultural catchment (Ammer valley)
- Application of ¹⁸O-enriched PO₄³⁻ as label
- Simulation of contrasting hydrological conditions ("static reduction" vs. "drying-rewetting")
- Regular treatments at 20°C and variant with reduced microbial activity at 5°C
- Monitoring short-term changes (i.e., six weeks)
- Assessing biogeochemical dynamics in sedimentary P pools by combining sequential extraction methods with $\delta^{18}O_{PO43}$ analysis

Figure 1: Schematic concept of transport and storage dynamics of PO₄³⁻ in soils and sediments. Storage dynamics mainly depend on the Fe- and Ca-PO₄³⁻ pools and microbial cycling, but details regarding the release and transfer of PO₄³⁻ between these pools remain unclear.

RESULTS

P pools under Static reduction

- Pronounced impact of hydrological conditions on PO_{4}^{3-} pools
- Static reduction increased the labile (i.e., exchangeable PO_4^{3-}) and moderately labile PO₄³⁻ pool (i.e., Fe- and Al-oxides bound PO₄³⁻)
- After 3 drying-rewetting cycles shift from moderately labile 3. towards the labile PO_4^{3-} and the stable Ca- PO_4^{3-} pool
- Decrease of $\delta^{18}O_{PO43}$ signal after 14 days under static reduction 4.

Figure 3: P_i and P concentrations (mg kg⁻¹) in the soil samples logged under statically reduced conditions. Y-error bars indicate standard deviation of the mean values of P.

Figure 1: Precipitated Ag₃PO₄³⁻ of the sequential extractions

δ^{18} O-PO³⁻under static reduction

P pools under Short pulsed drying-rewetting

of the soil samples.

time (days)

time (days)

time (days)

time (days)

Figure 2: Membrane extractable $\delta^{18}O$ (‰) in the soil samples under statically reduced conditions.

Figure 4: P_i and P concentrations (mg kg⁻¹) in the soil samples under drying - rewetting conditions. Y-error bars indicate standard deviation of the mean values of P.

CONCLUSION

- The results corroborated assumed changes in the P pool composition of soils and sediments that we previously observed in the field. \bullet
- Such dynamic changes in P pools, especially with varying redox conditions, are relevant with regard to the transfer of PO₄³⁻ from interim storage \bullet pools to surface water.
- Outlook: extension of the incubation experiment from short- to long-term (i.e., six months)

CONTAC	T
--------	---

Christiane Nagel, Geoecology University of Tübingen, Germany Mail: christiane.nagel@uni-tuebingen.de

The authors thank the German Research Fundation (DFG 412678780) We further thank the CAMPOS Team