
Advanced Time Series Analysis

WS 2008/2009

Questions for review and theoretical assignments

Lecture 1

1. The stochastic process {εt}(t = 1, 2, · · ·) consists of independent random variables
εt ∼ N(0, 1). Compute the probability P (εt ≤ 0 ∩ εt+1 > 1.96 ∩ εt+2 ≤ −1.96).

2. Write the joint density fεtεt+1
(εt, εt+1). Interpret your result.

3. Write the conditional density fεt+1|εt(εt+1|εt).

4. Denote a realisation of the stochastic process {εt} as {x1, x2, ··, xT}.
Write down the joint density function of the random vector ε = {ε1, ε2, ··, εT} evalu-
ated at {x1, x2, ··, xT}.

Since the random vector ε = {ε1, ε2, ··, εT} is jointly normally distributed you can
use the multivariate normal density which is generally written as

fX = 2π−n/2|Ω|−0.5 exp
[(x− µ)′Ω−1(x− µ)

−2

]

What is in our example n, x, µ and Ω ?

5. Is the process {εt} weakly stationary?

6. Is the process {εt} strictly stationary?

7. A new stochastic process {Yt} is generated as Yt = a+ b · εt

The joint distribution of Y = (Y1, Y2, ··, YT ) is still the multivariate normal (see 4.)
What is µ and Ω now?

8. {Xt} denotes a stochastic process. We have E(Xt) = E(Xt+1) = 2
cov(Xt, Xt+1) = 2 and var(Xt) = var(Xt+1) = 1

using A =

[
0.3 0.7
0.5 0.5

]
we generate two new random variables Z1, Z2 by

Z =

[
Z1

Z2

]
= A ·

[
Xt

Xt+1

]

compute E(Z) and cov(Z) =

[
var (Z1) cov (Z1, Z2)
cov (Z1, Z2) var (Z2)

]
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Solutions to the assignments from Lecture 1:

1. P (εt ≤ 0) · P (εt+1 > 1.96) · P (εt ≤ −1.96) = 0.5 · 0.025 · 0.025 = 0.0003125

8. E(Z) =

[
2
2

]

cov(Z) =

[
1.42 1.5
1.5 1.5

]
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Lecture 2

1. Are the following stochastic processes {yt} stationary and ergodic?
[
{εt} denotes a Gaussian white noise process
i.e. E(εt) = 0, E(ε2

t ) = V ar(εt) = σ2, E(εt · ετ ) = 0 t 6= τ

]

a) yt = εt

b) yt = yt−1 + εt with y1 = ε1

c) yt = yt−1 − yt−2 + εt with y1 = ε1

d) yt = a · t+ εt with a a real number

2. Compute E(yt −µ)(yt−j −µ) [i.e. cov(yt, yt−j)] for the stochastic processes b) and d).

3. - Check, by writing E(yt), V ar(yt) and cov(yt, yt−j) j ≥ 1, whether a MA(2) process

yt = µ+ θ1εt−1 + θ2εt−2 + εt

is stationary and ergodic.

- Plot the autocorrelation function for a MA(2) where θ1 = 0.5 and θ2 = −0.3.

4. Write E(yt) and V ar(yt) for a MA(q) process.
yt = µ+ θ1εt−1 + θ2εt−2 + ... + θqεt−q + εt

5. The sequence of autocovariances {γj}∞j=0 of a Gaussian process {yt} evolves as
γj = θj where |θ| < 1.
Is the process ergodic?

6. What do we mean by a Gaussian process?

7. Why is ergodic stationarity such an important property for the purpose of estimating
the moments E(yt), V ar(yt), cov(yt, yt−j),... of a stochastic process {yt}?
Hint: refer to the ergodic theorem (Hayashi, Econometrics, p. 101) and note that if
{yt} is stationary and ergodic, so is {f(yt)} where f(·) is a measurable function like
ln(yt), y

2
t i.e. a function that produces a new random variable.

8. A MA(∞) is given by
yt = µ+ θ2εt−1 + θ4εt−2 + θ6εt−3 + ...

where |θ| < 1.
Compute E(yt) and V ar(yt).

9. An AR(1) process is given by

Yt = 0.5 + 0.9 Yt−1 + εt where {εt} is Gaussian White Noise εt ∼ N(0, 9)
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Compute E(Yt) and V ar(Yt). Compute the first 5 auto covariances γ1, γ2, ··, γ5 and
plot the corresponding autocorrelations ρ1, ρ2, ··, ρ5.

Hint ρj = Cov(Yt,Y t−j)√
V ar(Yt)

√
V ar(Yt−j)

=
γj

γ0

10. What do the terms weak stationarity and ergodicity mean? Explain intuitively and
mathematically.

11. Strict stationarity does not necessarily imply weak stationarity. When? Give an
example.

12. Why are stationarity and ergodicity so important in econometrics?

13. Explain in your words the meaning of the weak law of large number (WLLN) and
the central limit theorem (CLT).

14. You are generally not allowed to interchange expectation and summation operators
for each and every infinite sequence of random variables. But when are you? Illustrate
the general problem when computing the mean of an MA(∞).

15. Which property hast to be fulfilled that you are allowed to interchange these operators
when computing the variance of an MA(∞)?

16. Explain why an AR(1) is actually also an MA(∞)?
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Solutions to the assignments from Lecture 2:

9. E(yt) = 5; var(yt) = 47.368; γ1 = 42.632; γ2 = 38.368; γ3 = 34.532; γ4 = 31.078;
γ5 = 27.971
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Lecture 3

1. Explain the general idea of ML estimation in one sentence!

2. Which problems can arise if we use the joint density fY1,...,YT
(y1, . . . , yT ) to conduct

ML estimation? How can these problems be overcome?

3. Write down the joint density fY1,...,Y5
(y1, . . . , y5) as product of four conditional den-

sities and one marginal density!

4. You want to construct the exact likelihood function of an AR(2) process

Yt = c+ φ1Yt−1 + φ2Yt−2 + εt εt ∼ N(0, σ2) and i.i.d.

a) Write down the joint density of the first two observations fY1,Y2
(y1, y2).

b) Using the conditional density of the third observation fY3|Y2,Y1
(y3|y2, y1) write down

the joint density of the first three observations fY1,Y2,Y3
(y1, y2, y3).

5. In what respect is the likelihood function a random variable? Explain!

6. In what respect does the conditional likelihood function differ from the exact likeli-
hood function?

7. a) Write down the joint density of the first three observations of the MA(3) process

Yt = c+ 0.3εt−1 + 0.2εt−2 − 0.1εt−1 + εt εt ∼ N(0, σ2) and εt i.i.d. N(0, σ2).

b) Suppose you want to set up the conditional likelihood function of this process.
You condition on pre-sample values ε0, ε−1, ε−2. Write down the first three elements
of the conditional likelihood function.

fY1|ε0=0,ε−1=0,ε−2=0 =
fY2|Y1,ε0=0,ε−1=0,ε−2=0 =
fY3|Y1,Y2,ε0=0,ε−1=0,ε−2=0 =

c) Which condition has to hold in order to make the Conditional Maximum-Likelihood
work?

8. When do we call a MA process invertible? Explain the intuition of this property!

9. What does the CAN property imply?

10. Which data requirements have to be fulfilled in order to ensure the CAN property of
the ML estimates?
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11. Where do bounds for parameters come from? Give examples of bounded parameter
spaces.

12. What is the Cramer-Rao lower bound all about? How is it related to the Fisher
information matrix?

13. You have succeeded in providing Maximum-Likelihood estimates of the parameters
of an ARMA(2, 2) process.

(1 − Lφ1 − Lφ2)Yt = c+ (1 + θ1L+ θ2L
2)εt εt ∼ i.i.d.N(0, σ2)

The (conditioned) Maximum-Likelihood estimates are

ĉ = 0.2 θ̂1 = 0.2

φ̂1 = 0.6 θ̂2 = −0.1

φ̂2 = 0.1 σ̂2 = 0.8

The value of the log likelihood function evaluated at these estimates is -1432.6.

Suppose you want to test the null hypothesis

H0 : θ1 = 0.5 against HA : θ1 6= 0.5
and H0 : θ1 = 0 against HA : θ1 6= 0

Perform and interpret the appropriate tests.

An estimate of the variance-covariance matrix of the estimates θ̂ = (ĉ, φ̂1, φ̂2, θ̂1, θ̂2, σ̂
2)

is given by

V̂ ar(θ̂) =

[
−∂

2lnL(θ)

∂θ∂θ′

∣∣∣∣∣
θ̂

]−1

=




0.007 · · · ...
0.001 0.005
0.002 0.001 0.003
0.003 0.002 0.001 0.01
0.001 0.003 0.004 0.001 0.002
0.001 0.0001 0.0001 0.0001 0.00002 0.0001




θ = (c, φ1, φ2, θ1, θ2, σ
2)′

You have also estimated an ARMA(2, 0) i.e. an AR(2) model. The estimation of
this restricted model yields a log likelihood value equal to -1434.3.
Compute and interpret a likelihood ratio statistic to test the hypothesis that the re-
strictions implied by the ARMA(2, 0) specification are correct. Here the ARMA(2, 2)
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specification is the unrestricted model, the ARMA(2, 0) is the restricted model.

As another alternative you have estimated an MA(2) model. The log likelihood
evaluated at the maximum likelihood estimates is −1442.2. Perform a test of the
ARMA(2, 2) specification against the MA(2) model.

14. What are the possibilities to compute an estimate of V ar(θ̂) in Gauss?

15. It may be the case that the Hessian based estimate of V ar(θ̂) can not be computed
due to an identification problem. Explain in which respect the curvature of the
likelihood function around the true parameter value sheds light on the feasibility of
identification!

16. Write a Gauss procedure to illustrate the surface of the likelihood function of an
MA(1) evaluated at different parameter values θ:

(a) Draw a sequence {εt} of T i.i.d. standard normal random variables.

(b) Compute {yt} from Yt = θεt−1 + εt with θ = 0.5.

(c) Compute lnL(θ) for θ = {0.1 . . . 0.9} holding σ2 fixed at 1.

(d) Plot lnL(θ) against θ for different T and compare your results.

Solutions to the assignments from Lecture 3:

13. test statistic: first null hypothesis t1 = 0.2−0.5√
0.01

= −3

second null hypothesis t2 = 0.2√
0.01

= 2

Likelihood ratio test statistic for ARMA(2,2) vs. AR(2): LR1 = 3.4
Likelihood ratio test statistic for ARMA(2,2) vs. MA(2): LR2 = 19.2
critical value: χ2(2) = 5.99
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Lecture 4

1. What do we require to name a process a ”Gaussian white noise process”, an ”inde-
pendent white noise process”, or a ”white noise process”? Which process requires
the strongest and which the weakest assumptions?

2. Explain the connection of ψj and the first row first column element of Fj . Besides
explain the eigenvalues of Fj .

F =




φ1 . . . φp

1 0 0
0 1 0
...

. . .

0 . . . 1 0




3. Given are 3 different AR processes

(1)
φ1 = 0.6
φ2 = −0.4

, (2)
φ1 = 0.4
φ2 = 0.8
φ3 = −0.3

, (3)
φ1 = 1.2
φ2 = −0.1

.

Write out the F-matrix for each process and compute the eigenvalues of F with
Gauss, to check whether these AR processes are stationary.

4. Why do we write an AR(p) : Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt as a vector
AR(1) : ξ = Fξt−1 + vt? Explain ξ, F and v. Write out the first row of the left and
the right hand side of ξ = Fξt−1 + vt.

5. Given is:




Yt

Yt−1
...

Yt−p+1


 =




φ1 . . . φ2

1 0 0
0 1 0
...

. . .

0 . . . 1 0




·




Yt−1

Yt−2
...

Yt−p


 =




ωt

0
...
0




Write out in detail the recursion and the first row of that recursion. Write a Gauss
procedure to compute Fj and read out the first row first column element and plot
these elements (x-axis: j, y-axis: f

(j)
11 ).

6. In the following, {εt} denotes a Gaussian White Noise process. Which of the following
processes {Yt} is a stationary and ergodic process? Give a brief explanatory statement
and describe each process as a special case of an ARMA(p,q) process. For example
’This is a stationary AR(2) process...’ et cetera.
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(a) (1 − 0.5L− 0.7L2)Yt = εt

(b) (1 − 0.9L− 0.1L2)Yt = (1 + 0.3L)εt

(c) Yt = (1 − L)εt

(d) Yt = (1 + 0.9L2)εt

(e) Yt = c + 0.5Yt−1 + 0.3Yt−2 + 1.2εt−1 + εt

(f) Yt =
(1 − 1.3L2)

1 − 0.8L− 0.1L2
εt

(g) (1 − 0.9L)Yt = εt

(h) (1 − 0.8L− 0.1L2)Yt = εt

(i) Yt = (1 + 0.4L+ 0.3L2)εt

7. Give your opinion to the following statements. Answer ”Correct, since...” or ”Incor-
rect, rather...”

(a) Any MA process is a stationary process .

(b) Any finite Gaussian AR(p) process is stationary .

(c) Whether an ARMA(p,q) is stationary is solely determined by its MA part.

(f) A White Noise process is an ergodic process.

(g) Any finite MA(q) is ergodic.

Solutions to the assignments from Lecture 4:

3.

(1) stationary (2) stationary (3) not stationary

λ1 = 0.30 + 0.55677644i λ1 = 0.91584462 λ1 = 1.1099020
λ2 = 0.30 − 0.55677644i λ2 = −0.88568851 λ2 = 0.090098049

λ3 = 0.36984389

6. (a) λ1 = 1.123 λ2 = −0.623 → not stationary;

(b) finite MA(q) stationary, Check AR part: λ1 = 1 λ2 = −0.1 → not stationary;

(c),(d),(i) finite MA(q) stationary

(e) λ1 = −0.352 λ2 = 0.852 → stationary;
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(f),(h) λ1 = 0.910 λ2 = −0.110 → stationary

(g) stationary
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Lecture 5

1. Why is the loss function important for choosing an optimal forecast?

2. How is the mean squared error (MSE) defined and what does this imply for the
sensitivity towards under- and overestimation of a forecast?

3. Your client’s loss function is the MSE and your task is to present a forecast of a
financial time series. What is the best forecast you can deliver (a) generally, and (b)
in the case of a martingale?

4. Explain the intuition of the stochastic discount factor mt+1.

5. Under which circumstances does theory predict that prices (approximately or exactly)
follow a random walk?

6. Why do we use log returns in modeling financial time series?

7. Illustrate a series of returns in comparison to the same series’ squared returns. What
does the clustering of squared returns imply for the predictability of returns?

8. Summarize what the simplest ARCH model implies forE(rt), var(rt), cov(rt), var(rt |
It), and E(rt | It). In which sense are these moments compatible with financial
theory?

9. For modeling high frequency returns which ARMA(p,q) would be compatible with
financial theory?
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Lecture 6

1. The parameters of the basic ARCH(1) model are bounded. How and why?

2. Econometricians don’t like imposing constraints outside the likelihood function for
computational reasons. How can you directly impose constraints into the likelihood
function? Give an example and explain.

3. In which respect can the GARCH model ht = d +
∑q

i=1 αiu
2
t−i +

∑p

j=1 βjh
2
t−j be

understood as a kind of ARMA model? Which stylized fact of the data does such a
specification take into account?

4. Empirical evidence states that the assumption of independently and identically nor-
mally distributed returns is not valid. Which special features of returns exist and
how can they be captured within the ARCH framework appropriately?

5. The simple ARCH(1) model is able to generate a fat tailed distribution, but re-
searchers argue that this is by far not enough. Propose an extension of this model
that is able to generate a distribution with as much mass in the tails as required by
the data.

6. Which parameter is of special interest in Nelson’s E-ARCH model? Which stylized
fact does this parameter allow to analyze? Are Nelson’s findings in line with theory?

7. Which fundamental problems will arise if a consumption function Ct = β1 +β2Yt + εt

is estimated by OLS? How can these problems be overcome?

8. What is the fundamental methodological problem of a simultaneous equation system
in macroeconomics when the equations are estimated by OLS?

9. What are the problems with the SVAR in primitive form from econometric point of
view?
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Lecture 7

1. There are three sensible Dickey-Fuller tests that allow to test for a unit root. As an
applied guy, what is the general principle that guides your choice of the test?

2. Explain why the combination of the null hypothesis and the alternative presented in
case 3 (Hamilton, table 17.1) does not make sense.

3. Which is the ”correct” case (Hamilton, table 17.1) to use in order to test the null
hypothesis of a unit root in the exemplary time series presented in figure 1? Defend
your suggestion.

4. Explain the δ-method to a second year statistic student.

5. In a GARCH(1,1) estimation we ensure that the conditional variance ht is always
positive by imposing the following restrictions on the parameters

ht = exp(ω∗) + exp(α∗)ε2
t−1 + exp(β∗)ht−1.

Estimates of the original parameters (ω, α, β)′ can be backed out from (ω̂∗, α̂∗, β̂∗)′

by simply taking ω̂ = exp(ω̂∗), α̂ = exp(α̂∗), and β̂ = exp(β̂∗). In order to conduct
proper inference we use the δ-method that delivers standard errors of (ω̂, α̂, β̂)′ :

Suppose you have obtained estimates for b =



ω∗

α∗

β∗


 , b̂ =



ω̂∗

α̂∗

β̂∗


 =




−14.4866
−2.8389
−0.0661


.

We have √
T (b̂− b) −→

d
N(0,Σ)

where Σ is the asymptotic variance covariance matrix.

A consistent estimate of Σ
T
, denoted

bΣ
T
, is given by

Σ̂

T
=




0.5309 0.0558 −0.0067
0.0558 0.0479 −0.0031
−0.0067 −0.0031 0.0002


 .

The sample has T = 894 observations.

Provide estimates of V ar(ω̂∗), V ar(α̂∗), and V ar(β̂∗) using this information.

You are interested in testing whether

H0 : ω = exp(ω∗) = 0.1 HA : ω 6= 0.1

H0 : α = exp(α∗) = 0.1 HA : α 6= 0.1

H0 : β = exp(β∗) = 0.9 HA : β 6= 0.9.
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Construct a suitable test statistic. For this purpose compute estimates of the vari-
ances of ω̂, α̂ and β̂, V ar(ω̂), V ar(α̂) and V ar(β̂), by using the δ-method.

Hints:

a(b) =




exp(ω∗)
exp(α∗)
exp(β∗)




a(b̂) −→
p
a(b)

√
T (a(b̂) − a(b)) −→

d
N(0, A(b)ΣA(b)′)

where A(b) = ∂a(b)
∂b′

is of dimension (3 × 3).

The test statistics are

t =
ω̂ − 0.1√
V̂ ar(ω̂)

t =
α̂− 0.1√
V̂ ar(α̂)

t =
β̂ − 0.9√

̂
V ar(β̂)

t is approximately N(0,1) under the null hypothesis.
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Figure 1: Exemplary Time Series

(a) (b)

(c) (d)

(e) (f)
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Exercises: Delta Method

1. Solve the following assignemnet and check if you really understood the δ-Method:

Suppose you have obtained estimates for b =

[
θ

φ

]
i.e. b̂ =

[
θ̂

φ̂

]
.

We have √
T (b̂− b) −→

d
N(0,Σ)

where Σ is the asymptotic variance covariance matrix.

A consistent estimate of Σ, denoted Σ̂, is given by

Σ̂ =

(
2 0.2

0.2 3

)

The sample has T = 100 observations.

Provide estimates of V ar(θ̂) and V ar(φ̂) using this information. The estimates are
θ̂ = 0.6 and φ̂ = 0.4

You are interested in testing whether

r =
φ

φ+ θ
= 0.5

Construct a suitable test statistic. For this purpose compute an estimate of the vari-

ance of r̂ = φ̂

φ̂+θ̂
, V ar(r̂), by using the δ-method.

Hints:

a(b) =
φ

φ+ θ
= r

r̂ = a(b̂) −→
p
a(b)

√
T (a(b̂) − a(b)) −→

d
N(0, A(b)ΣA(b)′)

where A(b) = ∂a(b)
∂b′

=
(

∂a(b)
∂φ

,
∂a(b)
∂θ

)

The test statistic is
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t =
r̂ − 0.5√
V̂ ar(r̂)

t is approximately N(0,1) under the Null Hypothesis that r = 0.5.
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Lecture 8

1. The null process of an ordinary Dickey-Fuller test is a random walk which does not
allow for serial correlation in first differences. Augmented Dickey-Fuller tests control
for serial correlation by adding lagged first differences to the autoregressive equation.

• When applying augmented Dickey-Fuller tests there exist a couple of informa-
tion criteria that guide the lag length selection. Discuss the two most common
ones.

• How do they balance between a better fit and model parsimony?

• What are the advantages/disadvantages of these criteria in the finite sample
context?

2. A researcher wants to conduct an augmented Dickey-Fuller test to test an economic
time series for a unit root. He estimates a regression model of the form:

yt = ζ1∆yt−1 + ζ2∆yt−2 + α + ρyt−1 + δt+ εt

The researcher works under the null hypothesis that the true data generating process
is given by:

yt = ζ1∆yt−1 + ζ2∆yt−2 + α + yt−1 + εt

Running the regression the researcher computed the estimate ρ̂ = 0.95. The esti-
mated OLS standard error s.e.(ρ̂) = 0.013. The sample size is 50. Interpret the
result.
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Lecture 9

1. The null process of an ordinary Dickey-Fuller test is a random walk which does not
allow for serial correlation in first differences. Augmented Dickey-Fuller tests control
for serial correlation by adding lagged first differences to the autoregressive equation.

• When applying augmented Dickey-Fuller tests there exist a couple of informa-
tion criteria that guide the lag length selection. Discuss the two most common
ones.

• How do they balance between a better fit and model parsimony?

• What are the advantages/disadvantages of these criteria in the finite sample
context?

2. A researcher wants to conduct an augmented Dickey-Fuller test to test an economic
time series for a unit root. He estimates a regression model of the form:

yt = ζ1∆yt−1 + ζ2∆yt−2 + α + ρyt−1 + δt+ εt

The researcher works under the null hypothesis that the true data generating process
is given by:

yt = ζ1∆yt−1 + ζ2∆yt−2 + α + yt−1 + εt

Running the regression the researcher computed the estimate ρ̂ = 0.95. The esti-
mated OLS standard error s.e.(ρ̂) = 0.013. The sample size is 50. Interpret the
result.

3. Consider the following SVAR in order to analyze the dependencies of the three East
Asian stock markets Tokyo (T), Singapore (S) and South Korea (K)

rT

t = kT +β
(0)
12 rS

t + β
(0)
13 rK

t +β
(1)
11 rT

t−1 + β
(1)
12 rS

t−1 + β
(1)
13 rK

t−1 + β
(2)
11 rT

t−2 + β
(2)
12 rS

t−2 + β
(2)
13 rK

t−2 + uT

t

rS

t = kS + β
(0)
21 rT

t + β
(0)
23 rK

t +β
(1)
21 rT

t−1 + β
(1)
22 rS

t−1 + β
(1)
23 rK

t−1 + β
(2)
21 rT

t−2 + β
(2)
22 rS

t−2 + β
(2)
23 rK

t−2 + uS

t

rK

t = kK + β
(0)
31 rT

t +β
(0)
32 rS

t +β
(1)
31 rT

t−1 + β
(1)
32 rS

t−1 + β
(1)
33 rK

t−1 + β
(2)
31 rT

t−2 + β
(2)
32 rS

t−2 + β
(2)
33 rK

t−2 + uK

t

(i) Write the primitive form of this SVAR in matrix notation using the notation as
proposed in the script.

(ii) Derive the SVAR in standard form.

(iii) Write in detail the contemporaneous variance covariance matrices of both the
idiosyncratic shocks (IE[uu′]) and the composite shocks (IE[εε′]).

(iv) Write the SVAR in standard form in lag operator notation.

(v) The VAR(2) can be rewritten as VAR(1) following ξt = Fξt−1 + vt. Write ξt,
F and vt extensively.

4. Describe 3 options to compute the sequence of Ψ matrices in the VMA(∞) repre-
sentation of an VAR(p).
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5. Explain the relation of the Ψ sequence to the eigenvalues of F, and argue how the
latter shed light on the stationarity and ergodicity of a VAR(p). Why is it the largest
eigenvalue of F that determines the strength of the effect of a past innovation on the
present in a VAR(p)?

6. Why are we interested in tracing the effect of an orthogonal shock instead of that of
a composite shock in the first place?

7. What are the problems associated with identifying idiosyncratic shocks via Cholesky
decomposition of Ω=ADA’?

8. How are A and B0 related? Does that relation always make sense from an economic
perspective?

9. How many possibilities would you have to identify B0 via Cholesky decomposition
with n = 4 variabes?

10. Think of an economic system that would justify the identification of B0 via Cholesky
decomposition.
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Lecture 10

1. Describe briefly the two most widely used methodologies to assess the dynamic rela-
tions between the variables in a VAR system.

2. Once the VMA(∞) representation of a VAR(p) is derived it is relatively easy to
compute the non-orthogonalized impulse response functions (IRFs) that give the
response of the system to one unit shocks in the composite innovations. Illustrate!

3. What makes it challenging to derive the orthogonalized IRFs that give the response
of the system to one unit shocks in the idiosyncratic innovations?

4. The analysis of the effects of Swiss Monetary policy delivers the following orthogo-
nalized impulse-response functions with Cholesky ordering: m̃, r̃, p̃, ỹ. Interpret!

Figure 2: Orthogonalized impulse-response functions Upper left panel: Response of money to
shocks in money, interest rate, prices, and GDP. Upper right panel: Response of interest rate to shocks in
money, interest rate, prices, and GDP. Lower left panel: Response of prices to shocks in money, interest
rate, prices, and GDP. Lower right panel: Response of GDP to shocks in money, interest rate, prices, and
GDP.
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5. In VAR modeling we consider how each of the orthogonalized disturbances (u1t, . . . , unt)
contributes to the mean squared error of the s-period-ahead forecast of yt. What is
written on the main diagonal of MSE(ŷt+s|t)?

6. Write in detail (i) MSE(ŷt+1|t), and (ii) MSE(ŷt+2|t) for an arbitrary three variable
case (n = 3). In which respect do (i) and (ii) differ, and why is it again the Cholesky
decomposition that plays a crucial role?

7. Consider the following numerical examples

MSE(ŷt+1|t) = 1.79 ·




1.000 0.344 0.087
0.344 0.119 0.030
0.087 0.030 0.008


 + 1.78 ·




0.000 0.000 0.000
0.000 1.000 0.127
0.000 0.127 0.016




+ 2.63 ·




0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 1.000




=




1.793 0.618 0.157
0.618 1.994 0.281
0.157 0.281 2.674




• Where do you find the variances of the forecast errors of the first, second, and
third variable?

• What is the contribution of u1t to the variance of the forecast error of the first
variable?

• What is the contribution of u1t to the variance of the forecast error of the second
variable?

• Decompose the variance of the forecast error of the third variable into the con-
tributions of the innovations in the first, second, and third variable.

MSE(ŷt+2|t) = 1.79 ·




1.000 0.343 0.086
0.343 0.125 0.035
0.086 0.035 0.012


 + 1.78 ·




0.001 0.008 0.004
0.008 1.040 0.147
0.004 0.147 0.026




+ 2.63 ·




0.001 0.002 0.002
0.002 0.002 0.003
0.002 0.003 1.004


 =




1.799 0.633 0.167
0.633 2.082 0.332
0.167 0.332 2.707




• What is the contribution of u2t to the variance of the forecast error of the first
variable?

• What is the contribution of u3t to the variance of the forecast error of the first
variable?
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• Decompose the variance of the forecast error of the second variable into the
contributions of the innovations in the first, second, and third variable.

8. The analysis of the effects of Swiss Monetary policy delivers the following information
shares with Cholesky ordering: m̃, r̃, p̃, ỹ. Interpret!

Figure 3: Orthogonalized impulse-response functions Upper left panel: Variance decomposition
for money stock Upper right panel: Variance decomposition for interest rate. Lower left panel: Variance
decomposition for consumer price index Lower right panel: Variance decomposition for GDP

24



Lecture 11

1. Consider the bivariate example

y1t = γy2t + u1t

y2t = y2t−1 + u2t

where u1t, u2t are independent Gaussian White Noise processes and y1t, y2t are inte-
grated of order one (I(1)). Compute ∆y1t and ∆y2t.

Given that the cointegrating relation y1t − γy2t exists why can’t you simply consider
a VAR in first differences to assess the dynamics of this system? Compare the VAR
representation in first differences to the appropriate specification of the equilibrium
correction model.

2. The equilibrium correction model cannot be estimated by OLS. Why?

3. How do you proceed to test the cointegrating relation y1t − γy2t for stationary?

4. What about the quality of the parameter estimates of the regression y1t = β0+β1y2t+
εt if (a) the cointegrating relation between y1t and y2t can be maintained, and (b)
the cointegrating relation is rejected?

5. Explain the terms cointegrating rank, cointegrating vector, cointegrating relation,
and base of a space of cointegrating vectors.

6. Consider the VECM

∆yt = ζ1∆yt−1 + α + ζ0yt−1 + εt,

where yt is a (3×1) vector of the variables consumption, investment, and output, ζ1

a (3×3) parameter matrix, α a (3×1) vector of constants, and ζ0 a (3×3) parameter
matrix on which the restrictions ζ0 = −BA′ are imposed, with B a (3 × 2) matrix
of adjustment coefficients, and A a (3 × 2) cointegration matrix that is normalized
as proposed by Phillips (see Hamilton p. 576).

(i) Write in detail A, and yt−1, and multiply out A′yt−1. Interpret your result.

(ii) Write in detail B, and multiply out BA′yt−1. Interpret your result.

(iii) Interpret the likelihood ratio statistic

LR = 2[L(θ̂) − L(θ̃)] = 1.2,

where L(θ̂) denotes the value of the log-likelihood function at the unrestricted
estimates ζ0, and L(θ̃) the value of the log-likelihood function at the restricted
estimates ζ0 = −BA′. The critical value associated with a significance level of
5% is χ2

0.95(1) = 3.84.
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7. Let yt be an I(1) process, and IE[∆yt] = δ, and ut = ∆yt − δ = εt + Ψ1εt−1 + . . .

with
∑∞

j=1 j · |Ψj | <∞ (which implies
∑∞

j=0 |Ψj | <∞), then we have

yt = y0 − η0 + Ψ(1)(ε1 + ε2 + . . .+ εt) + ηt + δ · t

with ηt an I(0) process.

Which relations of A and Ψ(1) on the one hand, and A′ and δ on the other hand
have to hold if A′ consists of h linearly independent cointegrating vectors, and why?
Explain!

8. Let Ψ(L) = (I
n

+ Ψ1L+ Ψ2L
2 + Ψ3L

3 + . . .) with Ψj (n× n) matrices.

(i) What is Ψ(L) · α, with α a scalar?

(ii) What is Ψ(1)?

9. Assume yt of dimension (n× 1) is an I(1) process. Why can we conclude that if the
number of linearly independent cointegrating vectors equals n that yt only consists
of stationary variables?

10. Let A′ =

[
1 0 a13

0 1 a23

]
. Would you conclude that there does not exist a cointegrat-

ing vector that involves all three variables, e.g. [a∗1 a
∗
2 a

∗
3]

′?

If you think that such a cointegrating vector exists: How could you construct such a
vector?

11. Phillip’s method provides a way to construct a base of cointegrating vectors with
a minimal number of free parameters. It hinges however on crucial assumptions.
Which are these?

12. Suppose that the rows of the (3 × 4) matrix A′ =




2 3 3 7
3 6 9 8
3 1 5 4


 form a basis for

the space of cointegrating vectors. Derive Phillip’s triangular representation of A′

alongside Hamilton’s recipe (pp. 576 f.) by hand, and write a Gauss procedure that
does so for any (h× n) matrix A′.

13. Let A′ =

[
1 0 a13 0
0 1 a23 0

]
. What would you conclude regarding the role of y4t in the

system?
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