Applied Microeconometrics Chapter 2

Models with binary dependent variables

- 1. Introduction to the Probit Model
- 2. Estimation
- 3. A Practical Application
- 4. Coefficients and Marginal Effects
- 5. Goodness-of-Fit Measures
- 6. Hypothesis Tests
- 7. Probit vs. Logit

1. Introduction to the Probit model

Recall our example from the introduction:

- **Binary** choice variable: voting yes-no $y \in \{0,1\}$
- Explanatory variable: household income $x \in \mathbb{R}^+$

Introduction to the Probit model – latent variables

• We aim to model the probability that the observed binary variable takes one of its values conditional on x, such as

$$p = P(y_i = 1 \mid x)$$

where $0 \le p \le 1$

• We need to derive this probability to estimate the model by maximum likelihood

Introduction to the Probit model – latent variables

- We think of the process generating observations on discrete outcome y as driven by an unobserved (latent) variable y^* which can take all values in $(-\infty, +\infty)$.
- Example: y* = net utility from labour income, y = observed labour market participation
- the underlying model is in terms of the latent variable and is linear

$$y_i = \begin{cases} 1, y_i^* > 0\\ 0, y_i^* \le 0 \end{cases}$$
$$y_i^* = x_i^{'}\beta + \varepsilon_i$$

Introduction to the Probit model – latent variables

Probit is based on the latent model:

 $P(y_i = 1 | x) = P(y_i^* > 0 | x)$ $= P(x_i'\beta + \varepsilon_i > 0 | x)$ $= P(\varepsilon_i > -x_i'\beta | x)$ $= 1 - F(-x_i'\beta)$

Assumption: Error terms are independent and normally distributed:

$$P(y_i = 1 | x) = 1 - \Phi(-\frac{x_i'\beta}{\sigma}), \sigma \equiv 1$$
$$= \Phi(x_i'\beta) \text{ because of symmetry}$$

Background on probability distribution functions (PDF)

- PDF: probability distribution function f(x)
- Example: Normal distribution:

• Example: Standard normal distribution: N(0,1), $\mu = 0$, $\sigma = 1$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Notation and statistical foundations - CDF

- CDF: cumulative distribution function F(x)
- Example: Standard normal distribution:

• The cdf is the integral of the pdf. It is bounded between 0 and 1, as required 8

- 2. Estimation
- The probability of choosing $y_i = 1$ is $\Phi(x_i'\beta)$
- Similarly, the probability of choosing $y_i = 0$ is $1 - \Phi(x_i'\beta)$
- Combining these, the likelihood of observing unit i in the state actually chosen is

$$L_{i}(x_{i},\beta) = \Phi(x_{i}^{'}\beta)^{y_{i}} \left(1 - \Phi(x_{i}^{'}\beta)\right)^{1-y_{i}}$$

Derivation of the log likelihood function

• Taking the product over all units in the sample i = 1,...,n gives the likelihood function

$$L(y \mid x, \beta) = \prod_{i} \Phi(x_{i}'\beta)^{y_{i}} \left[1 - \Phi(x_{i}'\beta)\right]^{(1-y_{i})}$$
$$= \prod_{i} \Phi_{i}^{y_{i}} (1 - \Phi_{i})^{1-y_{i}}$$

• It is more convenient to use the log likelihood function:

$$\ln L = \sum_{i} y_{i} \ln \Phi_{i} + (1 - y_{i}) \ln(1 - \Phi_{i})$$

The ML principle

• The principle of ML: Which value of β maximizes the probability of observing the given sample?

$$\frac{\partial \ln L}{\partial \beta} = \sum_{i} \left[\frac{y_i \varphi_i}{\Phi_i} + \frac{(1 - y_i)(-\varphi_i)}{1 - \Phi_i} \right] x_i$$
$$= \sum_{i} \left[\frac{y_i - \Phi_i}{\Phi_i (1 - \Phi_i)} \varphi_i \right] x_i = 0$$

- Usually, use k explanatory variables rather than one
- The gradient vector $\partial \ln L(\theta) / \partial \theta$ is also called the score vector 11

12

Distribution of the ML estimator

• Under certain regularity conditions (see Cameron / Trivedi, p. 142) the MLE defined by $\partial \ln L(\theta) / \partial \theta = 0$ is consistent for θ_0 and

$$\sqrt{n}(\hat{\theta}_{ML} - \theta_0) \xrightarrow{d} N\left[0, -A_0^{-1}\right]$$

where $A_0 = p \lim n^{-1} \frac{\partial^2 \ln L(\theta)}{\partial \theta \partial \theta'}\Big|_{\theta_0}$

• Then, the asymptotic distribution of the MLE can be written as

$$\hat{\theta}_{ML} \stackrel{a}{\sim} N \left[\theta, -E \left[\left(\frac{\partial^2 \ln L(\theta)}{\partial \theta \partial \theta'} \right) \right]^{-1} \right]$$

Derivation of the MLE

- It can be shown that the likelihood function for the Probit model is globally concave → there exists only one maximum of the likelihood function
- However, the first-order conditions $\partial \ln L(\theta) / \partial \theta = 0$ cannot be solved analytically
- Hence, need to find numerical solutions
- Mostly used: Newton-Raphson Algorithm

- Iterative procedure: from an estimate in the s-th step, apply a rule that finds the next-step estimate
- The rule must be chosen such that it ensures a move towards the maximum
- Process stops if the distance between steps s and s+1 becomes very small

• In the Newton-Raphson case, the rule is $\hat{\theta}_{s+1} = \hat{\theta}_s - H_s^{-1} g_s$

where g_s is the gradient $g_s = \partial \ln L(\theta) / \partial \theta \Big|_{\theta_s}$ derived from step s and

$$H_{s} = \frac{\partial^{2} \ln L(\theta)}{\partial \theta \partial \theta'} \bigg|_{\theta_{s}}$$

• Intuition: if the score is positive, need to increase θ in order to get closer to maximum (note that H_s is always negative, as claimed previously).

Figure 8.2. Direction of step follows the slope.

Taken from:

K. Train (2003), Discrete Choice Methods with Simulation, Cambridge University Press

http://elsa.berkeley.edu/b ooks/choice2.html

(Chapter on numerical maximisation highly recommended!)

Figure 8.3. Step size is inversely related to curvature.

What happens if the likelihood function is not globally concave?

Figure 8.6. NR in the convex portion of LL.

Taken from:

K. Train (2003), Discrete Choice Methods with Simulation, Cambridge University Press

http://elsa.berkeley.edu/b ooks/choice2.html

(Chapter on numerical maximisation highly recommended!)

A Practical Application

- Analysis of the effect of a new teaching method in economic sciences
- Data:

Obs.No.	GPA	TUCE	PSI	Grade	Obs.No.	GPA	TUCE	PSI	Grade
1	2.66	20	0	0	17	2.75	25	0	0
2	2.89	22	0	0	18	2.83	19	0	0
3	3.28	24	0	0	19	3.12	23	1	0
4	2.92	12	0	0	20	3.16	25	1	1
5	4	21	0	1	21	2.06	22	1	0
6	2.86	17	0	0	22	3.62	28	1	1
7	2.76	17	0	0	23	2.89	14	1	0
8	2.87	21	0	0	24	3.51	26	1	0
9	3.03	25	0	0	25	3.54	24	1	1
10	3.92	29	0	1	26	2.83	27	1	1
11	2.63	20	0	0	27	3.39	17	1	1
12	3.32	23	0	0	28	2.67	24	1	0
13	3.57	23	0	0	29	3.65	21	1	1
14	3.26	25	0	1	30	4	23	1	1
15	3.53	26	0	0	31	3.1	21	1	0
16	2.74	19	0	0	32	2.39	19	1	1

Source: Spector, L. and M. Mazzeo, Probit Analysis and Economic Education. In: Journal of Economic Education, 11, 1980, pp.37-44

Application – Variables

• Grade

Dependent variable. Indicates whether a student improved his grades after the new teaching method PSI had been introduced (0 = no, 1 = yes).

• PSI

Indicates if a student attended courses that used the new method (0 = no, 1 = yes).

• GPA

Average grade of the student

• TUCE

Score of an intermediate test which shows previous knowledge of a topic.

Application – Estimation

• Estimation results of the model (output from Stata):

. probit g	grade j	psi tuce gp	a						
Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4): 10 1: 10 2: 10 3: 10 4: 10	og likeliho og likeliho og likeliho og likeliho og likeliho	od = od = · od = · od = ·	-20.59 -13.315 -12.832 -12.818 -12.818	9173 5851 2843 5826 5803				
Probit esti Log likelik	imates nood =	-12.818803				Number LR chi2 Prob > Pseudo	of obs (3) chi2 R2	3 = = =	32 15.55 0.0014 0.3775
grad	le	Coef.	Std.	Err.	Z	P> z	[95%	Conf.	Interval]
ps tuc gr _cor	si ce pa ns	1.426332 .0517289 1.62581 -7.45232	.595 .0838 .6938 2.542	5037 3901 3818 2467	2.40 0.62 2.34 -2.93	0.017 0.537 0.019 0.003	.2600 1120 .2658 -12.43)814 5927 3269 3546	2.592583 .2161506 2.985794 -2.469177

Application – Discussion

- ML estimator: Parameters were obtained by maximization of the log likelihood function.
 Here: 5 iterations were necessary to find the maximum of the log likelihood function (-12.818803)
- Interpretation of the estimated coefficients:
 - Unlike in OLS, estimated coefficients cannot be interpreted as the quantitative influence of the rhs variables on the probability that the lhs variable takes on the value one.
 - This is due to non-linearity and using the standard normal distribution for normalisation.

• The marginal effect of a rhs variable is the effect of an infinitesimal change (dummy variables: unit change) of this variable on the probability P(Y = 1|X = x), given that all other rhs variables are constant:

$$\frac{\partial P(y_i = 1 \mid x_i)}{\partial x_i} = \frac{\partial E(y_i \mid x_i)}{\partial x_i} = \varphi(x_i^{'}\beta)\beta$$

• Recap: The slope parameter of the linear regression model measures directly the marginal effect of the rhs variable on the lhs variable.

- The marginal effect depends on the value of the rhs variable.
- Therefore, there exists an individual marginal effect for each person of the sample:

Coefficients and marginal effects – Computation

- Two different types of marginal effects can be calculated:
 - Average marginal effect Stata command: margin

Marginal effect:	s on Prob(g	rade==1) afte	r probit	2		
grade	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
+						
gpa	.3637883	.1129461	3.22	0.001	.1424181	.5851586
tuce	.011476	.0184085	0.62	0.533	024604	.047556
psi	.3737518	.1399912	2.67	0.008	.0993741	.6481295

• Marginal effect at the mean: Stata command: mfx compute Coefficients and marginal effects – Computation

• Principle of the computation of the average marginal effects:

• Average of individual marginal effects

Coefficients and marginal effects – Computation

- Computation of average marginal effects depends on type of rhs variable:
 - Continuous variables like TUCE and GPA:

$$AME = \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i^{'}\beta)\beta$$

• Dummy variable like PSI:

$$AME = \frac{1}{n} \sum_{i=1}^{n} \left[\Phi(x_i^{k} \beta | x_i^{k} = 1) - \Phi(x_i^{k} \beta | x_i^{k} = 0) \right] \beta$$

Coefficients and marginal effects – Interpretation

- Interpretation of average marginal effects:
 - Continuous variables like TUCE and GPA:
 A change of TUCE or GPA of size 1 changes the probability that the lhs variable takes the value one by X%.
 - Dummy variable like PSI:
 A change of PSI from zero to one changes the probability that the lhs variable takes the value one by X%.

Coefficients and marginal effects – Interpretation

Variable	Estimated marginal effect	Interpretation
GPA	0.364	If the average grade of a student goes up by size 1, the probability for the variable grade taking the value one rises by 36.4%.
TUCE	0.011	As with GPA, with an increase of 1.1%.
PSI	0.374	If the dummy variable changes from zero to one, the probability for the variable grade taking the value one rises by 37.4%.

Coefficients and marginal effects – Significance

- Significance of a coefficient: test of the hypothesis whether a parameter is significantly different from zero.
- The decision problem is similar to the t-test, whereas the probit test statistic follows a standard normal distribution. The z-value is equal to the estimated parameter divided by its standard error.
- Stata computes a p-value which shows directly the significance of a parameter:

	<u>z-value</u>	<u>p-value</u>	Interpretation
GPA :	3.22	0.001	significant
TUCE:	0,62	0,533	insignificant
PSI:	2,67	0,008	significant

29

- Only the average of the marginal effects is displayed.
- The individual marginal effects show large variation:

Descrip	ptive st	atistics	for	indiv	idual	marg	inal	effects
gpa (tuce (psi (Mean 0.36379 0.01148 0.37375	SD 0.21358 0.00687 0.12878	0.(0.(0.(Min 06783 00209 06042	0.648 0.020 0.519	Max 807 063 959		

Stata command: margin, table

- Variation of marginal effects may be quantified by the confidence intervals of the marginal effects.
- In which range one can expect a coefficient of the population?
- In our example:

	Estimated coefficient	Confidence interval (95%)
GPA:	0,364	- 0,055 - 0,782
TUCE:	0,011	- 0,002 - 0,025
PSI:	0,374	0,121 - 0,626

- What is calculated by mfx?
- Estimation of the marginal effect at the sample mean.

Goodness of fit

- Goodness of fit may be judged by McFaddens Pseudo R².
- Measure for proximity of the model to the observed data.
- Comparison of the estimated model with a model which only contains a constant as rhs variable.
 - $\ln \hat{L}(M_{Full})$: Likelihood of model of interest.
 - $\ln \hat{L}(M_{Intercept})$: Likelihood with all coefficients except that of the intercept restricted to zero.
 - It always holds that $\ln \hat{L}(M_{Full}) \ge \ln \hat{L}(M_{Intercept})$

Goodness of fit

• The Pseudo R² is defined as:

$$PseudoR^{2} = R_{McF}^{2} = 1 - \frac{\ln \hat{L}(M_{Full})}{\ln \hat{L}(M_{Intercept})}$$

- Similar to the R² of the linear regression model, it holds that $0 \le R_{McF}^2 \le 1$
- An increasing Pseudo R² may indicate a better fit of the model, whereas no simple interpretation like for the R² of the linear regression model is possible.

Goodness of fit

• R^{2}_{McF} increases with additional rhs variables. Therefore, an adjusted measure may be appropriate:

$$PseudoR_{adjusted}^{2} = \overline{R}_{McF}^{2} = 1 - \frac{\ln \hat{L}(M_{Full}) - K}{\ln \hat{L}(M_{Intercept})}$$

• Further goodness of fit measures: R² of McKelvey and Zavoinas, Akaike Information Criterion (AIC), etc. See also the Stata command fitstat.

Hypothesis tests

- Likelihood ratio test: possibility for hypothesis testing, for example for variable relevance.
- Basic principle: Comparison of the log likelihood functions of the unresticted model ($\ln L_U$) and that of the resticted model ($\ln L_R$)

• Test statistic:
$$LR = -2 \ln \lambda = -2(\ln L_R - \ln L_U) \quad \chi^2(K)$$

 $\lambda = \frac{L_R}{L_U} \quad 0 \le \lambda \le 1$

• The test statistic follows a χ^2 distribution with degrees of freedom equal to the number of restrictions.

Hypothesis tests

- Null hypothesis: All coefficients except that of the intercept are equal to zero.
- In the example: LR $\chi^2(3) = 15,55$
- Prob > chi2 = 0.0014
- Interpretation: The hypothesis that all coefficients are equal to zero can be rejected at the 1 percent significance level.

The Logit model

• Binary dependent variable:
$$y = \begin{cases} 1 \\ 0 \end{cases}$$

• Let
$$P(y_i = 1 | x) = F(x_i'\beta)$$

(as in the case of Probit)

• In the Logit model, F(.) is given the particular functional form:

$$P(y_i = 1) = \frac{\exp(x_i^{'}\beta)}{1 + \exp(x_i^{'}\beta)}$$

• The model is called Logit because the residuals of the latent model are assumed to be distributed standard logistic.

Notation and statistical foundations – distibutions

• Standard logistic distribution:

$$f(x) = \frac{e^x}{(1+e^x)^2}, \mu = 0, \sigma^2 = \frac{\pi^2}{3}$$

• Exponential distribution:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, x \ge 0\\ 0, x \le 0 \end{cases}, \theta > 0, \mu = \theta, \sigma^2 = \theta^2 \end{cases}$$

• Poisson distribution:

$$f(x) = \frac{e^{-\theta}\theta^x}{x!}, \mu = \theta, \sigma^2 = \theta$$

40

PDF Probit vs. Logit

• PDF of Probit: PDF of Logit:

CDF Probit vs. Logit

- F(z) lies between zero and one
- CDF of Probit:

Estimation output

The Logit model is implemented in all major software packages, such as Stata:

. logit grade	e psi	tuce gpa								
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5:	log log log log log log	likelihoo likelihoo likelihoo likelihoo likelihoo likelihoo	od = od = od = od = od =	-20.5 -13.49 -12.92 -12.88 -12.88 -12.88	9173 6795 9188 9941 9633 9633					
Logit estimate Log likelihood	es 1 = -1	L2.889633					Number LR chi2 Prob > Pseudo	of obs 2(3) chi2 R2	3 = = =	32 15.40 0.0015 0.3740
grade		Coef.	Std.	Err.	z	P:	> z	[95%	Conf.	Interval]
psi tuce gpa _cons	2 . . (2 . -13	.378688 0951577 .826113 3.02135	1.06 .141 1.26 4.93	4564 5542 2941 1325	2.2 0.6 2.2 -2.6	3 0. 7 0. 4 0. 4 0.	.025 .501 .025 .008	.29 1822 .3507 -22.68	9218 2835 7938 3657	4.465195 .3725988 5.301432 -3.35613

Coefficient magnitudes

Coefficient Magnitudes differ between Logit and Probit:

	Probit	Logit
gpa	1,626	2,826
tuce	0,052	0,095
psi	1,426	2,379

This is due to the fact that in binary models, the coefficients are identified only up to a scale parameter

Coefficient magnitudes

- Coefficient magnitudes can be made comparable by standardizing with the variance of the errors:
 - with logarithmic distribution: $Var=\pi^2/6$
 - with standard normal distribution: Var=1
- approximative conversion of the estimated values using

$$\frac{1}{\sqrt{\pi^2/6}} \approx 0.61$$

Marginal effects

For interpretation we have to calculate the <u>marginal</u> <u>effects</u> of the estimated coefficients (as in the Probit case)

margin, table	(AKA I	margeff)	r logit			
grade	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
qpa	.3682795	.1088308	3.38	0.001	.1549751	.581584
tuce	.0122101	.0177941	0.69	0.493	0226656	.0470859
					0701026	C350365

Interpretation of the marginal effects analogous to the Probit model