
Learning Tracking Control with Forward Models

Botond Bócsi Philipp Hennig Lehel Csató Jan Peters

Abstract— Performing task-space tracking control on redun-
dant robot manipulators is a difficult problem. When the
physical model of the robot is too complex or not available,
standard methods fail and machine learning algorithms can
have advantages. We propose an adaptive learning algorithm
for tracking control of underactuated or non-rigid robots where
the physical model of the robot is unavailable. The control
method is based on the fact that forward models are relatively
straightforward to learn and local inversions can be obtained
via local optimization. We use sparse online Gaussian process
inference to obtain a flexible probabilistic forward model and
second order optimization to find the inverse mapping. Physical
experiments indicate that this approach can outperform state-
of-the-art tracking control algorithms in this context.

I. INTRODUCTION

Efficient tracking control algorithms are essential in robot
control [7], [14]. Tracking control tasks can be formulated
on joint-space level when a desired joint-space trajectory
has to be followed or can be defined in the task-space.
In both cases, the control algorithm has to provide the
necessary torques to each joint that will result in the desired
motion. Independent of the task formulation, most of the
methods are based on the inverse model of the robot (inverse
dynamics for joint-space tracking and, additionally, inverse
kinematics for task-space tracking). Inverse dynamics – the
mapping from the desired joint accelerations to the applied
torques – can be directly modeled since there is a one-
to-one relation between these quantities resulting in very
efficient joint-space tracking algorithms [2], [9], [19]. On
the other hand, inverse kinematics – mappings from task-
space to joint-space – cannot be modeled straightforwardly.
For redundant robots, such a mapping from task-space to
configuration space is always non-unique: given a task-space
position, there will frequently be several possible joint-space
configurations forming a non-convex solution space [4] and
one has to choose from these solutions in a clever way.

Several solutions have been proposed based on physical
models of the robot [16]. However, these methods break
down when applied to non-rigid robots systems with in-
sufficient sensing, as well as for systems with nonlinear
perceptual transformation. The reason is that the physical
models of the robot become inaccurate. Robot with flexible

Botond Bócsi and Lehel Csató are with Faculty of Mathematics and
Informatics, Babeş-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca,
Romania, {bboti, lehel.csato}@cs.ubbcluj.ro

Philipp Hennig and Jan Peters are with Department of Empirical
Inference, Max Planck Institute for Intelligent Systems, Spemannstraße
38, 72076 Tübingen, Germany, {phennig@tuebingen.mpg.de,
jan.peters}@tuebingen.mpg.de

Jan Peters is with Technische Universitaet Darmstadt, Intelligent Au-
tonomous Systems Group, Hochschulstr. 10, 64289 Darmstadt, Germany

or not directly actuated elements are hard to model accurately
with physics and even harder to control. In our experiments,
a ball has been attached to the end-effector of a Barrett
WAM [9] robot arm using a string, and the ball had to
follow a desired trajectory instead of the end-effector of the
robot. For this system even the forward kinematics model
is undefined since the same joint configuration can result in
different ball positions (due to the swinging of the ball). This
underactuated robot is not straightforward to control since the
swinging produces non-linear effects that lead to undefinable
forward or inverse models. We were able to control such
a robot and show that our method is capable of capturing
non-linear effects, like the centrifugal force, into the control
algorithm.

The method presented in this paper is based on the insight
that approximate forward models can often be obtained
with machine learning methods – even for such ambiguous
systems – and that local inversions can be obtained via local
optimization. The presented tracking control algorithm has
three steps: (1) we model the forward kinematics of the
robot using machine learning techniques; (2) apply local
optimization to obtain the inverse mapping; (3) based on
the inverse mapping, we use a joint-space controller on the
controllable degrees of freedom (DoF) of the robot to obtain
the desired torques. The complexity of the modeling task
(induced by the swinging of the ball in our example) is not
shared equally among the three steps. The control method is
constructed such that all the non-linear effect are captured by
the forward kinematics model and the inversion algorithm.

Hence, for robot systems with uncertain physical param-
eters, data-driven kinematics model learning presents an ap-
pealing alternative to analytical models. Forward kinematics
is a standard regression problem, and is thus straightforward
to learn from data. We use Gaussian process (GP) regression
[3], [13] to approximate this model and get the inverse map-
ping by searching for the joint configuration that minimizes
the distance in the task-space between the predicted task-
position and the desired one. GPs provide a flexible tool to
model complex, non-linear mappings efficiently. Thus, they
are suitable for non-rigid kinematic models. Furthermore,
GPs allow a natural way of incorporating prior knowledge
about the robot – if available – into the prediction model [8].
To overcome the computational problems of GPs, sparse GP
approximation algorithms have been used, allowing real-time
modeling.

Our tracking control method uses an adaptive inverse
kinematics learning approach that solves the problem of non-
uniqueness of inverse kinematics and can also be employed
on robots with complex or unknown physical model. The

technique can be applied online, i.e., the robot model can be
trained while performing the control task.

We start the paper with a definition of the inverse kine-
matics problem since it plays a central role in our tracking
control algorithm and give an overview over existing solu-
tions (Section I-A). Section II-A shows how local inversions
can be obtained from forward kinematic maps. Section II-
B presents the forward learning algorithm and Section II-C
gives a brief introduction to available sparse GP approxima-
tions. Section III sums these results up into a tracking control
algorithm with practical considerations.

A. Analytical & Numerical Solutions for Inverse Kinematics

The forward kinematics are given by the correspondence

x = g(θ),

and maps n-dimensional joint angles θ ∈ Rn into p-
dimensional task-space positions x ∈ Rp. The inverse
kinematics transforms the end-effector coordinates into joint
angles:

θ = g−1(x). (1)

Finding g−1(·) is a significantly harder problem than mod-
eling g(·). For redundant systems, i.e., when the dimension
of the task-space is smaller than the dimension of the joint-
space (p < n), g−1(·) is not well-defined. For a task-space
position x, there can be several corresponding joint-space
configurations θ.

Classical approaches solve inverse kinematics on the ve-
locity level, i.e., the differential inverse kinematics [16],
where the derivative of the forward kinematics model is
employed: ẋ = JJJ(θ)θ̇, where JJJ(θ) is the Jacobian of g(θ).
Differential inverse kinematics determines the desired joint
velocity θ̇, and uses this online. This joint velocity (for
example) can be obtained by the Jacobian transpose method
θ̇ = JJJ(θ)>ẋ, or by the resolved velocity method θ̇ = JJJ(θ)†ẋ,
where JJJ(θ)† is the pseudo-inverse [16]). It is important that
resolved velocity methods are numerically unstable if JJJ(θ)
is a singular matrix and JJJ(θ)† does not exist.

Numerical solutions to θ = g−1(x) can be found by
iterating any of the above inverse kinematics methods until
convergence (i.e., θ ′ = θ + JJJ(θ)†ẋ as x = g(θ) for the
fixpoints of this iteration).

To solve redundancy of solutions, gradient projection
methods put additional constrains on θ by optimizing a cost
function h(θ) in the null-space of the mapping JJJ(θ) , i.e.,
θ̇ = JJJ(θ)†ẋ+

[
III− JJJ(θ)†JJJ(θ)

]
∂h/∂θ [16].

Instead of traditional numerical methods used with nu-
merical models, we can sometimes learn inverse kinematics
using sampled data. This approach can be advantageous
for several reasons [1], [4]: (1) traditional numerical meth-
ods require a precise kinematics model of the robot that
might not be available, e.g., for complex robots, non-rigid
manipulators, flexible joint robots, or when uncalibrated
cameras provide noisy Cartesian coordinates; (2) iterative
solutions are often too slow for real-time applications, (3) if
a system can change over time, we need to adapt the inverse

kinematics model as well. In the next section, we give a brief
overview of how machine learning methods have been used
to learn inverse kinematics.

B. Learning Inverse Kinematics

Among the most well-known online learning approaches
for inverse kinematics is D’Souza et. al. [4], based on “lo-
cally weighted projection regression” (LWPR) [21]. LWPR
learns the inverse kinematics mapping on the velocity level.
Its central idea is to partition the input space into regions and
learn local piecewise linear models for each region. The input
space, i.e., desired end-effector velocity, is augmented with
the current joint configuration of the robot and, subsequently,
the mapping (ẋ,θ) → θ̇ is learned. By adding the current
joint configuration to the input space, the localization of the
linear models becomes valid. This augmentation leads to
a locally consistent algorithm, however, global consistency
is not guaranteed. Global consistency can be achieved by
selectively generating data. D’Souza et. al. [4] argue that
the main disadvantage of LWPR is that the partitioning of
the augmented input space becomes difficult for robots with
many DoFs.

A similar modular construction of g−1(·) is employed by
Oyama et al. [11] using neural networks as local models
and a gating neural network that chooses among them. This
approach, also, requires an oracle determining model respon-
sibilities, which is difficult to obtain in high dimensions.

Our method is based on the observation that modeling the
forward kinematics function is significantly easier than the
inverse mapping. This insight has been investigated in the
literature using different approaches to obtain the inverse
mapping [14]. Radial basis function networks have been
used for forward modeling by Sun and Brian [20] on a 4-
DoF robot. The method was trained on data collected offline
and has not been tested on trajectory following problems,
but on reaching tasks. The inverse kinematics mapping
has been achieved on velocity level by differentiating the
neural network. The authors argue that the structure of the
network and the parameter settings have a major effect on
the generalization capacity of the algorithm: a long and task
dependent parameter tuning is required.

Neural networks have been used by Jordan and Rumelhart
[5] in a different context: they used them to learn the forward
kinematics model of a robot and trained another neural
network for the inverse kinematics, as the composition of
the two networks to yield the identity. However, training the
inverse model in this indirect way is difficult due to local
minimum, instability, and problems in selecting the network
structure.

II. TRACKING AND LEARNING WITH FORWARD MODELS

Next, we show how efficient forward kinematics models
can be constructed from data using machine learning meth-
ods. We also present how local inverses can be obtained from
the learned forward models.

A. Inverse Kinematics with Forward Kinematics Modeling

Once the forward kinematics model is known, the inverse
mapping is obtained by choosing the joint configuration
that minimizes the distance between the desired task-space
position and the one predicted by the forward model. By
definition, the inverse function looks as follows:

g−1(x)
◦
= arg min

θ

‖x− g(θ)‖2 (2)

= arg min
θ

F(x,θ),

where F(x,θ) denotes the Euclidean distance between the
desired task-space position and the one predicted by the
forward model. Note that F(x,θ) can be considered an
energy function that we want to minimize. Thus, it may
contain additional x or θ dependent terms as well. For
instance, it is useful to add a regularization term λh(θ) that
keeps the robot close to a natural joint configuration, i.e.,
h(θ) has smaller values for desired configurations and bigger
values for undesired configurations. We omit such terms here
for brevity, their inclusion is straightforward (see Section II-
D for the importance of the regularization).

Equation (2) poses two questions: (1) how should we
perform the minimization in a possibly high dimensional
continuous joint-space and (2) how should we model g(·)?
In practice, these two problems are not independent. If we
choose a continuous and differentiable function g(·), gradient
descent search methods are applicable. The gradient of the
energy function has the form

∇θF(x,θ) = 2(x− g(θ))>∇g(θ), (3)

that can be derived from Equation (2).
A second question relates to the non-uniqueness of the

inverse kinematics function: how does the minimization
ensure that a convenient solution will be chosen when a
desired end-effector xdesired position can be reached by two
different joint configurations θ1 and θ2, see Figure 1? In
this case, the algorithms should predict θ2 to avoid jerky
movements. This behavior is desirable to achieve smooth
trajectories in joint-space. We propose to start a gradient
search from the current joint positions θcurrent.

Next, we present an adaptive way of modeling g(·) using
non-parametric machine learning methods, i.e., Gaussian
processes.

B. Forward Model Learning and Inversion with Gaussian
Processes

We obtain a non-parametric model of g(·) using Gaus-
sian processes (GPs) [13]. Despite that they are non-linear
functions of the input, the prediction is linear in the number
of the training data points. Furthermore, the gradient of the
predictive function has an analytical form.

From a machine learning point of view, GPs are non-
parametric methods for regression and classification [13].
Given a training set D = {(θi, xi)}

m
i=1 with inputs θi and

labels xi, the prediction for a new θ is a Gaussian–distributed

θ

F(xdesired,θ)

θ1 θ2

θcurrent

θ1 θ2
θcurrent

xdesired

Fig. 1. Illustration of the inverse kinematics prediction scheme [1]. In the
training set xdesired has been reached by two different joint configurations
θ1 and θ2, therefore, F(xdesired,θ1) = F(xdesired,θ2). As prediction our
algorithm will chose θ2 since the current joint configuration θcurrent is in
the attraction range of θ2.

random variable with mean µ(θ) and variance σ2(θ) where

µ(θ) = kkk>θα =

m∑
i=1

αik(θ,θi) (4)

σ2(θ) = k(θ,θ) − kkk>θ KKK
−1kkkθ,

where kkkθ ∈ Rm×1 is a vector with elements kkkiθ = k(θ,θi)
and KKK ∈ Rm×m is a matrix with elements KKKij = k(θi,θj).
The function k : Rn×Rn → R is a positive definite kernel
(a generalization of a positive definite matrix) [13], [15] and
α ∈ Rm×1, where α = KKK−1x are the parameters of the GP.

Observe that α does not depend on the test data, thus, once
KKK−1 is evaluated, the evaluation of µ(θ) is linear in the size
of the training set. Inverting KKK is cubic in the size of the
training set, however, this inversion can be done during the
training. This step will be approached with consideration.

The predictive mean of the GPs is used as the prediction
of the forward model from Equation (4)1, g(θ) = µ(θ), the
gradient of the energy function we want to minimize from
Equation (3) is given by

∇θF(x,θ) = 2(x− kkk>θα)
>α>

∂kkkθ

∂θ
,

where ∂kkkθ/∂θ ∈ Rm×n is a matrix with the partial
derivatives of kkkθ with respect to every element of θ.

A wide range of positive definite kernels is available
[15]. In our experiments, we found that the popular squared
exponential kernels provides good performance for free
motion kinematic tasks. It has the form k(θ1,θ2) =

C exp
{
||θ1 − θ2||

2
/2w
}

and its gradient is

∂k(θ1,θ2)

∂θ1
=

1

w
k(θ1,θ2)(θ1 − θ2)

>,

where C and w are hyper-parameters of the kernel function2.

1We used a different GP for each output dimension, i.e., gj(θ) = mj(θ),
j = 1, 3 where gj(θ) is the j-th component of g(θ).

2Note that w can be vector valued. Thus, we can define dif-
ferent lengths scale in each input dimension, i.e., k(θ1,θ2) =
C exp

{∑
i(θ1 − θ2)

2
i /2wi

}
, called an anisotropic squared exponential

kernel. This useful property in forward kinematics modeling allows for
different weights for each DoF.

As we have already discussed, once KKK−1 is known, the
prediction of the GP is linear in the number of training ex-
amples. We consider KKK−1 known since the presented online
GP method provides an efficient update of KKK−1 that does not
require the cubic complexity inversion of KKK. The complexity
of F(x,θ) and ∇θF(x,θ) is O(m). If the gradient search
from Equation (2) requires l function or gradient evaluations,
then g−1(x) has complexity O(lm). For smooth and fast
predictions we need the inverse kinematics function to be
evaluated fast. One option is to keep l low by applying an
efficient gradient search method and, another is to keep m
low by reducing the sample points of the GP. We consider
the former by using a conjugate gradient optimizer [18]. The
second problem, in our particular online setting, requires
an online sparsification algorithm for Gaussian processes.
Several algorithms exist in the literature [3], [6], [12], [17].
The following section gives a brief overview of the one we
used in our experiments.

C. Dealing with Large Amounts of Data

The main disadvantage is that the time and space complex-
ity of GP inference grows cubically with the number of the
data points. To overcome this problem, several sparsification
methods have been proposed [3], [6], [12], [17]. We adopt
a method proposed by Csató and Opper [3], which can be
applied online. The method is the online approximation to
the posterior distribution using a sequential algorithm [10]
where we combine the likelihood of a single data with the
GP prior from the result of the previous approximation step.
Given a dataset D = {(θi, xi)}

m
i=1, a GPm model is defined

based onm data points. When a new point arrives, GPm+1 is
obtained by using the Bayes theorem where GPm plays the
role of the prior model and (θm+1, xm+1) is the observation,
i.e.,

GPm+1 ∝ p((θm+1, xm+1)|GPm) GPm.

Assuming additive Gaussian noise, this assumption leads to
an analytically tractable model [13].

The sparsification algorithm defines an approximation to
the exact Gaussian process posterior, chosen such that the
discrepancy between the exact and the approximate posterior
is minimized. An important feature of the method is that the
parameters of the GP are updated even when the new data
point is not included into the base set. Thus, the accuracy
of the approximation improves during the learning process
while the base points might not change.

D. Practical Considerations and Implementation

We adopt the term “forward Gaussian process modeling”
(FWGP) for the method as presented here. Algorithm 1 con-
tains an overview of the task-space tracking control method
in pseudo-code. First, a GP is initialized with no training
points as the forward kinematics model. Subsequently, this
forward model is updated, while performing the desired task
based on the respective task and joint positions. At each step,
the desired joint configuration is obtained by minimizing
the distance between the desired and predicted task-space

Algorithm 1 Task-Space Tracking Control with FWGP
FW ← init-GP() {forward kinematics model}

while task is not over do
FW ← update-GP(xcurrent,θcurrent)
xdesired ← next-position ()
θdesired ← gradient-minimization (θcurrent,

‖FW(·) − xdesired‖2)
inverse-dynamics (θcurrent, θdesired)

end while

position. Finally, the inverse dynamics model is used for
computing the torques for the actuated DoFs of the robot.

The assumption that there is no prior information on the
kinematics model of the robot is frequently too strong. When
available, such prior knowledge can be incorporated into the
prediction model in different ways: (1) the prior mean of the
GP can be a parametric function of the known kinematics
[8] or (2) a suitable kernel function can be constructed [8].

An advantage of online adaptive sparsification is that it
automatically adapts the number of representer data points
to the complexity of the task: simple trajectories on low-
dimensional manifolds can be represented with fewer data
points than complex trajectories in high-dimensional spaces.
This complexity adaptation is an advantage over models
based on neural networks, where complexity and cost of the
model have to be fixed beforehand.

A major concern in task-space control is keeping joint-
space stability [4], [16]. As we discussed in Section II-
B, augmenting the energy function from Equation (2) with
a regularization term may help keeping this stability. We
propose a simple regularization term, i.e.,

h(θ) =
1

2
(θ− θrest)

>(θ− θrest), (5)

where θrest is a joint configuration far from the joint limits of
the robot. By taking into account this extra term, we obtain
joint-space stability by preventing the addition of undesired
joint configurations into the training set. We emphasize that
even though the regularization was not significant in our
experiments (the λ was 10−5), we did not encounter joint-
space instability. This observation suggests that direct inverse
kinematics modeling is less sensitive to joint-space instability
than differential inverse kinematics where the joint-space
regularization is essential.

III. EXPERIMENTS

In this section, we present two experiments that suggest
the feasibility of the proposed method for real-time learning.
First, we show that the inverse kinematics model used by
FWGP outperforms LWPR for standard task-space tracking
tasks and achieves accuracy that is close to the analytical
solution. Subsequently, we show that FWGP can adapt to
the nonlinear dynamics of non-rigid robots.

A. Online Task-Space Tracking for the End-effector

Real world task-space tracking experiments has been
conducted to compare the performance (tracking accuracy,
learning speed) of FWGP, LWPR, and the analytical model
with pseudo-inverse method. To facilitate comparison to a
ground truth, we performed the physical experiments with a
7-DoF Barrett WAM arm [9], whose physical parameters are
known. For stability, we used θrest = [0 0.5 0 1.9 0 0 0]

> as
rest posture from Equation (5).

The task was to perform task-space tracking of a figure
eight, see Figure 2(b), while learning the kinematic model
of the robot at the same time. For FWGP and LWPR, we
started from an untrained system. We used a 500Hz sample
rate meaning that after each minute of learning 30000 new
training points had to be processed. For LWPR the initial
learning rate was set to α = 250 and the initial forgetting
rate to λ = 0.99 [21].

Figure 2(a) shows that after 20 seconds of online learning
an acceptable tracking accuracy was achieved by FWGP. Af-
ter four more minutes of learning and tracking, high accuracy
was achieved, see Figure 2(b). We present a comparison
of tracking accuracy on this task in Figure 2(c). FWGP
outperforms LWPR after 20 seconds of interaction time, and
approaches the performance of the analytical model.

All experiments were carried out in real time, demon-
strating that the complexity of the forward model and the
proposed inversion is manageable. After four minutes of
learning, as result of the GP sparsification, the final GP
model was built from 15–20 base points instead of 120000.
This reduction means that only a matrix of size 20× 20 had
to inverted in Equation (2). The same number of base points
were also used for other tasks, such as the star-like figure [7].
When the task was changed, during runtime, from a figure
eight to a star-like path , the online model adapted by adding
between one and four new points to the base set.

Based on 15–20 data points, the conjugate gradient min-
imization from Equation (2) needed 10–20 function or gra-
dient evaluations. The number of evaluations is not fixed as
it depends on the distance between the current joint position
and the predicted one. On average, the computation of one
desired joint coordinate took 2–10 milliseconds on an Intel
Core Duo 1.66Ghz processor.

B. Online Task-Space Tracking for a Swinging Ball

In this experiment, we made the simulated model more
complex by attaching a ball to the end-effector of the arm
with a 20 cm string. The mass of the ball was negligible
compared to the mass of the robot arm and air friction was
neglected. The swinging motion of the ball produced a non-
linear system. In this new setting, we performed task-space
tracking where the position of the ball was considered as the
desired position. The task was to track a circle figure with
20 cm radius, see Figure 3(a), on the horizontal plane. The
task was performed in two different settings: (1) when the
desired point moved slowly along the circle (one turn took
24 seconds) and (2) when the desired point moved fast along
the circle (one turn took 0.62 seconds).

In the first case, FWGP learned to move the end-effector
of the arm right above the desired circle while the ball was
moving along the desired trajectory since the swinging of
the ball was damped. It took four minutes of learning to
achieve the learning accuracy presented on Figure 3(a) and
Figure 3(b). The GP model was built from 20-25 data points.

In the second case, the trajectory of the end-effector of the
arm was moving fast inside the desired circle and used the
centrifugal force to swing the ball around, see Figure 3(c).
After 20 minutes of learning, the GP model was built from
13-15 data points. Following the fast circle movement with
the arm itself would be impossible, since it would reach the
physical limits of the robot.

We emphasize that the same parameter settings were used
for both experiments (with GP hyper-parameters C = 1 and
w = 0.7) Thus, the adaptive behavior depends weakly on
the hyper-parameters of the GP. In the first case, FWGP
considered the swinging motion of the ball as noise and the
trajectory of the ball followed a similar trajectory as the end-
effector. On the other hand, in the second experiment, the GP
model incorporated into the control model the centrifugal
force as well. No comparison with LWPR has been made
as it could not learn the previous tasks sufficiently well.
One possible explanation for this failure is that differential
inverse kinematics based control is more sensible to noise
measurements, e.g., the velocity of the ball followed a less
smooth trajectory than its position.

IV. DISCUSSION

We presented an adaptive task-space tracking control al-
gorithm for robot manipulators that is capable of controlling
non-linear robot models with noisy observations, such as a
ball attached at the end of a robot arm. FWGP exploits the
fact that forward robot models are relatively straightforward
to obtain and the inverse mapping is calculated using local
optimization. Sparse online GPs were used to represent the
forward kinematics model and the inverse is calculated using
efficient gradient search in the joint-space. We showed that
our approach outperforms the standard task-space control
methods and converges to the analytical solution provided by
the physical model of the robot. Furthermore, for complex
robots the standard methods fail while FWGP achieves good
performance.

ACKNOWLEDGMENTS

B. Bócsi wishes to thank for the financial support pro-
vided from program: Investing in people! PhD scholarship,
project co-financed by the European Social Fund, sectoral
operational program, human resources development 2007 -
2013. Contract POSDRU 88/1.5/S/60185. B. Bócsi and L.
Csató acknowledge the support of the Romanian Ministry
of Education, grant PN-II-RU-TE-2011-3-0278. The project
receives funding from the European Community’s Seventh
Framework Programme under grant agreement no. ICT-
248273 GeRT. The project receives funding from the Eu-
ropean Community’s Seventh Framework Programme under
grant agreement no. ICT-270327 CompLACS.

−0.2 −0.1 0 0.1 0.2
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

X axis (m)

Z
 a

xi
s

(m
)

Desired
End−Effector

(a) Tasks-space tracking of a figure eight
after 20 seconds of online learning.

−0.2 −0.1 0 0.1 0.2
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

X axis (m)

Z
 a

xi
s

(m
)

Desired
End−Effector

(b) Tasks-space tracking of a figure eight
after four minutes of online learning.

20.2

30.4

4.6

20 seconds

5.2

10.9

4.6

4 minutes

FWGP
LWPR
Analytical

R
M

SE
(m

m
)

(c) Tracking accuracy comparison.

Fig. 2. Online task-space tracking learning of the figure eight task by a 7-DoF Barrett WAM robot arm. (a) The tracking performance of FWGP after 20
seconds of online learning is acceptable. (b) After four minutes of learning, very good tracking accuracy is obtained. (c) FWGP outperforms LWPR both
after 20 seconds and four minutes of learning and its accuracy converges to the analytical solutions.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

X axis (m)

Y
 a

xi
s

(m
)

Desired
End−Effector

(a) End-effector trajectory with slow circle
learning.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

X axis (m)

Y
 a

xi
s

(m
)

Desired
Ball

(b) Ball trajectory with slow circle learning.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

X axis (m)

Y
 a

xi
s

(m
)

Desired
End−Effector
Ball

(c) End-effector and ball trajectory with fast
circle learning.

Fig. 3. Online task-space tracking learning of a circle following task by a simulated 7-DoF Barrett WAM robot arm with a ball attached on it. (a) When
the movement of the desired point on the circle is slow the end-effector is placed above the desired trajectory while (b) the ball is hanging down and its
swinging is damped – the swinging is considered noise by FWGP. (c) When the desired point moves fast on the circle the end-effector moves inside the
desired circle while the ball swings around along the desired trajectory – the centrifugal force is incorporated into the control model.

REFERENCES

[1] Botond Bócsi, Duy Nguyen-Tuong, Lehel Csató, Bernhard
Schoelkopf, and Jan Peters. Learning inverse kinematics with
structured prediction. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, pages 698–703, San
Francisco, USA, 2011.

[2] John J. Craig. Introduction to Robotics: Mechanics and Control.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2nd edition, 1989.

[3] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes.
Neural Computation, 14(3):641–668, 2002.

[4] A. D’Souza, S. Vijayakumar, and S. Schaal. Learning inverse kinemat-
ics. In Proceedings of the IEEE International Conference on Intelligent
Robots and Systems. Piscataway, NJ: IEEE, 2001.

[5] Michael I. Jordan and David E. Rumelhart. Forward models: Super-
vised learning with a distal teacher. Cognitive Science, 16:307–354,
1992.

[6] Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse
Gaussian process methods: The informative vector machine. In Neural
Information Processing Systems, pages 609–616. MIT Press, 2002.

[7] Jun Nakanishi, Rick Cory, Michael Mistry, Jan Peters, and Stefan
Schaal. Operational space control: a theoretical and emprical com-
parison. (6):737–757, 2008.

[8] Duy Nguyen-Tuong and Jan Peters. Using model knowledge for
learning inverse dynamics. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2677–2682, 2010.

[9] Duy Nguyen-Tuong, Matthias W. Seeger, and Jan Peters. Model
learning with local Gaussian process regression. Advanced Robotics,
23(15):2015–2034, 2009.

[10] Manfred Opper. A Bayesian approach to on-line learning, pages 363–
378. Cambridge University Press, 1998.

[11] Eimei Oyama, Nak Young Chong, Arvin Agah, Taro Maeda, and
Susumu Tachi. Inverse kinematics learning by modular architecture

neural networks with performance prediction networks. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 1006–1012, 2001.

[12] Joaquin Quiñonero Candela and Carl E. Rasmussen. A unifying
view of sparse approximate Gaussian process regression. Journal of
Machine Learning Research, 6:1939–1959, 2005.

[13] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Pro-
cesses for Machine Learning. The MIT Press, 2005.

[14] Camille Salaün, Vincent Padois, and Olivier Sigaud. Learning forward
models for the operational space control of redundant robots. In Olivier
Sigaud and Jan Peters, editors, From Motor Learning to Interaction
Learning in Robots, volume 264 of Studies in Computational Intelli-
gence, pages 169–192. Springer, 2010.

[15] Bernhard Schölkopf and Alex Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization and Beyond. MIT-
Press, Cambridge, MA, 2002.

[16] Lorenzo Sciavicco and Bruno Siciliano. Modelling and Control
of Robot Manipulators (Advanced Textbooks in Control and Signal
Processing). Advanced textbooks in control and signal processing.
Springer, 2nd edition, January 2005.

[17] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes
using pseudo-inputs. In Advances in Neural Information Processing
Systems, pages 1257–1264. MIT press, 2006.

[18] Jan A. Snyman. Practical Mathematical Optimization: An Introduction
to Basic Optimization Theory and Classical and New Gradient-Based
Algorithms. Applied Optimization. Springer-Verlag New York, 2005.

[19] M.W. Spong and M. Vidyasagar. Robot Dynamics And Control. Wiley
India Pvt. Ltd., 2008.

[20] Ganghua Sun and Brian Scassellati. Reaching through learned forward
model. In Proceedings of the IEEE-RAS/RSJ International Conference
on Humanoid Robots, Santa Monica, 2004.

[21] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental
online learning in high dimensions. Neural Computation, 17:2602–
2634, 2005.

