Advanced Mathematical Methods

 WS 2023/24
4 Mathematical Statistics

Dr. Julie Schnaitmann
Department of Statistics, Econometrics and Empirical
Economics

Eberhard karls	
UNIVERSITAT	Wirtschafts- Und
TUBINGEN	SOZIALWISSENSCHAFTLICHE
FAKUlTÄT	

Outline: Mathematical Statistics

4.6 Joint distributions
4.7 Marginal Distributions
4.8 Covariance and correlation
4.9 Conditional Distributions
4.10 Conditional Moments
4.11 The bivariate normal distribution
4.12 Multivariate Distributions

Readings

- A. Papoulis and A. U. Pillai. Probability, Random Variables and Stochastic Processes.
Mc Graw Hill, fourth edition, 2002, Chapter 6

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

- Discrete RVs II: Functions of RV, conditional probabilities, specific distribution, total expectation theorem, joint probabilities https://www.youtube.com/watch?v=-qCEoqpwjf4
- Discrete RVs III: Conditional distributions and joint distributions continued https://www.youtube.com/watch?v=EObHWIEKGjA
- Multiple Continuous RVs: conditional pdf and cdf, joint pdf and cdf
https://www.youtube.com/watch?v=CadZXGNauY0

4.6 Joint distributions

Definition: Joint density function

The joint density for two discrete random variables X_{1} and X_{2} is given as

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)= \begin{cases}P\left(X_{1}=x_{1 i} \cap X_{2}=x_{2 i}\right) & \forall i, j \\ 0 & \text { else }\end{cases}
$$

Properties:

- $f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) \geq 0 \quad \forall \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
- $\sum_{x_{i}} \sum_{x_{j}} f_{X}\left(x_{1 i}, x_{2 j}\right)=1$

4.6 Joint distributions

Definition: Joint cumulative distribution function

The cdf for two discrete random variables X_{1} and X_{2} is given as

$$
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1} \cap X_{2} \leq x_{2}\right)=\sum_{x_{1 i} \leq x_{1}} \sum_{x_{2} \leq x_{2}} f_{\boldsymbol{X}}\left(x_{1 i}, x_{2 i}\right)
$$

it follows that

$$
P\left(a \leq X_{1} \leq b \cap c \leq X_{2} \leq d\right)=\sum_{a \leq x_{1} \leq b} \sum_{c \leq x_{2} \leq d} f_{\boldsymbol{X}}\left(x_{1 i}, x_{2 i}\right)
$$

4.6 Joint distributions

If X_{1} and X_{2} are two continuous random variables, the following holds:

$$
\begin{array}{ll}
\text { pdf } & f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)
\end{array}=\frac{\partial^{2} F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}, ~\left(F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} f_{\boldsymbol{X}}\left(u_{1}, u_{2}\right) d u_{2} d u_{1} .\right.
$$

4.7 Marginal Distributions

Derive the distribution of the individual variable from the joint distribution function:
\rightarrow sum or integrate out the other variable

$$
f_{X_{1}}\left(x_{1}\right)= \begin{cases}\sum_{x_{2 j}} f_{\boldsymbol{X}}\left(x_{1 i}, x_{2 j}\right) & \text { if } \boldsymbol{X} \text { is discrete } \\ \int_{-\infty}^{\infty} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{2} & \text { if } \boldsymbol{X} \text { is continuous }\end{cases}
$$

4.7 Marginal Distributions

Two random variables are statistically independent if their joint density is the product of the marginal densities:

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right) \Leftrightarrow X_{1} \text { and } X_{2} \text { are independent. }
$$

Under independence the cdf factors as well:

$$
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=F_{X_{1}}\left(x_{1}\right) \cdot F_{X_{2}}\left(x_{2}\right) .
$$

Expectations in a joint distribution are computed with respect to the marginals.

4.7 Marginal Distributions

Two random variables are statistically independent if their joint density is the product of the marginal densities:

$$
f_{X}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right) \Leftrightarrow X_{1} \text { and } X_{2} \text { are independent. }
$$

Under independence the cdf factors as well:

$$
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=F_{X_{1}}\left(x_{1}\right) \cdot F_{X_{2}}\left(x_{2}\right) .
$$

Expectations in a joint distribution are computed with respect to the marginals.

4.8 Covariance and correlation

$$
\operatorname{Cov}\left[X_{1}, X_{2}\right]=E\left[\left(X_{1}-E\left[X_{1}\right]\right)\left(X_{2}-E\left[X_{2}\right]\right)\right]
$$

Properties:

- symmetry: $\operatorname{Cov}\left[X_{1}, X_{2}\right]=\operatorname{Cov}\left[X_{2}, X_{1}\right]$
- linear transformation:

$$
\begin{array}{r}
Y_{1}=b_{0}+b_{1} X_{1} \quad Y_{2}=c_{0}+c_{1} X_{2} \\
\Rightarrow \operatorname{Cov}\left[Y_{1}, Y_{2}\right]=b_{1} c_{1} \operatorname{Cov}\left[X_{1}, X_{2}\right]
\end{array}
$$

- calculation:

$$
\operatorname{Cov}\left[X_{1}, X_{2}\right]=\left\{\begin{array}{l}
\sum_{x_{1 i}} \sum_{x_{2 j}} x_{1 i} x_{2 j} f_{\boldsymbol{X}}\left(x_{1 i}, x_{2 j}\right)-E\left[X_{1}\right] E\left[X_{2}\right] \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}-E\left[X_{1}\right] E\left[X_{2}\right]
\end{array}\right.
$$

4.8 Covariance and correlation

Pearson's correlation coefficient

$$
\rho_{x_{1}, \chi_{2}}=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right) \cdot \operatorname{Var}\left(X_{2}\right)}}=\frac{\sigma_{x_{1}, \chi_{2}}}{\sigma_{x_{1}} \sigma_{x_{2}}}
$$

- If X_{1} and X_{2} are independent, they are also uncorrelated.
- Uncorrelated does not imply independence!
- Exception: normal distribution, characterized by 1st and 2nd moment.

4.9 Conditional Distributions

- Distribution of the varibale X_{1} given that X_{2} takes on a certain value x_{1}.
- Closely related to conditional probabilities:

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\frac{P\left(X_{1}=x_{1} \cap X_{2}=x_{2}\right)}{P\left(X_{2}=x_{2}\right)}
$$

conditional pdf of X_{1} given $X_{2}=x_{2}$:

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

4.9 Conditional Distributions

conditional cdf of X_{1} given $X_{2}=x_{2}$:

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\sum_{x_{1 i} \leq x_{1}} f_{X_{1} \mid X_{2}}\left(x_{1 i} \mid x_{2}\right)=F_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)
$$

If X_{1} and X_{2} are independent, the conditional probability and the marginal probability coincide:

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right)
$$

because

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right)
$$

4.9 Conditional Distributions

The joint pdf can be derived from conditional and marginal densities in 2 ways:

$$
f_{X_{1} X_{2}}=f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) \cdot f_{X_{2}}\left(x_{2}\right)=f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \cdot f_{X_{1}}\left(x_{1}\right)
$$

4.10 Conditional Moments

$$
\begin{aligned}
E\left[Y^{k} \mid X=x\right] & =\sum_{j} y_{j}^{k} \cdot \frac{P\left(X=x \cap Y=y_{j}\right)}{P(X=x)} \\
& =\sum_{y_{j}} y_{j}^{k} \cdot P\left(Y=y_{j} \mid X=x\right) \\
& =\sum_{y_{j}} y_{j}^{k} \cdot f_{Y \mid X\left(y_{j} \mid x\right)} \\
& =\sum_{y_{j}} y_{j}^{k} \cdot \frac{f_{X Y}\left(x, y_{j}\right)}{f_{X}(x)} \quad \text { if } Y \text { is discrete } \\
E\left[Y^{k} \mid X=x\right] & =\int_{-\infty}^{\infty} y^{k} \cdot \frac{f_{X Y}(x, y)}{f_{X}(x)} d y \quad \text { if } Y \text { is continuous }
\end{aligned}
$$

4.10 Conditional Moments

$$
\begin{aligned}
\operatorname{Var}[Y \mid X=x] & =E_{Y \mid X}\left[(Y-E[Y \mid X=x])^{2}\right] \\
& =\sum_{y_{j}}\left(y_{j}-E[Y \mid X=x]\right)^{2} \cdot f_{Y \mid X}\left(y_{j} \mid x\right) \\
& \text { if } Y \text { is discrete }
\end{aligned}
$$

$$
\operatorname{Var}[Y \mid X=x]=E_{Y \mid X}\left[(Y-E[Y \mid X=x])^{2}\right]
$$

$$
=\int_{-\infty}^{\infty}(y-E[Y \mid X=x])^{2} \cdot f_{Y \mid X}(y \mid x) d y
$$

if Y is continuous

4.10 Conditional Moments

Law of Total Expectations/ Law of Iterated Expectations

$$
\begin{aligned}
E[Y] & =E_{X}[E[Y \mid X]] \\
E_{X}\left[E_{Y \mid X}[Y \mid X]\right] & =E[Y]=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} y \cdot \frac{f_{X Y}(x, y)}{f_{X}(x)} d y\right] f_{X}(x) d x
\end{aligned}
$$

$E_{Y \mid X}$ is a random value as X is a random variable.

4.11 The bivariate normal distribution

Definition: Bivariate normal distribution

Two random variables X_{1} and X_{2} are jointly normally distributed if they are described by the joint pdf

$$
f_{X}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \cdot \exp \left[-\frac{1}{2} q\left(x_{1}, x_{2}\right)\right]
$$

where

$$
q\left(x_{1}, x_{2}\right)=\frac{1}{1-\rho^{2}}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right] .
$$

4.11 The bivariate normal distribution

If $\left(X_{1}, X_{2}\right) \sim N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$, then

- $f_{X_{1}}\left(x_{1}\right) \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$, $f_{X_{2}}\left(x_{2}\right) \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$,
- $f_{X_{1} \mid X_{2}} \sim N\left(\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu_{2}\right), \sigma_{1}^{2}\left(1-\rho^{2}\right)\right)$,

$$
f_{X_{2} \mid X_{1}} \sim N\left(\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right) .
$$

4.12 Multivariate Distributions

\boldsymbol{x} a random vector with joint density $f_{\boldsymbol{X}}(\boldsymbol{x})$

$$
F_{\boldsymbol{X}}(\boldsymbol{x})=\int_{-\infty}^{x_{n}} \int_{-\infty}^{x_{n}-1} \cdots \int_{-\infty}^{x_{1}} f_{\boldsymbol{X}}(\boldsymbol{t}) d t_{1} d t_{2} \ldots d t_{n-1} d t_{n}
$$

Expected Value:

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right)=\left(\begin{array}{c}
E\left[X_{1}\right] \\
\vdots \\
E\left[X_{n}\right]
\end{array}\right)
$$

4.12 Multivariate Distributions

Covariance Matrix

$$
\begin{gathered}
E\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\prime}\right] \\
=\left(\begin{array}{cccc}
\left(x_{1}-\mu_{1}\right)\left(x_{1}-\mu_{1}\right) & \left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) & \ldots & \left(x_{1}-\mu_{1}\right)\left(x_{n}-\mu_{n}\right) \\
\left(x_{2}-\mu_{2}\right)\left(x_{1}-\mu_{1}\right) & \left(x_{2}-\mu_{2}\right)\left(x_{2}-\mu_{2}\right) & \ldots & \left(x_{2}-\mu_{2}\right)\left(x_{n}-\mu_{n}\right) \\
\vdots & & \\
\left(x_{n}-\mu_{n}\right)\left(x_{1}-\mu_{1}\right) & \left(x_{n}-\mu_{2}\right)\left(x_{n}-\mu_{2}\right) & \ldots & \left(x_{n}-\mu_{n}\right)\left(x_{n}-\mu_{n}\right)
\end{array}\right) \\
=\left(\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots \sigma_{1 n} \\
\sigma_{21} & \sigma_{2}^{2} & \ldots \sigma_{2 n} \\
\vdots & & \\
\sigma_{n 1} & \ldots & \ldots \sigma_{n}^{2}
\end{array}\right)=E\left[\boldsymbol{x x ^ { \prime }}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}=\boldsymbol{\Sigma}
\end{gathered}
$$

4.12 Multivariate Distributions

Linear Transformation: sum of n random variables $\sum_{i=1}^{n} a_{i} x_{i}$

$$
\begin{aligned}
E\left[a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}\right] & =E\left[\mathbf{a}^{\prime} \mathbf{x}\right] \\
& =\boldsymbol{a}^{\prime} E[\boldsymbol{x}]=\boldsymbol{a}^{\prime} \boldsymbol{\mu} \\
\operatorname{Var}\left[\boldsymbol{a}^{\prime} \mathbf{x}\right] & =E\left[\left(\boldsymbol{a}^{\prime} \mathbf{x}-E\left[\boldsymbol{a}^{\prime} \mathbf{x}\right]\right)^{2}\right] \\
& =E\left[\left(\mathbf{a}^{\prime}(\boldsymbol{x}-E[\boldsymbol{x}])^{2}\right]\right. \\
& =E\left[\left(\mathbf{a}^{\prime}(\mathbf{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{a}\right]\right. \\
& =\boldsymbol{a}^{\prime} E\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\prime}\right] \boldsymbol{a} \\
& =\boldsymbol{a}^{\prime} \mathbf{\Sigma} \boldsymbol{a} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \sigma_{i j}
\end{aligned}
$$

4.12 Multivariate Distributions

Linear transformation: $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$

i-th element in $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ is $y_{i}=\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x}$ with $\boldsymbol{a}_{\boldsymbol{i}} i$-th row in \boldsymbol{A}
$\Rightarrow E\left[y_{i}\right]=E\left[\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x}\right]=\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{\mu}$ as before

$$
\begin{aligned}
E[\boldsymbol{y}] & =E[\boldsymbol{A} \boldsymbol{x}]=\boldsymbol{A} E[\boldsymbol{x}]=\boldsymbol{A} \boldsymbol{\mu} \\
\operatorname{Var}[\boldsymbol{y}] & =E\left[(\boldsymbol{y}-E[\boldsymbol{y}])(\boldsymbol{y}-E[\boldsymbol{y}])^{\prime}\right] \\
& =E\left[(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{A} \boldsymbol{\mu})(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{A} \boldsymbol{\mu})^{\prime}\right] \\
& =E\left[\left(\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{\mu})\left[(\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{\mu})]^{\prime}\right]\right.\right. \\
& =E\left[\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{A}^{\prime}\right] \\
& =\boldsymbol{A} E\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\prime}\right] \boldsymbol{A}^{\prime}=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\prime}
\end{aligned}
$$

