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Abstract

Videos consisting of thousands of high resolution frames
are challenging for existing structure from motion (SfM)
and simultaneous-localization and mapping (SLAM) tech-
niques. We present a new approach for simultaneously com-
puting extrinsic camera poses and 3D scene structure that
is capable of handling such large volumes of image data.
The key insight behind this paper is to effectively exploit co-
herence in densely sampled video input. Our technical con-
tributions include robust tracking and selection of confident
video frames, a novel window bundle adjustment, frame-to-
structure verification for globally consistent reconstructions
with multi-loop closing, and utilizing efficient global linear
camera pose estimation in order to link both consecutive
and distant bundle adjustment windows. To our knowledge
we describe the first system that is capable of handling high
resolution, high frame-rate video data with close to real-
time performance. In addition, our approach can robustly
integrate data from different video sequences, allowing mul-
tiple video streams to be simultaneously calibrated in an
efficient and globally optimal way. We demonstrate high
quality alignment on large scale challenging datasets, e.g.,
2-20 megapixel resolution at frame rates of 25-120 Hz with
thousands of frames.

1. Introduction

Structure from Motion (SfM), i.e., reconstructing cam-
era parameters and sparse scene structure from images, has
a long history in computer vision. Early approaches con-
centrated on reconstruction from videos based on feature
tracking techniques (see, e.g., [12, 27] for an overview).
With the advent of robust feature descriptors like SIFT,
SURF or ORB (see, e.g., the survey [29]), larger view dif-
ferences could be matched, and SfM techniques were suc-
cessfully extended to very large scale, unstructured sets of
images [5,26]. Coupled with the availability of online photo
collections, these approaches have become very popular,
enabling a wide range of novel applications such as 3D re-
construction from thousands of photographs [6, 34].

However, for individual users, and in personalized appli-

cation domains, it is often much simpler and more practical
to capture video instead of photographs to ensure a suffi-
ciently broad as well as dense coverage of a scene. At the
same time, video resolution and frame rate are constantly
increasing. Mobile cameras such as the iPhone can record
more than 120 frames per second, yielding thousands of im-
ages in just a few seconds of capture. Older approaches
based on feature tracking as well as modern sparse feature
point and SLAM-based approaches do not scale well to such
densely-sampled data, both due to numerical inaccuracies
arising from small baselines, and computational tractability
associated with the sheer quantity of pixels.

But while densely sampled, high quality video data
presents many challenges, it also provides opportunities.
For instance, recent approaches have demonstrated how
spatiotemporal coherence can be exploited in the context
of 3D reconstruction [15, 33]. The key insight in this paper
is that such data also enables novel, more efficient strategies
for achieving globally consistent geometric calibrations.

Contributions. The main technical contributions that
we propose are: a modification to KLT that allows for drift
free tracking over thousands of frames, a robust selection
of confident frames, a novel interleaved window bundle ad-
justment (BA) that makes optimizing large windows more
efficient, uniform image coverage based point subsampling,
robust frame-to-structure verification to obtain global, wide
baseline anchors between camera poses, and the utiliza-
tion of an efficient linear camera post estimation (LCPE)
method that integrates information from both BA windows
and global anchors in a unified way.

As opposed to prior work, our approach does not rely
on analytical, fixed input size n-Point methods, which we
observed to be not good enough due the fact that they use
less data than BA, and therefore yield less precise results for
the small baselines of densely sampled video input. More-
over, we combine results from piecewise camera track re-
construction, loop closing, and linking between different
camera tracks into a single nonlinear optimization proce-
dure. This allows different camera tracks to help each other
to get a good initialization for global optimization.

When all of the contributions are combined, our method
is able to obtain a globally consistent extrinsic camera cali-
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bration in substantially less time then previous approaches,
and on datasets with 1000s of high resolution frames. Fur-
thermore, our approach generalizes to an arbitrary number
of input video sequences, allowing for rapid, globally con-
sistent calibration and scene reconstruction across multiple
capture devices. In this paper we describe all of these con-
tributions, and present detailed psuedocode for reimplemen-
tation in the supplemental material [1].

In our system we leverage established existing ap-
proaches, such as the commonly used KLT tracker [7],
SIFT histogram based frame similarity cost matrices [30],
a global linear solver that integrates relative camera pose
constraints [14], and a robust depth-based point parameter-
ization [33].

2. Related Work
Depending on underlying methodology and applications,

a multitude of different terminologies exists for geometric
camera auto-calibration, the most common being variants
of structure from motion (SfM) and simultaneous localiza-
tion and mapping (SLAM). Here we classify prior works
into two categories according to their preferred input data;
unstructured and sparse vs. coherent and dense sampling.

Unstructured, sparsely sampled input. A key chal-
lenge for methods focusing on sparsely sampled input such
as photo collections is that the data is generally unstructured
and heterogeneous, with significant appearance changes be-
tween images. The current state-of-the-art is therefore gen-
erally based on iterating (see [12]): (i) robust detection and
matching of feature points, (ii) n-point algorithms to estab-
lish initial geometric relationships between views, and (iii)
global BA. This approach has been successfully extended
to massive, very large scale datasets [6,11,26], with various
publicly available implementations [2, 4].

A central problem for such techniques is bootstrapping,
i.e., finding a good global initialization for BA that includes
all images, without having to run many iterations of BA on
parts of the reconstruction. Martinec and Pajdla [20] present
a robust solution for finding global camera poses, concen-
trating on the camera orientation. Wilson and Snavely [32]
and Jiang et al. [14] show how to find global camera posi-
tions given known orientations. For massive datasets like
Internet photo collections, a second problem is the sheer
amount of images, often in the order of millions. To this
end, techniques such as skeletal graphs [25] have been pro-
posed, which remove unnecessary data by focusing on sta-
ble subsets of cameras. Agarwal et al. [5] showed that it
is necessary to reconsider well established strategies in or-
der to tackle large datasets consisting of 10s of thousands of
images. A further alternative is to perform an incremental,
piecewise reconstruction of a scene [23], and later assemble
individual fragments based, e.g., on extracted scene point
descriptors.

All these methods are tuned towards heterogeneous, un-
structured data, and as a consequence have difficulty when
applied to densely sampled, coherent image sequences.
This is due to per-frame feature point detection and pose
estimation using n-point algorithms causing unstable recon-
structions, as well as computational inefficiency. In our ex-
periments, we show that by explicitly considering coher-
ence in the data, it is possible to achieve high quality recon-
structions at significantly faster convergence and computa-
tion times.

Coherent, densely sampled input. In contrast to above,
most techniques for densely sampled input such as video se-
quences are based on continuously tracking feature points
throughout image sequences and iterative pose optimiza-
tion techniques [12, 24, 27]. These original methods were
designed for short, low resolution video sequences and did
not consider multi-loop closing.

Particularly related are SLAM approaches and their vari-
ants, as their aim is to compute accurate camera poses of
a dynamically moving camera from a video stream. Of-
ten, however, such techniques are limited with respect to
the supported scene size [16] or require additional sen-
sor modalities [17]. Real-time methods based on feature
points [9] or dense, per-pixel tracking [21] are generally de-
signed to provide as good as possible results with a small
input lag, rather than a final, fully consistent and high qual-
ity reconstruction that globally optimizes the poses of all
input frames. CoSLAM [35] combines data from coop-
eratively acquired videos as long as some of the cameras
see the same content at the same time. Other approaches
achieve real time performance, but only on preconstructed
scenes [18], i.e., with known geometry.

Recently, a direct SLAM method (LSD-SLAM) was pro-
posed [10], which does not require detection and tracking
of feature points, but instead recovers sparse depth maps
based directly on epipolar line scanning. However, such
an approach does not scale well to high image resolutions,
as it requires depth estimates for many pixels. In addition,
depth recovery is very sensitive to accurate intrinsic calibra-
tion. Our approach instead focuses on a subset of reliable
features tracks, which is more efficient and less sensitive to
image distortions, especially for high resolution input.

Specific light field calibration techniques have been pro-
posed for dense spatio-temporal-angular sampling using
camera arrays [13,15,31] and plenoptic cameras [22]. How-
ever, these methods generally focus on the static geomet-
ric calibration of a light field, rather than computing both
structure and motion, and hence cannot be applied to the
acquisition scenarios we discuss in this paper. The work on
unstructured light field acquisition [8] explores this to some
extent, but only supports small scale scenes and focuses on
an interactive interface for guiding the user during the ac-
quisition process.
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Figure 1. Algorithm overview. The feature detection stage com-
putes KLT tracks for window BA and SIFT features for wide base-
line handling. The window BA sweeps through the input, selects
confident frames and computes camera pose constraints between
interleaving sets of the selected frames. The global anchor stage
uses the SIFT features to establish global links between different
sections of the sequence. A linear camera pose estimation pro-
duces an initial arrangement of cameras which is further refined
by bundle adjustment steps.

Our method focuses on densely sampled image se-
quences and overcomes several of the previously mentioned
limitations. This results in a SfM approach that is sta-
ble and globally consistent over long, high resolution se-
quences, while still being able to robustly handle wide base-
line matches.

3. Method
The input to our method is one or more image sequences.

We focus on extrinsic calibration and assume the intrin-
sics to be fixed and known (in practice they can be com-
puted from a few frames of the image sequences by using
Bundler [2]).

On a high level our strategy is as follows. First, we per-
form a modified 2D tracking of feature points utilizing data
coherence to reduce drift. Next, we apply a window BA
strategy on a set of confident frames only. These are frames
that are well connected via continuous tracks. To incorpo-
rate loop closing, we further establish global anchor links
between carefully selected frame pairs of different parts of
the video or even different video streams altogether. In ad-
dition to these global constraints, relative camera pose con-
straints from the window BA are integrated with an efficient
linear camera pose estimation [14]. We then perform global
BA, and finally add all the less confident images by inter-
polation and BA of their poses. During this step, we keep
the scene structure fixed as determined by the confident im-
ages. The final result is a globally consistent calibration of
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Figure 2. Influence of KLT drift on the reconstruction result. Note
how drift free KLT tracks reduce the drift of the camera positions
as well as the average reprojection error.

all input frames from all input sequences.

Figure 1 shows an overview of the key steps of our algo-
rithm. The following sections discuss each step in detail.

3.1. Drift reduced feature tracking

Detectors optimized for wide baseline matching such
as SIFT [19] compute incoherent feature point sets even
between neighboring video frames. For continuous se-
quences, feature point tracking produces more reliable and
efficient results. We build on the standard KLT tracker im-
plemented in OpenCV [3], which is also the basis for earlier
video-centered SfM techniques [27]. There are, however,
two limitations of standard continuous KLT that have to be
addressed in our application setting.

Firstly, we observed that for densely sampled video se-
quences, feature tracks that are visible for hundreds of
frames exhibit noticeable drift. Note that for high frame rate
cameras, this often corresponds to just a second of video.
We therefore modify the basic tracking to perform a simple
drift correction: when adding a frame, we track each fea-
ture from the previous frame to the new one, and then re-
fine the feature position in the new frame using the original
frame where the feature was detected. In our experiments
this simple modification led to considerably reduced drift
and higher reconstruction quality (see Figure 2).

Secondly, simply tracking points over an image sequence
cannot guarantee any form of global consistency of the re-
constructed cameras and scene. For example, when the
camera revisits the same scene elements multiple times over
a longer image sequence with intermediate occlusions, a
single scene point will be represented by multiple, indi-
vidually tracked and reconstructed points. This problem
is known as the so called loop-closing problem in SLAM.
For each feature track we therefore extract SIFT descrip-
tors [19] in confident frames after the window BA, which
is later used to re-identify points and for the generation of
global anchor constraints.



Figure 3. Illustration of different camera initializations. Cameras
are arranged uniformly along a line orthogonal to the viewing di-
rection in 45° steps.

3.2. Interleaved window bundle adjustment

Given feature tracks and descriptors, the goal of our win-
dow BA is to efficiently reconstruct camera poses for im-
age sub-sequences without considering global consistency
or jointly processing multiple individual sequences, both of
which will be addressed later.

3.2.1 Window initialization

Initializing camera geometry is usually accomplished us-
ing n-point algorithms [12], which are (in contrast to BA)
limited in the number of constraints and therefore generally
not sufficiently accurate given the very small camera base-
lines encountered in high framerate video sequences. Our
method is inspired by the approach of Yu and Gallup [33]
designed for accidental small baseline camera motion.

We initialize a window by picking the first N consecu-
tive images from an image sequence and immediately per-
form a BA step using the parameterization proposed in [33],
where points are represented by inverse depth values pro-
jected from a reference frame (we use the center image in
the window). We found, however, that identical initializa-
tion of all cameras [33] may cause BA to get stuck in local
minima. According to our observations, this can reliably be
avoided by starting from different linearly displaced config-
urations (see Figure 3) and optimizing first for the camera
orientation and then for all extrinsics. Finally we pick the
best result in terms of reprojection error. Moreover, we ob-
served more robust results when initializing scene points
with uniform instead of random depth [33]. The origi-
nal method of Yu and Gallup requires a comparably large
number of images for robust convergence. With our above
modifications we observed stable convergence already with
N = 11. For high frame rate handheld video, spacing be-
tween frames (e.g., 3 in our experiments) for slightly in-
creased baselines led to improved convergence.

The next step is to grow this window. To this end, we
first describe a subsampling scheme of the scene points that
allows us to reduce the BA computational cost significantly
at similar reconstruction quality.

3.2.2 Scene point subsampling

Following the observation that BA requires a certain mini-
mum number of scene points but does not improve signif-
icantly with many more points, we employ a subsampling
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Figure 4. Comparison of reconstruction with and without point
subsampling. Our subsampling strategy leads to comparable
reconstruction results while reducing the computation time by
roughly a factor of 3. This factor is assumed to increase on larger
image resolutions since more points can be excluded there.

scheme on the available scene points in all BA steps. We
found that sampling points randomly can lead to unstable or
underconstrained optimization. We therefore choose point
samples according to three rules explained below, achieving
similar reconstruction quality at a fraction of the optimiza-
tion time.

First, a minimum number τ of points should be visible
from each camera. Second, the reprojected 2D positions of
the points should be uniformly distributed in all camera im-
ages. Finally, the points should be visible in “sufficiently
many” images, since in general a point provides more reli-
able constraints when seen by more cameras. At the same
time, however, we observed that points visible in a very
large number of frames, i.e. points with very long 2D tracks,
are more likely to be affected by tracking errors along ob-
ject silhouettes, corrupting the result. Each point is there-
fore picked with a probability proportional to the length of
the track, but capped to no longer then 10 frames. This sub-
sampling strategy resulted in a 3-fold speedup without sac-
rificing result quality (see Figure 4). For all experiments,
we use a value of τ = 100.

3.2.3 Confidence criteria

For efficiency reasons, and to improve result quality, we
compute scene structure and camera poses initially only for
a sparse set of confident frames. In order to find this set, we
test cameras with a linearly increasing step size and add the
furthest possible frame fulfilling a set of confidence criteria.



We define the following three confidence criteria ξ1, ξ2, ξ3
for measuring whether a tested camera c is suitable for win-
dow BA.

The first term ξ1 measures the number of features of the
camera that can be matched to the points pi of the window
with a low reprojection error. This ensures that there are
sufficiently many constraints for BA.
ξ2 represents how far the camera moved around the scene

points. We use the the median of all points’ angular differ-
ences φ̃(−→pcp,−→pcn) between the vectors to the new cn and the
previous camera cp. This term makes sure that two cameras
are not too far apart from each other and ensures that the
visual appearance of the feature points doesn’t change to
much so that the next confident frame has mostly the same
feature tracks.

The last term ξ3 is set to the median reprojection er-
ror ẽ of the tested camera ct and its visible points pt:
ξ3 = ẽ(ct, pt). This ensures that no cameras are added to
the optimization which are too inconsistent with the content
of the window.

We label a camera as sufficiently confident when the fol-
lowing criteria are fulfilled: ξ1 ≥ 30, ξ2 ≤ 5°, ξ3 ≤ 5px,
i.e., the camera must be linked to at least 30 points, must not
rotate more than five degrees around at least half of these
points, and at least half of the points must have less than
five pixels reprojection error. Similarly, a camera is labeled
as candidate for removal from the current window as soon
as it does not satisfy the following confidence constraints
anymore: ξ1 ≥ 70, ξ2 ≤ 10°, i.e., at least 70 points and less
than ten degrees of camera rotation around at least 50% of
the points.

3.2.4 Window processing

Given the confidence criteria for addition and removal, in
each iteration of the algorithm, we first remove images la-
beled for removal from the current window, keeping a min-
imum of 5 cameras in the window at all times. After this
step, the current window contains usually about five to ten
confident cameras.

However, for some camera (sub-)trajectories, stable win-
dows can be much larger. To retain the efficiency of BA
while keeping as much information as possible, we select a
subset of the cameras in the window on which to perform
the actual BA. We pick cameras with increased spacing for
older images (see Figure 5). This subset is then optimized
using standard BA.

After BA, all cameras in the current window are made
consistent with a linear camera pose estimation tech-
nique [14], using the relative camera pose constraints of for-
mer windows. This solver works on the camera poses only,
producing faster results than BA in comparable quality as
long as the input is consistent.

Figure 5. Selecting keyframes for interleaved window BA. Offsets
between the keyframes selected for BA are linearly increasing to-
wards older frames. To determine a consistent pose for a camera
which was not part of the BA, we use the relative pose constraints
that were generated in previous windows where the camera was
part of the BA.

We experimented with various offsetting strategies be-
sides the growth strategy described above. The linear in-
crease provided the best results in terms of algorithm stabil-
ity, camera sampling, and computation time. The output of
this stage are camera pose constraints from each window,
which we will later use for initializing the global scene op-
timization. We also keep all the windows for finding global
anchor constraints as described in the following section.

3.3. Global anchor constraints

The goal of these constraints is to establish global links
between different parts (possibly different subsequences) of
a video that have shared scene content. These links can later
be used in the linear camera pose estimation stage to obtain
a good global initialization.

We establish these constraints by importance sampling
frame pairs from the set of confident frames and by join-
ing them based on SIFT features and the previously re-
constructed window scene structure. To do this, we ex-
tract SIFT descriptors for all KLT features in the confident
frames, and for each pair, try to integrate the camera of
one frame using the scene structure associated with another
frame using BA. The optimized camera pose is rated based
on a confidence measure. Stable matching pairs among all
possible confident frame pairs in the video sequence(s) are
used as relative camera pose constraints for the global linear
pose estimation stage (see Figure 1).

3.3.1 Camera stability

The stability of cameras for being used as global anchor
constraints is based on the following measures ζ:

• The number of remaining points attached to a camera:
ζ1 = n. This makes sure that there are enough con-
straints for optimization.

• The distribution of the point projections ρ in the image:
ζ2 = min(Std(ρx),Std(ρy)). This avoids unstable
configurations with very localized feature positions.



C V S = (1−C) ◦V
Figure 6. Cost, variance and sampling matrices for wide baseline
candidate picking. The camera circled an object twice. Dark parts
of C indicate regions where good global anchor constraints are
likely to be found. S shows where we sample for global anchor
constraints.

• The ratio between the smallest and the largest princi-
pal component PCA(p)min, PCA(p)max of the scene
point positions p: ζ3 = PCA(p)min

PCA(p)max
. This avoids using

two-dimensional scenes which tend to be ambiguous
(e.g. camera in plane) or unstable (e.g. frontoparallel
plane).

3.3.2 Anchor selection

To find good anchor candidates for wide baseline links we
use two measures: The cost for matching two frames, and
the uncertainty of relative camera poses computed during
the window BA.

Cost estimation. For robust estimation of the basic link-
ing cost, we compute frame similarity based on histograms
of SIFT features [30]. The output is a cost matrix C rep-
resenting the cost for matching two frames of a video se-
quence (see Figure 6).

Uncertainty estimation. For uncertainty estimation, we
approximate the variance of the camera poses for every pair
of confident cameras in the following three steps:

1. Estimate the variance of each camera’s pose ci relative
to each window’s structure, i.e., the 3D points com-
puted from cameras in window wj :

V ar(ci, wj) ∝ 1/(min(25, ζ1) · ζ2 · ζ3)2 (1)

We assume that 25 reprojections are sufficiently many
constraints.

2. Use this information to estimate the variance between
windows by averaging the summed variances to com-
mon camera poses:

V ar(wj1 , wj2) =

n∑
i=1

V ar(ci, wj1) + V ar(ci, wj2)

n2

(2)

3. Find the camera→window→...→window→camera
path with the lowest summed variance for each cam-
era pair. While step 2 only considers variances for

windows that share a camera, this step propagates the
variance information to arbitrary indirectly connected
camera pairs.

This results in a variance matrix V (see Figure 6). We
can now estimate a matrix S representing potential anchor
frames to be used as global links:

S = (1−C) ◦V (3)

Note that Cij ∈ (0, 1) and ◦ is the element-wise product
of matrices. We importance sample S to get frame pairs
(f1, f2) that represent useful anchor constraints.

Geometrical verification. To ensure that a global an-
chor constraint is truly useful, we perform a geometrical
verification. We pick the window with the most available
scene points that contains f1 and BA for the pose of f2’s
camera based on those points, utilizing SIFT matches for
linking f2’s features to f1’s points.

In our experiments we observed that up to 40% of the
matches were outliers when matching SIFT features ex-
tracted from KLT keypoints. Therefore, we exploit the al-
ready known scene geometry to gain robustness in this pro-
cess. We apply four passes of BA for the camera pose pa-
rameters while removing all the points with reprojection er-
rors worse than the average between the passes. Since BA
tends to prefer consistent constraints, inconsistent reprojec-
tions are removed by this procedure. If there is not enough
consistent data, BA diverges which leads to a violation of
our stability constraints. We consider the geometric verifi-
cation successful if it passes the following stability thresh-
olds: ζ1 ≥ 25, ζ2 ≥ 0.075 · ImageSize and ζ3 ≥ 0.1, which
worked well in all our experiments. When a pair of frames
representing a global anchor constraint fulfils these thresh-
olds, we add the respective relative camera pose constraints
to the existing set of constraints. In all our experiments,
these thresholds reliably removed all outliers.

Figure 7 illustrates the effect of using the anchor con-
straints, based on sampling costs C and S, which addition-
ally takes into account variance matrix V. Using anchor
constraints considerably reduces camera drift. By concern-
ing V in addition to the basic matching cost, drift can be
reduced by another 40%.

3.4. Final optimization

The window BA and the global anchors now provide a
large set of pose constraints. Using all these constraints we
again apply global linear optimization [14] in order to com-
pute a globally consistent 3D scene and camera calibration
for all input frames.

We then apply a series of nonlinear least squares opti-
mization passes based on the following three strategies:

A No Field of View (FoV) optimization, no bad point re-
moval.
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Figure 7. Comparison of loop closing strategies. Beside camera
drift and reprojection error, we also show the number of samples
needed to get 20 verified wide baseline links and the computation
time for wide baseline handling. Without loop closing, the camera
drift is quite high (out of scale: 0.08). Cost based frame selec-
tion for wide baseline handling reduces the drift drastically (use).
Choosing frames also based on their value for wide baseline han-
dling (encoded in V) reduces the drift by another 40% for a fair
amount of extra samples/runtime (use+cost). Note that the repro-
jection error increases because of the extra constraints that have to
be fulfilled for closing the loop.
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Figure 8. Keyframe selection evaluation. We compare our im-
plementation optimizing only keyframes together with the points
(sparse) to an implementation that does a full global BA (full).
Using a sparse camera set yields results comparable to the full op-
timization but is 2-10x faster. This factor is assumed to increase
with higher framerates since less keyframes are selected for the
sparse set.

B No FoV optimization, bad point removal.

C FoV optimization, bad point removal.

We run the following sequence: ABABABCCC. Skipping
bad point removal (A) at the beginning avoids the removal of
reliable points because of a bad initialization, thus loosing
valuable information for optimization. FoV optimization is
added at the very end only (C), because it tends to converge
to singularities in small or badly initialized scenes.

When all confident cameras are calibrated and corre-
sponding stable scene points are reconstructed, we initialize
the poses of all remaining, unused cameras by linear inter-
polation followed by a BA step constrained by the stable
scene points.
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with an affine transformation plus timings. Our approach runs or-
ders of magnitude faster than other SfM systems while producing
results which are an order of magnitude more accurate than SLAM
systems. PTAM failed after 176 frames due to too slow map up-
date.
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4. Evaluation

In the addition to the quantitative evaluations shown
throughout the paper, we provide additional results on
ground truth data and timings. Most test scenes (office 1333
frames, bench 1055 frames, stairway 867 frames, office2
1180 frames) were recorded with a GoPro Hero 3 in Wide
Angle 1080p 60fps mode. The ship scene (4411 frames)
was recorded with a DSLR mounted on a slowly moving
crane to simulate high frame rate footage. Our datasets and
additional supplemental materials are provided on the ac-
companying project webpage [1].

Confident frame selection. In order to demonstrate
the robustness of our confident frame selection process we
compare the results of just using those frames in the fi-
nal BA optimization to a full BA reconstruction using all
frames. Figure 8 shows that there is only a small quality
improvement at the cost of considerably increased compute
time with the full BA.

Ground truth comparison. We have constructed a
2MP, 60 fps synthetic ground truth sequence from the Open
Movie Project ”Sintel” [28] containing rich scenery, motion
blur, glare and camera shakes. Our method is more of a
SfM approach than SLAM, as it features global BA steps
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typical to SfM. However, Figure 9 shows that it runs orders
of magnitude faster than SfM systems, at comparable speed
to current SLAM systems, while producing results which
are an order of magnitude more accurate than SLAM sys-
tems.

Timings. Figure 10 breaks down the reconstruction tim-
ings for the scenes used in this paper to the individual parts
of our pipeline. Reconstruction timings of our approach are
further compared with several other techniques in Figure
11 analyzing timings for varying numbers of frames of the
FullHD outdoor video sequence. We compare to two ap-
proaches designed for handling images (Bundler [2] and Vi-
sualSfM [4] (GPU accelerated, parallelized)) as well as two
approaches for video sequences (Voodoo Camera Tracker
and the recent LSD-SLAM [10]).

Methods intended for sparse, unstructured data suffer
from n2 runtime for searching corresponding images. The
Voodoo Camera Tracker performs well for small tracks but
becomes much slower when BA has to correct accumu-
lated drift in the end. Even in comparison to recent effi-
cient SLAM approaches such as LSD SLAM our method
is faster. We also observed that increased image resolu-
tion can lead to significant drops in performance for the
tested methods, whereas our method scales well due to the
proposed subsampling. We expect further significant speed
gains by improved preprocessing such as feature extraction
and tracking, as the majority of computing time is spent on
these steps, and not our core optimization procedure (Fig-
ure 11).

Please also refer to the supplemental material on the
project webpage [1] for reconstruction results on several
other scenes, including very high resolution 5k video, mul-
tiple video sequence reconstructions and reconstructions
from the Stanford Light Field datasets.

Limitations and future work. Our method currently
computes only extrinsic camera parameters. As future work
it would be interesting to support uncalibrated cameras with
changing intrinsics. Moreover, the algorithm is limited by
some of the components used. For instance, replacing the

current OpenCV KLT tracking by a GPU based implemen-
tation and improving our point subsampling strategy, e.g.,
using stratified sampling, could lead to improved recon-
struction quality and speed.

5. Conclusion
We introduced a novel pipeline that enables efficient

computation of extrinsic camera poses and scene structure
on high spatiotemporal resolution, densely sampled video
sequences. One of the key insights in this work is that the
coherence of such data enables the use of modified track-
ing, subsampling, and global optimization schemes, which
in combination allow for considerably faster and more ro-
bust computation, similar to observations made in previous
works [15,33] in the context of 3D reconstruction. In partic-
ular we found that common choices in SfM such as n-point
algorithms for initialization are problematic in this context
and can be entirely replaced by BA-based approaches.

Given the constant increase of camera resolution and
frame rate, and the advent of light field sensors by com-
panies such as Lytro or Pelican Imaging, we believe that
algorithms specifically designed for densely sampled input
represent a great opportunity for future research in this area.
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