Advanced Mathematical Methods

WS 2017/18

4 Mathematical Statistics

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics

Outline: Mathematical Statistics

4.5 Specific probability distributions
4.6 Distribution of a function of a random variable
4.7 Moment generating functions (MGF)

Readings

A. Papoulis and A. U. Pillai. Probability, Random Variables and Stochastic Processes.
Mc Graw Hill, fourth edition, 2002 Chapter 5

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

- Discrete RVs II: Functions of RV, conditional probabilities, specific distribution, total expectation theorem, joint probabilities
https://www.youtube.com/watch?v=-qCEoqpwjf4

4.5 Specific probability distributions

Some distributions stem from experimental situations.
Existence theorem
For $F_{X}(x)$ to be a distribution function, it must hold that
(i) $F_{X}(x)=\int_{-\infty}^{x} f(u) d u$
(ii) $f(x)$ non-negative and $\int_{-\infty}^{\infty} f(x) d x=1$
(iii) $F_{X}(x)$ continuous from the right and
(iv) monotonically increasing from 0 to 1 as x goes from $-\infty$ to ∞

4.5 Specific probability distributions

The normal distribution

X is a gaussian or normal random variable with parameters μ and σ^{2} if its density function is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

denoted $X \sim N\left(\mu, \sigma^{2}\right)$
linear transformation is also normally distributed:
if $X \sim N\left(\mu, \sigma^{2}\right)$, then $a+b X \sim N\left(a+b \mu, b^{2} \sigma^{2}\right)$

4.5 Specific probability distributions

standardization of X leads to standard normal distribution:

$$
\begin{aligned}
a & =-\frac{\mu}{\sigma} \quad, \quad b=\frac{1}{\sigma} \\
z & =\frac{x-\mu}{\sigma} \sim N(0,1) \\
\Phi(z) & =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right)
\end{aligned}
$$

Thus, if $X \sim N(\mu, \sigma)$, then $f(x)=\frac{1}{\sigma} \Phi\left(\frac{x-\mu}{\sigma}\right)$

4.5 Specific probability distributions

The χ^{2} distribution:
X is said to be $\chi^{2}(n)$ with n degrees of freedom if

$$
f_{X}(x)= \begin{cases}\frac{x^{\frac{n}{2}-1}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} e^{-\frac{x}{2}} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

if $z \sim N(0,1)$, then $x=z^{2} \sim \chi^{2}(1)$
if z_{i} are iid $N(0,1)$, then $\sum_{i=1}^{n} z_{i}^{2} \sim \chi^{2}(n)$

4.6 Distribution of a function of a random variable

transformation of the random variable X to a new random variable Y using a measurable function $g(\cdot)$:

$$
Y=g(X)
$$

requirements:

- $g(\cdot)$ needs to be invertible (monotonic function)
- $g(\cdot)$ needs to be continuously differentiable

4.6 Distribution of a function of a random variable

Transformation theorem
X is continuous with pdf $f_{X}(x) . Y=g(X)$ is strictly monotonous and continuously differentiable,
$f_{Y}(y)= \begin{cases}f_{X}\left(g^{-1}(y)\right) \cdot\left|\frac{d}{d y}\left(g^{-1}(y)\right)\right| & \text { for } y \in\left\{y: y=g(x) ; x \in \mathbb{W}_{X}\right\} \\ 0 & \text { else }\end{cases}$
\mathbb{W}_{X} is the domain of X

4.7 Moment generating functions (MGF)

for a random variable X with pdf $f_{X}(x)$, the MGF is

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t X}\right] \\
& = \begin{cases}\sum_{i} e^{t x_{i}} f_{X}\left(x_{i}\right) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x & \text { if } X \text { is continuous }\end{cases}
\end{aligned}
$$

if the MGF exists, the k - th uncentered moment of X is given as

$$
M_{X}^{(k)}(0)=\left.\frac{d^{k} M_{X}(t)}{d t^{k}}\right|_{t=0}=\mu_{k}^{\prime}=E\left[X^{k}\right]
$$

4.7 Moment generating functions (MGF)

if $M_{X}(t)$ exists, then the MGF of $Y=a+b X$ is

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t(a X+b)}\right] \\
& =e^{t b} \cdot E\left[e^{t(a X)}\right] \\
& =e^{t b} \cdot E\left[e^{(t a) X}\right] \\
& =e^{t b} \cdot M_{X}(a t)
\end{aligned}
$$

if X and Y are independent, then the MGF of $X+Y$ is
$M_{X}(t) \cdot M_{Y}(t)$
Note: the MGF of sums of random variables does not always exist

