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Readings

A. Papoulis and A. U. Pillai. Probability, Random Variables and
Stochastic Processes.
Mc Graw Hill, fourth edition, 2002 Chapter 6



Online References

MIT Course on Probabilistic Systems Analysis and Applied
Probability (by John Tsitsiklis)

» Discrete RVs Il: Functions of RV, conditional probabilities,
specific distribution, total expectation theorem, joint
probabilities
https://www.youtube.com/watch?v=-qCEoqpwjf4

» Discrete RVs IlI: Conditional distributions and joint
distributions continued
https://www.youtube.com/watch?v=EObHWIEKGjA

» Multiple Continuous RVs: conditional pdf and cdf, joint pdf
and cdf
https://www.youtube.com/watch?v=CadZXGNauY0


https://www.youtube.com/watch?v=-qCEoqpwjf4
https://www.youtube.com/watch?v=EObHWIEKGjA
https://www.youtube.com/watch?v=CadZXGNauY0

4.8 Joint distributions

Definition: Random vector

Assume a probability space (2, F,P). A vector-valued function
X() : 2 = R";w +— X(w) which attributes to every singleton w a
vector of real numbers X(w) is called a random vector.



4.8 Joint distributions

Definition: Joint density function
The joint density for two discrete random variables X; and X5 is

given as

P(Xl = x1; N X2 = X2,') Vi,j
TX(XL)Q) - {O else

Properties:
> fx(Xl,Xz) >0 V (x1,x)€ R?

> 20> x(aixe) =1
i



4.8 Joint distributions

Definition: Joint cumulative distribution function

The cdf for two discrete random variables X; and X, is given as

FX(Xl,Xg) = P(Xl <xiNXo < X2 Z Z fX X1,,X2,

X1 <x1 X2;<X2

it follows that

Pa<Xi<bne<Xo<d)= > > flxaixi)

a<x1<bc<xx<d



4.8 Joint distributions

if X1 and X3 are two continuous random variables, the following
holds:

H? Fx(xl, x2)
F R ) = — 22
pd X (x1i, x2i) Dxi0

X1 X2
cdf FX(XI;XZ) = / /fx(ul,uz)duzdul

—00 —O0



4.9 Marginal Distributions

derive the distribution of the individual variable from the joint
distribution function
— sum or integrate out the other variable

> x(x1i, x2f) if X is discrete
F (x1) = § 5o o .
| fx(x1,x2)dxz if X is continuous

—00



4.9 Marginal Distributions

two random variables are statistically independent if their joint
density is the product of the marginal densities:

fx(x1,x2) = fq(x1) - fo(x2) < X and Y are independent
under independence the cdf factors as well:
Fxy(x,y) = Fx(x) - Fy(y)

Expectations in a joint distribution are computed with respect to
the marginals
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4.10 Covariance and correlation

Cov[X1, Xo] = E[(X1 — E[X1])(X2 — E[X2])]

Properties:
» symmetry: Cov[X1, Xa] = Cov[Xa, Xi]

» linear transformation:

Y1 = bo+ b1 X1 Yo =co+ a1 Xo
= CO’U[Yl, Y2] = b1C1001)[X1,X2]

» Cov[Xq, Xo] = Z leix2ij(X1iaX2j) — E[Xi]E[X2]

! J

= / /X1X2fx(X1,X2)dX2dX1 — E[Xl]E[XQ]

—00 —00
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4.10 Covariance and correlation

Pearson’s correlation coefficient

Cov(X1, X2) O

Prae = VVar(X1) - Var(Xz)  0x0x

» if X; and X are independent, they are also uncorrelated
» attention: uncorrelated does not imply independence!

» exception: normal distribution, characterized by 1st and 2nd
moment
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4.11 Conditional Distributions

» Distribution of the varibale Xj given that X5 takes on a certain
value x;

» Closely related to conditional probabilities:

(Xl =x1NX, = X2)

P
P(X1 = x1| X2 = x2) = P = )

conditional pdf of X; given X5 = xo:

o % (X1, X2)
funtaie - Bt
2

—13—



4.11 Conditional Distributions

conditional cdf of X; given X5 = xo:

P(Xi=x1[Xo = %) = D fpx(xailxe) = Fxqyx, (x1/x)

x1;i <X

if X1 and X, are independent, the conditional probability and the
marginal probability coincide:

fxa 1%, (x1|x2) = fxq (x1)

because

foxe (X1, x2) = fx; (x1) - Fxp(x2)

_14—



4.11 Conditional Distributions

the joint pdf can be derived from conditional and marginal densities
in 2 ways:

faxe = Fxapx. (X1]x2) - fx, (x2) = g, x, (x2x1) - fxy (x1)

—15—



4.12 Conditional Moments

P(X=xNY =y
P(X = x)

EIYKX =x] =) yf-
J
=D ¥ P(Y =ylX =x)
J
= Z)/jk - Fyix(vj1x)
J

f .
— nyk - v (%, 57) if Y is discrete
J

fx (x)
[ F
E[lYKX=x]= [ y*- v (x.y) if Y is continuous
fx(x)
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4.12 Conditional Moments

Var[Y|X = x] = Eyix[(Y — E[Y|X = x])?]

= Z(yj — E[Y|X =x])*- fyx(y|x)

if Y is discrete

Var[Y|X = x] = Eyx[(Y — E[Y|X = X])2]

- /(y — E[Y|X = x])* - fyx(y[x)dy

—0o0

if Y is continuous
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4.12 Conditional Moments

Law of total Expectations/ Law of iterated Expectations

E[Y] = Ex [E[YIX]]

Bx [Byx[YIX] = £V = [ { 182 fXY(X’y)dy] ()

fx(X)

— 00 — 00

FEy|x is a random value as X is a random variable

—18—
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