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Abstract

Many studies report shorter acoustic durations, more co-articulation and

reduced articulatory targets for frequent words. This study investigates a

factor ignored in discussions on the relation between frequency and phonetic

detail, namely, that motor skills improve with experience. Since frequency is

a measure of experience, it follows that frequent words should show increased

articulatory proficiency. We used EMA to test this prediction on German

inflected verbs with [a] as stem vowels. Modeling median vertical tongue

positions with quantile regression, we observed significant modulation by fre-

quency of the U-shaped trajectory characterizing the articulation of the [a:].

These modulations reflect two constraints, one favoring smooth trajectories

through anticipatory co-articulation, and one favoring clear articulation by

realizing lower minima. The predominant pattern across sensors, exponents,

and speech rate suggests that the constraint of clarity dominates for low-

frequency words. For medium-frequency words, the smoothness constraint

leads to a raising of the trajectory. For the higher-frequency words, both

constraints are met simultaneously, resulting in low minima and stronger co-

articulation. These consequences of motor practice for articulation challenge

both the common view that a higher frequency of use comes with more artic-

ulatory reduction, and cognitive models of speech production positing that

articulation is post-lexical.

Index Terms: co-articulation, frequency of use, predictability, quantile re-

gression, generalized additive models
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1 Introduction

How words are realized in speech varies substantially. A survey of sponta-

neous conversations (Johnson 2004) indicates that roughly 20% of words miss

at least one phone (see also Turnbull 2018). Several factors have been identi-

fied which co-determine the words’ phonetic details. One is audience design.

Speakers may articulate words more carefully when speaking to an audience,

but in familiar contexts, they may hypo-articulate (Lindblom 1990). On

the cline from hyper-articulation to hypo-articulation, words become shorter,

vowels more centralized, and segments and syllables deleted (Moon and Lind-

blom 1989; Lindblom 1990; Junqua 1993; Browman and Goldstein 1986;

Browman and Goldstein 1989; Liberman and Mattingly 1985). A second

factor is occurrence frequency. High frequency words have shorter acoustic

durations when factors such as number of segments are controlled for (Bell

et al. 2009; Gahl 2008). Several functional explanations for the negative

correlation of frequency have been put forward. For example, Zipf (1949)

pointed out that longer words require more articulatory effort (cf Lebedev,

Tsui, and Van Gelder 2001, for hand movements), and that general biolog-

ical constraints to reduce the costs of speaking will drive frequent words to

become shorter.

According to the smooth signal redundancy hypothesis (Aylett and Turk

2004), language production is affected by a preference to distribute informa-

tion uniformly across the linguistic signal (see Cohen Priva 2015, for seg-

ments). As frequent words are less informative, the complexity of their

acoustic signal is hypothesized to reduce in order to maintain a uniform

flow of information. The hypothesis is under scrutiny by Clopper, Turnbull,

and Burdin (2018), Cohen Priva and Jaeger (2018), Hall et al. (2018) in the

current issue.
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A third factor might be lexical retrieval. According to Bell et al. (2009),

less frequent words are realized with longer durations as a consequence of

having to maintain synchrony between higher level planning and articula-

tion. For rare words, phonological words become available later in time; for

frequent words, they are available earlier.

The terminology to describe shorter variants — articulatory undershoot,

hypo-articulation, reduction — reflects the normative status according to the

citation form in dictionaries. This negative evaluation does not do justice to

the rich communicative values of shorter forms (see Hawkins 2003, for discus-

sion). Furthermore, even though especially highly reduced forms are often

unintelligible in isolation, in the proper, context they are fully functional

(Arnold et al. 2017; Ernestus, Baayen, and Schreuder 2002).

The goal of the present study is to call attention to a fourth factor, namely,

the increase in skilled execution of articulatory gestures with experience.

The three factors discussed above paint a picture of shorter forms to be

impoverished and less informative. In what follows, we show, on the basis

of results obtained with electromagnetic articulography for German inflected

verbs, that high-frequency forms can maintain optimal articulatory targets

in combination with strong co-articulation.

2 Kinematic proficiency in hand movements

Before introducing our experiment, we provide an introduction to some rel-

evant results in a related domain: hand movements. For a fixed proficiency

level, consider the time required for a movement (t), the distance the move-

ment needs to cover (d), and the width of the targeted endpoint (w). A

greater width allows for a greater variety of endpoint positions, and, hence,
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is a measure of the movement accuracy. Experimentally, movement precision

is gauged by the magnitude of the error between the executed trajectory and

the optimal trajectory, or by the magnitude of the error between the move-

ment’s endpoint and its target. According to Fitts’ law (Fitts 1954; Bertucco

and Cesari 2010),

t = a+ b log2(2d/w). (1)

Equation (1) clarifies that decreasing movement time t for a fixed distance

d goes hand in hand with an increase in variability w (Langolf, Chaffin, and

Foulke 1976). Also, movements which are executed at speeds exceeding the

current level of proficiency will be less accurate. When proficiency increases,

trajectories become less variable for fixed t and d (Georgopoulos, Kalaska,

and Massey 1981; Platz, Brown, and Marsden 1998). Importantly, practice

is associated with stronger overlap of two successive gestures and decreasing

t for fixed w and d(Sosnik et al. 2004; Raeder, Fernandez-Fernandez, and

Ferrauti 2015; Platz, Brown, and Marsden 1998).

3 Kinematic proficiency in articulation

Articulation is a complex motor skill which takes years of practice to master.

A word’s frequency of use is an index of the amount of training a speaker

has received for properly coordinating the movements of the articulators.

Given the above kinematic principles, we can expect the articulatory record

to show that, with more frequent use, articulatory gestures of words be-

come less variable (cf. Tomaschek, Arnold, R. van Rij, et al. under revision),

more complex articulatory gestures can be executed without requiring slower

execution, and that upcoming gestures will be anticipated earlier, without
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lowering standards for articulatory targets.

To avoid misunderstanding, we do not claim that the manner in which

words are articulated is determined only by articulatory proficiency. As dis-

cussed above, audience design, probability, and lexical retrieval are forces

that co-determine articulation and may exert an influence on articulation

opposite to that predicted from increasing articulatory proficiency.

Several studies have addressed this question. Using electromagnetic ar-

ticulography, Tiede et al. (2011) were able to show that repetition of novel

sequences of common syllables leads to a reduction in the distances travelled

by the articulators as well as to increased gestural overlap, resulting in over-

all shorter words. Goffman et al. (2008) compared the speech of children

with the speech of adults and observed reduced temporal variation during

anticipatory co-articulation for adults. There is some evidence that as ex-

perience accumulates over the course of one’s life, the vowel space expands

(Baayen, Tomaschek, et al. 2017; Gahl and Baayen 2017), allowing improved

discrimination of an increasingly complex vocabulary (Keuleers et al. 2015;

Ramscar, Hendrix, et al. 2014). These findings suggest that learning may

indeed play a role in articulation.

The next section presents an experiment we carried out with electro-

magnetic articulography (henceforth EMA) that was designed to clarify the

consequences of experience for the articulation of inflected words. For this,

we reanalyzed the data from (Tomaschek, Tucker, et al. 2014). Given the

literature summarized above, we investigated how kinematic practice, param-

eterized by a word’s occurrence frequency shapes the target of articulation as

well as changes anticipatory coarticulation of inflectional exponents (Öhman

1966; Magen 1997). Data and scripts for the analyses can be downloaded

from https://osf.io/snuqd/.

6



4 Methods

4.1 Participants

Seventeen native speakers of German (9 female, mean age: 26, sd: 3), under-

graduate students at the University of Tübingen, with no known language

impairments, took part in the experiment. They were either paid 10 Euro

for their participation, or received course credit.

4.2 Stimuli

Twenty-seven German verbs with the vowel [a:] in the stem were used. All

verbs were presented in a sie . . . phrase which is disyllabic in its canonical

form (e.g., [zi:tsa:l@n]). Nine of these verbs were also presented in a phrase

eliciting a monosyllabic verb form ([i:5tsa:lt]). Verbs were selected to cover

a wide range of relative frequencies, extracted from SDEWAC (Faaß and

Eckart 2013; Shaoul and Tomaschek 2013), a corpus of written texts col-

lected from the internet. It is conceivable that frequencies of written word

forms misrepresent the occurrence frequencies in the spoken language. For

the 8 stimuli that also occur in the Karl-Eberhards-Corpus (KEC) of spon-

taneously spoken German (KEC Arnold et al. 2017), the Spearman rank

correlation between the frequencies in the KEC and those in the SDEWAC

is 0.9. This indicates that the written frequencies are not so different from

spoken frequencies as to invalidate our use of written frequency to study

articulation.

Log-transformed relative occurrence frequencies were not a significant

predictor of the acoustic durations of the word stimuli (β = −0.0002, s.e. =

0.012, t = −0.017), and was also not predictive for the acoustic duration of

the stem vowel (β = 0.012, s.e. = 0.014, t = 0.884) in mixed-effects models
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with random intercepts for subject and word.

4.3 Recording

Recordings took place in a soundproof booth at the Department of Linguis-

tics of the University of Tübingen. Participants uttered words presented ran-

domly on a computer screen. The presentation was divided into three parts.

Each part was presented first in a slow and then in a fast speaking condi-

tion (inter-stimulus interval: 600/300 ms; presentation-time: 800/450 ms).

The tongue’s movements were recorded with the Northern Digital WAVE

articulograph (sampling rate: 100 Hz). Simultaneously, the audio signal

was recorded (Sampling rate: 22.05 kHz) and synchronized with articulatory

recordings. Head movements were automatically corrected using a 6DOF

reference sensor, attached to participants’ forehead. Before tongue sensors

were attached, a recording was made to determine the rotation from the local

reference to a standardized coordinate system, defined by a bite plate with

three sensors in a triangular configuration. Tongue movements were cap-

tured by three midsagitally placed sensors: one slightly behind the tongue

tip (TT), one at the tongue middle (TM) and one at the tongue body (TB;

distance between each sensor: around 1cm). We report the findings for TT

and TB, as TM’s movement pattern mirrors the one of TT, albeit with a

slightly reduced amplitude.

4.4 Preprocessing

Tongue positions were centered at the midpoint of the bite plate and rotated

such that the front-back direction of the tongue was aligned to the x-axis,

with more positive values towards the front of the mouth, and more positive

z-values towards the top of the oral cavity. To determine segment bound-
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aries, audio signals were automatically aligned with phonetic transcriptions

by means of a Hidden-Markov-Model-based forced aligner for German (Rapp

1995). Vowel alignments were manually corrected, where necessary, on the

basis of significant changes in the oscillogram using Praat (Boersma and

Weenink 2015). Analyses of movement trajectories were restricted to [a:]’s

acoustic boundaries.

4.5 Statistical analysis

We used quantile GAMs (QGams) to investigate how the sensor positions

changed over time, and how these articulatory trajectories were modified by

frequency of use and inflectional exponent (R package qgam, Version 1.1.1,

based on the mgcv package, Version 1.8-23, for R Version 3.3.3, R Core Team

(2014), visualized with itsadug (J. van Rij et al. 2015), Version 2.3). QGams

(Fasiolo et al. 2017) integrate quantile regression (Koenker 2005) with the

generalized additive model (GAM, Hastie and Tibshirani 1990; Wood 2006;

Wood 2011; Wood 2013b; Wood 2013a).

GAMs provide spline-based smoothing functions for modeling nonlinear

functional relations between a response and one or more covariates, enabling

the modeling of wiggly curves and wiggly (hyper)surfaces. Wiggly curves

were fit with thin plate regression splines. Interactions of covariates with

time were modeled with tensor product smooths (Baayen, Vasishth, et al.

2017).

The choice for modeling articulatory trajectories with quantile GAMs was

motivated by strong autocorrelations present in the residuals of the Gaussian

GAMs initially fit to our data. Time series of tongue positions are character-

ized by strong correlations between the position at time t and that at t− 1.

Although the mgcv package makes it possible to include an AR(1) autore-
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gressive model for the residuals, we were not able to fit a model to the data

with residuals that were properly Gaussian and identically and independently

distributed.

Since qGams implement a distribution-free method for estimating the

predicted values of a given quantile of the response distribution, together

with confidence intervals, they are a natural and powerful alternative. In

our analyses, we investigated the median, but other quantiles can also be of

theoretical interest (Schmidtke, Matsuki, and Kuperman 2017).

5 Analysis

Speakers sometimes reduced schwas in [@n], resulting in forms such as [zi:tsa:l@n]

realized as [zi:tsa:ln]. We, therefore, created a three level factor (using treat-

ment dummy coding), inflectional exponent: stem+[t] (N = 286), stem+[n]

(N = 197), and stem+[@n] (N = 344). For inclusion in the [@n] group, schwa

duration had to exceed 50 ms. The proportion of [@n] to [n] varied between

0.25 and 0.93 across participants and between 0.32 and 0.88 across words.

No significant effect of frequency was found in a mixed-effects regression.

The reference level of exponent was [@n]. Vowel durations were normalized

between 0 and 1, henceforth time. Articulatory trajectories are influenced

by the contexts in which they occur. As a consequence, for each verb (ab-

stracting away from its inflectional exponents), the consonants flanking [a:]

are expected to have their own specific effect on [a:]. We, therefore, included

by-stem factor smooths for time in our models. These factor smooths are

nonlinear equivalents of the combination of by-verb random intercepts and

by-verb random slopes for time in the linear mixed model (Baayen, Vasishth,

et al. 2017). By including factor smooths, we stack the cards against the hy-
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pothesis that words’ occurrence frequency also co-determines the articulatory

trajectories. In our qGAMs, a frequncy effect has to establish itself over and

above the co-articulatory effects of [a:]’s context. Since the effect of the in-

flectional exponents on articulation is probed with the factor exponent, the

combination of the by-stem factor smooths and exponent bring all parts

of the word forms under statistical control which potentially co-determine

articulation.

As average tongue height was expected to differ between participants, we

also included by-participant random intercepts (bi) in the model specification.

Given a vector of covariates x, a qGAM minimizes the loss function

E[ρτ (y − η)|x], (2)

where ρτ is the pinball loss for quantile τ ∈ c(0, 1). In this study, we consider

only the median (τ = 0.5). The analyses reported below assume that the

linear predictor η for the vertical position of a sensor for speaker i and word

j with exponent exponent(j) at time t can be approximated by

ηi,j,t = β0 + bi + fs(t, j) +

αexponent(j) + te(t, frequencyj, exponent(j)),

bi ∼ N (0, σ). (3)

For the fast/slow speaking condition, no sensor data were available for

the tongue tip sensor for 464/550 measurement points (data loss 6.5%/6.3%),

for the tongue mid sensor for 1515/706 data points (17.4%/8.1%), and for

the tongue body sensor for 370/338 measurement points (5.2%/3.8%). Sep-

arate qGAMs were fit to the remaining data points for each combination of
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sensor and speaking rate. To take into account variability due to different

articulatory complexities as well as temporal variation, we used vowel dura-

tion and word duration as covariates in pilot analyses to control for known

modulations of the trajectory due to time constraints. While improving the

model fit, these covariates did not affect the modulation of articulation by

frequency, and are therefore not included in the analyses reported here. Ta-

ble 1 presents the model summaries, Figure 1 presents the by-word factor

smooths for time for the fast condtion, and Figure 2 visualizes the partial

effects of the smooths for the time×frequency×exponent interaction for both

speaking rates.
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Figure 1: Partial effects of the by-word factor smooths for time, for tongue
tip (left), tongue mid (center) and tongue body sensors (right). Each curve
represents a word. Note that the adjustment is largest in tongue tip and
smallest in tongue body. Across positions, the same words tend to show
roughly the same trends, reflecting similar co-articulatory constraints with
the consonants flanking the [a:].
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tongue tip sensor – fast speaking condition
A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -6.5294 0.9871 -6.6149 < 0.0001
Exponent=t 0.9679 0.0846 11.4441 < 0.0001
Exponent=n 0.5865 0.0852 6.8808 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(Time,Frequency):Exponent=en 12.0762 13.1409 454.4291 < 0.0001
te(Time,Frequency):Exponent=t 12.3319 13.2206 432.3513 < 0.0001
te(Time,Frequency):Exponent=n 8.9767 9.7610 392.5233 < 0.0001
s(Participant) 15.9830 16.0000 11197.2793 < 0.0001
s(Time,Word) 109.7432 152.0000 5441.2205 < 0.0001

tongue tip sensor – slow speaking condition
A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -6.5626 0.9053 -7.2488 < 0.0001
Exponent=n -0.3570 0.0821 -4.3463 < 0.0001
Exponent=t 0.8931 0.0740 12.0680 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(Time,Frequency):Exponent=en 10.3480 10.7772 569.3480 < 0.0001
te(Time,Frequency):Exponent=n 10.2631 10.8002 429.3652 < 0.0001
te(Time,Frequency):Exponent=t 9.8095 10.5061 423.2987 < 0.0001
s(Time,Word) 120.3414 152.0000 4985.3140 < 0.0001
s(Participant) 15.9829 16.0000 10087.2380 < 0.0001

tongue body sensor – fast speaking condition
A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -0.3477 1.2850 -0.2706 0.7867
Exponent=t 0.3526 0.0709 4.9764 < 0.0001
Exponent=n 0.4284 0.0737 5.8105 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(Time,Frequency):Exponent=en 6.1325 6.6809 315.9888 < 0.0001
te(Time,Frequency):Exponent=t 7.5259 7.8432 254.1614 < 0.0001
te(Time,Frequency):Exponent=n 6.7701 7.3977 301.5194 < 0.0001
s(Participant) 15.9941 16.0000 40428.3445 < 0.0001
s(Time,Word) 63.6006 152.0000 5328.7791 < 0.0001

tongue body sensor – slow speaking condition
A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -0.6855 1.4453 -0.4743 0.6353
Exponent=t -0.2231 0.0697 -3.2026 0.0014
Exponent=n -0.5463 0.0755 -7.2331 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(Time,Frequency):Exponent=en 10.0310 10.6392 449.1261 < 0.0001
te(Time,Frequency):Exponent=t 9.5115 10.3115 312.4821 < 0.0001
te(Time,Frequency):Exponent=n 9.5453 10.4671 260.5343 < 0.0001
s(Time,Word) 59.3821 152.0000 1667.3226 < 0.0001
s(Participant) 15.9956 16.0000 58326.4913 < 0.0001

Table 1: QGAMs for the vertical position of the tongue tip and tongue body
sensor in fast (top panels) and slow speaking condition (bottom panels). te:
tensor product smooth, s: thin plate regression spline; fs: factor smooth; re:
random effect.

13



0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

fast, TT, [-ən]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

fast, TT, [-t]

Time
Fr

eq
ue

nc
y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

fast, TT, [-n]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

fast, TB, [-ən]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

fast, TB, [-t]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

fast, TB, [-n]

Time
Fr

eq
ue

nc
y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

slow, TT, [-ən]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

slow, TT, [-t]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

slow, TT, [-n]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

slow, TB, [-ən]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

slow, TB, [-t]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

0.0 0.2 0.4 0.6 0.8 1.0

-7
.5

-6
.5

-5
.5

-4
.5

slow, TB, [-n]

Time

Fr
eq

ue
nc

y -5.0

1.5

8.0

pa
rti

al
 e

ffe
ct

Figure 2: Partial effect of the interaction of Time by log relative Fre-
quency on the vertical position of the sensors for the three exponents [-@n],
[-t], and [-n]. Deeper shades of blue indicate lower vertical positions, and
darker shades of yellow indicate higher vertical positions. Upper panels:
tongue tip and tongue body sensor in the fast speaking rate, lower panels:
the same sensor positions in the slow speaking rate. TT: tongue tip sensor;
TB: tongue body sensor.
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Parametric summaries (labeled A in Table 1) indicate that [a:] in words

with [-t] and [-n] exponents were realized higher than in words with the [-@n]

exponent. In the slow speaking condition, words with the [-t] and [-n] had

lower vertical positions, except for the [-t] for the tongue tip sensor.

Random intercepts (in mm) for participants further modulate the sen-

sor’s vertical position on a speaker-by-speaker basis. Standard deviations

for by-participant random intercepts increased from tongue tip sensor: 3.72

(95% confidence interval: 2.63,5.26) to tongue mid sensor: 4.65 (95% con-

fidence interval: 3.25,6.65), and further for the tongue body sensor: 5.25

(95% confidence interval: 3.71,7.42) in the fast speaking condition. In slow

speaking condition: tongue tip: 3.23 (95% confidence interval (2.28,4.57) to

tongue mid sensor: 4.27 (95% confidence interval (3.0,6.1), and further for

the tongue body sensor: 5.91 (95% confidence interval 4.18, 8.35)

Figure 1 visualizes by-word factor smooths for time, in the fast speaking

condition. Each curve represents a word. The curves for stapeln and bad

in the left panel illustrate the very different consequences for articulatory

trajectories of the place of articulation of the pre-vocalic consonants. For

many words, curves are roughly similar across the three sensor positions.

For stapeln, for instance, we find a downward trend, and for bad, an upward

trend. Figure 1 also shows that the movement amplitude decreases from

tongue tip to tongue body.

Although the qGAM models identified individual articulatory trajectories

for each combination of lemma and exponent, three-way word×frequency×time

interactions received solid support in both speaking conditions. The upper

two rows of Figure 1 represent the partial effects for the tongue tip and tongue

body sensors in the fast speaking condition. The corresponding partial ef-

fects for the slow speaking condition are presented in the lower two rows.
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The left column in Figure 1 shows the effects for [-@n], the center and right

columns present the effects for [-t] and [-n]. Across all panels, deeper shades

of blue denote lower vertical positions, and warmer shades of yellow higher

positions. Colors are less bright for the tongue body than for the tongue tip

sensor; sensors further into the mouth show smaller movement amplitudes.

As expected for [a:], darker shades of blue are found in the center of

the time interval (horizontal axis), indicating roughly U-shaped articulatory

trajectories (changes from yellow to blue and back to yellow for any line

parallel to the x-axis). The exact shape of this U-shaped curve, however,

is modulated by word frequency (vertical axis). If frequency would have

had no effect at all, all contour lines would be straight vertical lines. Model

comparisons pitting the present models against models without frequency

and the time×frequency interaction provide strong support for the relevance

of frequency as predictor.

1

QGAMs reveal three types of modulation of the U-shaped trajectories

of the sensors. The first type is found in the fast speaking condition for

tongue tip during the articulation of [-@n] and [-n], and in the slow speaking

condition for both tongue tip and tongue body when articulating [-@n] (c.f.

Figure 1, upper left panel). The lowest point of articulation is reached for the

1When the time×frequency×exponent is replaced by time×exponent and
frequency×exponent, ML scores increased in all the sensors in the fast (TT: +94.0,
TM: +11.6, TB: +244.4), but only in one in the slow speaking condition (TT: -46.4,
TM: +141.7, TB: -649.9). We also analyzed tongue movements which decomposed
time×frequency×exponent into main effects and the interaction riding on top of these
main effects, using the ti function instead of the te function. The inclusion of the
additive ti interaction reduced the ML-score for sensors in the fast speaking condition in
all the sensors (TT: -123.869, TM: -16.4, TB: -215.0), in the slow speaking condition for
tongue tip and tongue body (TT: -34.0, TM: +28.8, TB: -271.4). These models provided
less precise fits to the data compared to the models that made use of the tensor product
smooths fit with te. No test for model comparison is available for qGams, but the
magnitude of the reduction in ML scores obtained by including the three-way interaction
is sufficient to conclude that a three-way interaction is indeed present.
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lowest-frequency words. As frequency is increased, this minimum increases

likewise. For everything except for the tongue tip sensor for [-n] in the fast

speaking condition, we find that, for medium and high frequency words, the

tongue sensor starts to move back up, and reaches a higher offset position,

than is the case for the lowest frequency words. In other words, as frequency

increases, the amplitude of the U-shaped movement stays roughly the same,

but the whole movement is executed at a higher position in the oral cavity.

In other words, as articulatory proficiency increases, the upcoming alveolar

exponent is anticipated by overall raising of the tongue.

The second type of modulation is found only for the tongue body sensor

realizing [-@n] in the fast speaking condition (see the first panel on the second

row of Figure 1). Here, we see that the U-shaped trajectory is lowered

as frequency is increased, without any indication of earlier anticipatory co-

articulation with the upcoming exponent. Articulatory proficiency is visible

here in the form of an overall deeper articulation.

For the remaining 7 sensor-exponent-speaking condition combinations,

the modulation of the U-shaped trajectory by frequency is intermediate be-

tween the preceding two types. As can be seen in the second panel on the first

row of Figure 1, the minimum of the U-shaped trajectory first increases with

frequency, and then decreases. Medium-frequency words show the earliest on-

set of anticipatory co-articulation, and sensors reach a higher offset position

than is the case for the lowest-frequency words. For the highest-frequency

words, the offset position reached tends also to be higher than that reached

for the lowest-frequency words, even though a lower minimum is reached

than for the medium-frequency words. Compared to the lower-frequency

words, higher-frequency words show a mastery of deeper articulation of [a:]

in combination with more and relatively earlier anticipatory co-articulation.
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This hour-glass pattern characterizes the articulation of [-t] and [-n], but

is not present for [-@n]. Since, for the latter exponent, the alveolar target for

co-articulation is at a greater distance from the stem vowel, being separated

from it by the schwa, the pressure for co-articulation is reduced for words with

[-@n]. As a consequence, the two opposing constraints on articulation of the

stem vowel, one favoring a low minimun to ensure a clear [a:] (the clarity con-

straint), and the other favoring co-articulation with the upcoming exponent

to ensure smooth articulatory gestures (the smoothness constraint), are op-

timized differently. Whereas for words with the [-t] and [-n] exponents, they

are optimized jointly with the smoothness constraint preceding the clarity

constraint as frequency is increased, words with the [-@n] exponent appear to

favor the clarity constraint, ignoring the smoothness constraint, thus build-

ing a better contrast between the [a:] and the upcoming schwa. It is only

for the tongue body sensor in the fast speaking condition that smoothness is

favored to the exclusion of vowel clarity.

6 Discussion

We used electromagnetic articulography to test whether articulation is also

subject to the law that practice makes perfect. We investigated inflected Ger-

man verbs with [a] as stem vowel with exponents [-t], [-@n], and [-n], focusing

on the vertical trajectories of three tongue sensors. We controlled statistically

for the effects of the consonants surrounding the stem vowel by including by-

word factor smooths for time in the analyses. Modeling the median tongue

position using quantile regression, we observed significant modulation by fre-

quency of the U-shaped vertical trajectory that characterizes the articulation

of the [a:]. These modulations reflect two constraints, one constraint favoring
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smooth trajectories through anticipatory co-articulation, and one constraint

favoring clear articulation of the [a:] by realizing lower minima. The pre-

dominant pattern across sensors, exponents, and speech rate suggests that

the constraint of clarity dominates for low-frequency words. For medium-

frequency words, the smoothness constraint leads to an overal raising of the

trajectory. For the higher-frequency words, both constraints are met simul-

taneously, resulting in low minima and earlier and stronger co-articulation.

This hour-glass pattern of modulation was characteristic of the [-t] and

[-n] exponents, but was absent for the [-@n] exponent. We think this is due to

the schwa in the exponent lowering the pressure for coarticulation. Further-

more, under time pressure, in the fast speaking condition, the interaction of

time by frequency may be almost completely absent. In our data, this is the

case for the tongue tip sensor for words with the [-n] exponent. Here, higher

frequency words have slightly higher minima, but there is no clear effect

of earlier or stronger co-articulation. Apparently, the fast speaking condi-

tion induced a loss of clarity without speakers being able to compensate for

smoothness.

Considering all sensors together, the lowest minima tend to be present

for the lowest-frequency words. This dovetails well with the finding that for-

mants in lower-frequency words are articulated further away from the center

of the vowel space (Aylett and Turk 2004; Meunier and Espesser 2011).

Returning to the hour-glass pattern dominating the interaction of time by

frequency, we note that the balance of the constraints of clarity and smooth-

ness can also be seen as reflecting the opposing pressures of predictability

and discriminability (Blevins, Milin, and Ramscar 2015). The pressure of

predictability favors a clear low vocalic center and a strong U-shaped tra-

jectory that can be executed in a similar way across words. The pressure
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of discriminability, by contrast, is served by co-articulation. Co-articulation

causes inflected forms to have somewhat different vowels, and as a conse-

quence, these words are possibly more easily teased apart by the listener (cf.

Kemps, Wurm, et al. 2005a; Kemps, Ernestus, et al. 2005b). The optimiza-

tion for both constraints visible for higher-frequency words is perhaps made

possible by the presence of larger, multi-phone planning units for these words

(see, e.g., Hickok 2014).

It is tempting to project the three stages of modulation of the U-shaped

curve visible in the hour-glass interactions of time by frequency onto the

development of kinematic proficiency across the lifespan. Initially, the con-

straint of clarity would dominate speech production, but with age, speak-

ers would learn to satisfy both the constraint of clarity and the constraint

of smoothness. However, the literature comparing child speech with adult

speech does not provide clear support for this conjecture, as findings are

inconsistent. Barbier et al. (2015) and Zharkova, Hewlett, and Hardcastle

(2012) report that adults co-articulate more than children, whereas Suss-

man et al. (1999), Zharkova, Hewlett, and Hardcastle (2011), and Katz

and Bharadway (2001) report exactly the opposite. Furthermore, Noiray,

Menard, and Iskarous (2013) failed to find any differences in anticipatory

co-articulation between adults and children. As most of these studies are

based on non-words, and given the consequences of life-long learning for lex-

ical processing (Ramscar, Hendrix, et al. 2014; Ramscar, Sun, et al. 2017),

the demands made on children and adults requested to produce the same

nonwords are very different. As a consequence, the question of whether the

hour-glass shaped pattern generalizes to changing proficiency over the life-

time has to be left open.

The importance of frequency of use, as a measure of articulatory profi-
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ciency, for understanding articulatory gestures also emerged in several other

studies. Tomaschek, Arnold, Bröker, et al. (accepted) showed that frequency

modulates speed of articulation in relation to the curvature of movement

trajectories. Segments with more narrow curves were articulated faster in

more practiced words. Furthermore, more frequent words were articulated

with smoother trajectories (cf. Sosnik et al. 2004; Tiede et al. 2011), and

Tomaschek, Arnold, R. van Rij, et al. (under revision) showed that artic-

ulatory movements at more probable word boundaries were produced with

greater precision (cf. Goffman et al. 2008).

All these results were obtained for laboratory speech, using a registra-

tion technique that requires placement of sensors on the tongue and lips.

As a consequence, it is unclear whether the present results generalize to

spontaneous speech (see, e.g., Gahl, Yao, and Johnson 2012; Foulkes et al.

2018, a discussion of potential differences between laboratory and sponta-

neous speech). Replication studies, ideally based on corpora of spontaneous

speech with EMA or ultrasound registration, are essential for consolidating

the present body of evidence.

If the present results are pointing in the right direction, they have two

important theoretical implications. First, the finding that frequency of oc-

curence modulates the fine detail of how articulatory gestures are realized

challenges the common assumption that articulation is planned post-lexically.

This assumption is implemented in cognitive models for speech production,

such as proposed by Dell (1986), Levelt, Roelofs, and Meyer (1999) , and

Goldstein et al. (2009), which assume that the representations driving ar-

ticulation are assembled of phonemes and morphemes, or of the gestural

scores associated with these units. These models cannot straightforwardly

accommodate the present evidence that experience at the level of individual

21



words co-determines how articulatory trajectories are actually realized (see

also Gahl 2008; Daland and Zuraw 2018).

Second, higher-frequency forms are not necessarily more ‘reduced’. The

decrease in acoustic duration that has been observed many times for higher-

frequency words (van Bergem 1995; Aylett and Turk 2006; Schulz et al. 2016;

Meunier and Espesser 2011) does not logically entail that the constraint of

clarity is discarded in favor of the constraint of smoothness. When mo-

tor skills improve, complex motions can be executed both faster and with

more precision. The argument that shorter acoustic durations go hand in

hand with reduction of articulatory movements appears to gain further sup-

port from the observation that vowels in higher-frequency words centralize

more (Aylett and Turk 2006; Meunier and Espesser 2011) . However, more

vowel centralization for higher frequency words is entirely compatible with

the present findings, as the minima for high-frequency words tend to be

slightly higher than those of low-frequency words while going hand in hand

with more tongue raising for co-articulation. Thus, global measures of vowel

centralization that do not take into account how centralization varies with

time will, also for our data, single out higher-frequency words as more re-

duced. We note here that evidence present in the articulography record may

not be available in the acoustic signal (see Wieling et al. 2016, for the case

of different articulatory settings between dialects). We therefore conclude

that the consequences of kinematic proficiency for articulation are worthy of

further investigation.
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