Replacing digital neural networks by physical learning machines

F. Marquardt FAU Erlangen-Nürnberg Max Planck Institute for the Science of Light

Recent rapid progress in deep learning has coincided with an exponential explosion of the resource requirements. This has inspired the search for alternative so-called neuromorphic hardware architectures, which exploit physical effects to realize learning machines and potentially replace digital artificial neural networks. They promise to be much more energy-efficient and performant, exploiting massive parallelism and distributed computing. In this talk I will introduce the first general approach to training based on purely physical dynamics, a technique we labeled "Hamiltonian Echo Backpropagation". Furthermore, I will present a recent idea where we propose to use purely linear wave scattering to implement nonlinear learning machines.

[1] Lopez-Pastor and Marquardt, Phys. Rev. X 13, 031020 (2023)

[2] Wanjura and Marquardt, arXiv:2308.16181